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A remark on unique ergodicity and the contact type condition

Viktor L. Ginzburg and César J. Niche

Abstract. We prove that for a broad class of exact symplectic manifolds
including R

2m, the Hamiltonian flow on a regular compact energy level of
an autonomous Hamiltonian cannot be uniquely ergodic. This is a conse-
quence of the Weinstein conjecture and the observation that a Hamilton-
ian structure with non-vanishing self-linking number must have contact
type. We apply these results to show that certain types of exact twisted
geodesic flows cannot be uniquely ergodic.
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1. Results.

1.1. Introduction. In this paper we show that the Hamiltonian flow on a reg-
ular compact energy level of an autonomous Hamiltonian on R

2m cannot be
uniquely ergodic. In fact, the result holds for a much larger class of symplectic
manifolds. For instance, it is sufficient to assume that every compact subset of
the ambient manifold has finite Hofer–Zehnder capacity.

To put these results in perspective, recall that by the so-called almost
existence theorem proved by Hofer and Zehnder, [11], and by Struwe, [16],
almost all, in the sense of measure theory, regular energy levels of a proper
Hamiltonian on R

2m carry periodic orbits. (Again, this theorem holds for a
much broader class of ambient manifolds; see, e.g., [8,11] for a survey of related
results.) On the other hand, it is also known that periodic orbits need not
exist on all regular energy levels. To be more specific, when 2m ≥ 4, there
exists a proper Hamiltonian H : R2m → R with only one critical point, which
is thus a minimum, carrying no periodic orbits of its Hamiltonian flow on a
regular level. Hamiltonians with this property are known as counterexamples to
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the Hamiltonian Seifert conjecture. (The Hamiltonian H is C∞ smooth when
2m > 4. However, when 2m = 4, the Hamiltonian is only C2 and it is not
known if a C∞-smooth H exists.) We refer the reader to the survey [7] and to
[9] for further references and a more detailed discussion of the counterexamples
to the Hamiltonian Seifert conjecture.)

This naturally leads to the question of how far from having periodic orbits
the flow on a regular level of H can be. Unique ergodicity is arguably the
most extreme form of “aperiodicity”, and our results show that the flow on a
regular level of a proper Hamiltonian on R

2m cannot be so “aperiodic”. This
is also true for many other, but not all, ambient symplectic manifolds; see
Corollary 1.3 and Example 1.5.

As an application of this approach, we show that in certain situations exact
twisted geodesic flows cannot be uniquely ergodic; see Corollary 1.6.

The proof of these results is rather indirect, although it amounts to a simple
combination of well known facts. First, we use the contact type criterion due
to McDuff, [14], to show that a uniquely ergodic “Hamiltonian structure”
meeting a certain natural requirement must have contact type. This is our
Theorem 1.1, which is also closely related to a result of Taubes from [19]; see
Corollary 1.4. The requirement is that the self-linking number of the structure
is non-zero and it is automatically satisfied for a closed hypersurface bounding
a domain in an exact symplectic manifold. Next, we observe that whenever
the Weinstein conjecture is established for the resulting class of contact type
hypersurfaces, the Reeb flow has a closed characteristic, and hence cannot
be uniquely ergodic; see Corollaries 1.2 and 1.3. Another way to interpret
these results is that certain natural, essentially topological, requirements on
a Hamiltonian structure imply a constraint on its dynamics, namely, that the
structure cannot be uniquely ergodic.

1.2. Main results. Before stating the main results of this note, let us introduce
some terminology.

Let M2n+1 be a closed oriented manifold and ω be a maximally non-
degenerate (i.e., ωn �= 0 anywhere on M) exact two-form on M . For brevity,
we will refer to ω as a Hamiltonian structure, cf. [3]. (We emphasize that we
do not impose any further conditions, e.g., stability, on ω.) An example of
a Hamiltonian structure is the restriction of a symplectic form to a compact
regular level of a Hamiltonian when the symplectic form on the level is exact.
Note that for a fixed volume form μ on M the non-vanishing vector field X
determined by the condition iXμ = ωn is necessarily volume preserving. Con-
versely, in dimension three, once M and μ are fixed, X �→ iXμ is a one-to-one
correspondence between exact divergence-free vector fields and Hamiltonian
structures. (In higher dimensions, a non-vanishing divergence-free vector field
X such that iXμ is exact need not come from a Hamiltonian structure.) In any
event, a Hamiltonian structure gives rise to the line field kerω which integrates
to a transversely symplectic one-dimensional foliation F called the character-
istic foliation of ω. The leaves of F are the integral curves of X. Recall that
a flow is said to be uniquely ergodic if it admits only one ergodic measure.
For volume preserving flows this must then be the volume form. The flow is
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minimal if each of its orbits is dense. (See, e.g., [13] for further details.) We
call ω uniquely ergodic (minimal) when F , i.e., the flow of X, is uniquely er-
godic (minimal). Finally, we say that ω has contact type when ω has a contact
primitive, i.e., there exists a one-form α such that dα = ω and α ∧ (dα)n �= 0
everywhere.

To a Hamiltonian structure ω, we associate a number

Lk(ω) =
∫

M

α ∧ ωn,

where α is a primitive of ω. Since M is closed, Lk(ω) is well defined, i.e.,
independent of α, by Stokes’ formula. (The sign of Lk(ω) depends on the ori-
entation of M .) Clearly, Lk(ω) �= 0 when ω has contact type. In dimension
three, Lk(ω) can be interpreted as the self-linking number of F or the asymp-
totic Hopf invariant; see [2].

Our key technical result is the following theorem.

Theorem 1.1. Let ω be a uniquely ergodic Hamiltonian structure with Lk(ω) �=
0. Then ω has contact type.

The proof of this theorem, given in detail in Sect. 2, is an easy application
of the contact type criterion from [14]. The theorem is essentially a negative
result saying that a Hamiltonian structure with Lk(ω) �= 0 cannot be uniquely
ergodic if we assume the Weinstein conjecture to hold. Indeed, the Weinstein
conjecture asserts that the characteristic foliation of a contact type Hamilton-
ian structure has a periodic orbit, and hence cannot be uniquely ergodic. (See,
e.g., [12] for a detailed discussion). Thus this is really so in the cases where the
Weinstein conjecture has been established, e.g., when M is three-dimensional,
[18], or when M is a hypersurface in R

2m, [20], or more generally when M
is a displaceable hypersurface in a sufficiently nice symplectic manifold; see,
e.g., [8,11,12] for further references. Moreover, in some instances, the condition
that Lk(ω) �= 0 is satisfied automatically. For example, we have

Corollary 1.2. Let M be a connected closed hypersurface in R
2m. Then the

characteristic foliation on M cannot be uniquely ergodic. Equivalently, an au-
tonomous Hamiltonian flow on a connected regular level of a proper Hamilton-
ian on R

2m cannot be uniquely ergodic.

Proof. Let W be the domain bounded by M in R
2m and let M = ∂W be ori-

ented by the outward normal. Let us also denote by ω the standard symplectic
form on R

2m. The result is then an immediate consequence of Theorem 1.1,
the Weinstein conjecture for hypersurfaces in R

2m mentioned above, and the
equality

Lk(ω) =
∫

W

ωm > 0,

which in turn readily follows from Stokes’ formula. �
This simple observation deserves a further discussion. First, we note for

future reference that a much more general result holds.
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Corollary 1.3. Let M be a connected closed hypersurface in an exact geometri-
cally bounded symplectic manifold V bounding a domain W with finite Hofer–
Zehnder capacity. Then the characteristic foliation on M cannot be uniquely
ergodic. In particular, if every compact set in V has finite Hofer–Zehnder ca-
pacity (e.g., is displaceable), an autonomous Hamiltonian flow on a connected
regular level of a proper, bounded from below Hamiltonian on V cannot be
uniquely ergodic.

We refer the reader to, e.g., [8,11] for the definitions and notions used in the
corollary, noting here only that the conditions on V and W are automatically
satisfied when V is a subcritical symplectic Stein manifold. The proof of this
corollary is identical to the proof of Corollary 1.2, but now we use the fact that
the Weinstein conjecture holds for M since W has finite Hofer–Zehnder capac-
ity; see [11]. The corollary can be further generalized; however, this variant is
more than sufficient for our purposes.

Next, recall that a uniquely ergodic volume-preserving flow is automati-
cally minimal; see, e.g., [13]. The converse is not true; see [5] and also [13]
for further details. (However, the authors are not aware of any example of a
minimal, but not uniquely ergodic, Hamiltonian structure ω with Lk(ω) �= 0.)
It is tempting to conjecture that in the setting of Theorem 1.1, or at least in
the context of Corollaries 1.2 and 1.3, the Hamiltonian structure cannot be
minimal. This would be a much deeper and more difficult result than Theo-
rem 1.1. For hypersurfaces in R

4, a proof of this fact was recently announced
by Fish and Hofer, [4].

Turning to another application of Theorem 1.1, we have

Corollary 1.4 (Taubes, [19]). Let ω be a Hamiltonian structure on a closed
(oriented) 3-manifold M with Lk(ω) �= 0. Then ω is not uniquely ergodic.

This corollary is an immediate consequence of Theorem 1.1 and, on the
non-trivial side, the Weinstein conjecture for 3-manifolds proved by Taubes in
[18]; see also [12] for a survey of related results. Here the new point is that to
establish the corollary, we use the assertion of the Weinstein conjecture rather
than its proof as in [19].

1.3. Applications and examples: twisted geodesic flows. Let σ be a closed 2-
form (a magnetic field) on a closed Riemannian manifold B. We equip T ∗B
with the twisted symplectic structure ω = ω0 + π∗σ, where ω0 is the standard
symplectic form on T ∗B and π : T ∗B → B is the natural projection, and
let K be the standard kinetic energy Hamiltonian on T ∗B arising from the
Riemannian metric on B. The Hamiltonian flow of K on T ∗B governs the
motion of a charge on B in the magnetic field σ and is referred to as a twisted
geodesic flow. In contrast with the geodesic flow (the case σ = 0), the dynamics
of a twisted geodesic flow on an energy level Mε = {K = ε2/2} depends on
the level.

Example 1.5 (Horocycle flow). Let B be a closed surface equipped with a
metric of constant negative curvature −1 and let σ be the area form on B.
Note that the restriction ω|Mε

is exact for every ε > 0 although the form ω
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is not exact on T ∗B. When 0 < ε < 1, every orbit of the Hamiltonian flow
on Mε is closed and all orbits have the same period. When ε > 1, the flow
on M is smoothly conjugate to the geodesic flow, up to a time change. The
flow on M1 is the so-called horocycle flow. (This observation goes back to [1].)
The horocycle flow is known to be uniquely ergodic, [6], and, as is easy to see,
Lk(ω|M1) = 0, which shows that the conditions that Lk(ω) �= 0 in Theorem
1.1 and that V is exact in Corollary 1.3 are essential.

Corollary 1.6. Assume that the form σ is exact. Then, for ε > 0 sufficiently
small, the Hamiltonian flow on Mε cannot be uniquely ergodic.

This corollary is an immediate consequence of Corollary 1.3 and a theorem
of Schlenk, [15], asserting that a small neighborhood of the zero section in T ∗B
has finite Hofer–Zehnder capacity.

Remark 1.7. Corollary 1.6 can also be generalized in a variety of ways. For
instance, one can replace the level Mε of K by any closed hypersurface in a
sufficiently small neighborhood of the zero section. Furthermore, T ∗B can be
replaced by any exact geometrically bounded symplectic manifold, meeting
some minor additional requirements, and the zero section can be replaced by
any submanifold B such that ω|B �= 0, cf. [10].

2. Proof of Theorem 1.1. As has been mentioned in Sect. 1.2, the theorem
readily follows from McDuff’s contact type criterion, [14], based, in turn, on a
work of Sullivan, [17]. To state this criterion, we need first to introduce several
notions.

Fix a volume form μ on M , and let X be the vector field uniquely deter-
mined by the condition iXμ = ωn. The integral curves of the flow of X are
parametrized characteristics of ω. Consider the currents of the form X ⊗ ν,
where ν is an invariant measure on M , acting on a 1-form α as

〈X ⊗ ν, α〉 :=
∫

M

α(X) dν.

By definition, such a current is a structure boundary if

〈X ⊗ ν, β〉 = 0

whenever β is closed; see [14,17]. For instance, a contractible periodic orbit
of X, i.e., a contractible closed characteristic of ω, gives rise to a structure
boundary which is simply the integral over the orbit.

Let α be a primitive of ω. To a structure boundary, we can associate its
“action”

A(X ⊗ ν) := 〈X ⊗ ν, α〉 ,

which is clearly independent of the choice of α. McDuff’s contact type criterion
asserts that ω has contact type if and only if

A(X ⊗ ν) �= 0
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for all structure boundaries X ⊗ ν; see [14]. (The observation that the actions
on all contractible closed characteristics must have the same sign for a closed
contact type hypersurface goes back to [21], where it is used to construct
hypersurfaces in R

2m which do not have contact type.)
In the setting of the theorem, μ is the only invariant measure since ω (and

hence X) are uniquely ergodic. Thus X⊗μ is the only candidate for a structure
boundary and, in fact, it is a structure boundary. Indeed, assume that dβ = 0.
Then, since iXμ = ωn and dα = ω, we have

〈X ⊗ μ, β〉 =
∫

M

β(X) dμ

= −
∫

M

β ∧ (dα)n

=
∫

M

d[β ∧ α ∧ (dα)n−1]

= 0

by Stokes’ formula. (Alternatively, one can argue that X⊗μ must be a structure
boundary since structure boundaries always exist; see [17].)

In a similar vein, we have

A(X ⊗ μ) =
∫

M

α(X) dμ = −
∫

M

α ∧ ωn = −Lk(ω) �= 0

by the hypotheses of the theorem. Hence, the conditions of McDuff’s criterion
are met and (M,ω) has contact type. �
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[10] B.Z. Gürel, Totally non-coisotropic displacement and its applications to Hamil-

tonian dynamics, Comm. Contemp. Math., 10 (2008), 1103–1128.

[11] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,
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