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Simultaneous sign change of Fourier-coefficients of two cusp
forms
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Abstract. We consider the simultaneous sign change of Fourier coeffi-
cients of two modular forms with real Fourier coefficients. In an earlier
work, the second author with Sengupta proved that two cusp forms of
different (integral) weights with real algebraic Fourier coefficients have
infinitely many Fourier coefficients of the same as well as opposite sign,
up to the action of a Galois automorphism. In the first part, we strengthen
their result by doing away with the dependency on the Galois conjugacy.
In fact, we extend their result to cusp forms with arbitrary real Fourier
coefficients. Next we consider simultaneous sign change at prime powers
of Fourier coefficients of two integral weight Hecke eigenforms which are
newforms. Finally, we consider an analogous question for Fourier coeffi-
cients of two half-integral weight Hecke eigenforms.
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1. Introduction and statements of the Theorems. Throughout the paper, let
p be a prime number, z ∈ H be an element of the Poincaré upper-half plane,
and q = e2πiz. Also let D be the set of square-free positive integers.

The theme of sign change of Fourier coefficients of modular forms consti-
tutes an interesting active area of research. In a recent work [5], the second
author and Sengupta consider the question of simultaneous sign change of
Fourier coefficients of two cusp forms of different weights with real algebraic
Fourier coefficients. They proved that given two normalized cusp forms f and g
of the same level and different weights with totally real algebraic Fourier coeffi-
cients, there exists a Galois automorphism σ such that fσ and gσ have infinitely
many Fourier coefficients of the opposite sign. The proof uses Rankin–Selberg
theory, a classical theorem of Landau, and finally the bounded denominator
principle.
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In the first part of this paper, we dispense with the bounded denominator
argument by appealing to an elementary observation about real zeros of Dirich-
let series. This allows us to strengthen their results and remove the dependency
on the action of the absolute Galois group. In fact, removing the arithmetic
component allows us to work with cusp forms having real, not necessarily
algebraic Fourier coefficients. More precisely, we prove the following:

Theorem 1. Let

f(z) :=
∑

n≥1

a(n)qn and g(z) :=
∑

n≥1

b(n)qn

be non-zero cusp forms of level N and weights 1 < k1 < k2 respectively. Fur-
ther, let a(n), b(n) be real numbers. If a(1)b(1) �= 0, then there exist infinitely
many n such that a(n)b(n) > 0 and infinitely many n such that a(n)b(n) < 0.

As a consequence of Theorem 1, we have the following corollary.

Corollary 2. Let f, g be non-zero cusp forms of level N and weights k1 �= k2.
Suppose that

f(z) :=
∑

n≥1

a(n)qn and g(z) :=
∑

n≥1

b(n)qn,

where a(n), b(n) are complex numbers. If the sequences {�(a(n))}n and
{�(b(n))}n are not identically zero sequences, then there exist infinitely many
n with �{a(n)}�{b(n)} > 0 and there exist infinitely many n such that
�{a(n)}�{b(n)} < 0. An analogous result holds for the imaginary parts of
the Fourier coefficients of f and g.

Remark 1.1. We note that the second author and Sengupta [5] proved that if
f and g have totally real algebraic Fourier coefficients {a(n)} and {b(n)} for
n ≥ 1 with a(1) = 1 = b(1), then there exists an element σ of the absolute
Galois group Gal(Q/Q) such that a(n)σb(n)σ ≷ 0 for infinitely many n. The
proof in fact is carried out in full detail only in the case a(n)σb(n)σ < 0, the
case a(n)σb(n)σ > 0 requires an easy additional argument, cf. e.g. the proof of
our Theorem 1.

If we restrict ourselves to normalised Hecke eigenforms which are newforms,
we have the following stronger theorem.

Theorem 3. Let

f(z) :=
∑

n≥1

a(n)qn and g(z) :=
∑

n≥1

b(n)qn

be two distinct newforms which are normalized Hecke eigenforms of level
N1, N2 and weights k1, k2 > 1 respectively. Then there exists an infinite set
S of primes such that the following holds: For every p ∈ S, the sets

{m ∈ N | a(pm)b(pm) > 0} and {m ∈ N | a(pm)b(pm) < 0}
are infinite.
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A crucial ingredient in the proof of the above theorem is a result of D.
Ramakrishnan which asserts that a normalised Hecke eigenform f which is
a newform of weight k, level N , and trivial character with Hecke eigenvalues
a(p) for (p,N) = 1, is determined up to a quadratic twist by the knowledge
of a(p)2 for all primes p in a set of sufficiently large density (see Section 2 for
the exact statement).

In a recent work [9], Kowalski, Lau, Soundararajan, and Wu have shown
that a newform f is uniquely determined by the signs of the sequence {a(p)}
as p varies over any set of prime numbers of Dirichlet density one. Recall that
a set A of primes has Dirichlet density a real number κ if and only if

∑
p∈A

1
ps

log 1
s−1

→ κ

when s → 1. In this context, see also the papers by Matomäki [12] and Pribitkin
[16].

Finally, we consider the simultaneous sign change of Fourier coefficients
of two half-integral weight newforms. The question of sign change of Fourier
coefficients of a single half-integral weight newform has already been studied
in [1] (see also [4,8]). In order to state our result, we shall need to introduce
notations and definitions.

Let N, k ≥ 1 be integers and ψ be a Dirichlet character modulo 4N . Then
the space of cusp forms of weight k +1/2 for the congruence subgroup Γ0(4N)
with character ψ is denoted by Sk+1/2(4N,ψ). When k = 1, we shall work only
with the orthogonal complement (with respect to the Petersson scalar prod-
uct) of the subspace of S3/2(4N,ψ) generated by the unary theta functions.
The space Sk+1/2(4N,ψ) is mapped to the space of integer weight cusp forms
S2k(2N,ψ2) under the Shimura liftings (see [14,18] for further details). More
precisely, for any f ∈ Sk+1/2(4N,ψ) with a Fourier expansion

f(z) =
∑

n≥1

a(n)qn, q = e2πiz

and any t ∈ D, let

A(n) :=
∑

d|n
ψt,N (d)dk−1a

(
n2

d2
t

)

where ψt,N denotes the character

ψt,N (d) := ψ(d)
(

(−1)kt

d

)
.

Then by the works of Shimura [18] and Niwa [14], it is known that the series

F (z) =
∑

n≥1

A(n)qn

is an element in S2k(2N,ψ2). It is also known that when N is odd and
square-free and ψ2 = 1, there is a Hecke invariant subspace S new

k+1/2(4N,ψ) ⊂
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Sk+1/2(4N,ψ) consisting of “newforms” which the Hecke operators isomorphi-
cally map onto the space of newforms S new

2k (2N) ⊂ S2k(2N) under a suitable
linear combination of the Shimura lifts (see [6,7,11]). In this set-up, we have
the following:

Theorem 4. Suppose that k1, k2 > 1 are distinct natural numbers, N1, N2 are
odd square-free natural numbers, and ψ1, ψ2 are real characters modulo 4N1

and 4N2 respectively. Suppose that

f(z) :=
∑

n≥1

a(n)qn ∈ S new
k1+1/2(4N1, ψ1)

and g(z) :=
∑

n≥1

b(n)qn ∈ S new
k2+1/2(4N2, ψ2)

are Hecke eigenforms. If the Fourier coefficients satisfy a(n), b(n) ∈ R for
all n ≥ 1 and there exists a natural number t ∈ D with a(t)b(t) �= 0, then
there exists an infinite set S of primes such that for any p ∈ S, the sequence
{a(tp2m)b(tp2m)}m∈N has both positive and negative sign infinitely often.

Remark 1.2. One can prove similar results in the context of the plus space
[7,8]. We leave this to the reader.

2. Intermediate Lemmas and Theorem. In order to prove the theorems, we
need the following lemmas.

Lemma 5. Let s ∈ C and

R(s) :=
∑

n≥1

a(n)
ns

be a Dirichlet series with real coefficients. Assume further that an ≥ 0 or
an ≤ 0 for all n. If R has a real zero α in the region of convergence, then R is
identically zero.

Proof of Lemma 5. The lemma follows from noting that

a(n) ≥ 0 or a(n) ≤ 0 and
∑

n≥1

a(n)
nα

= 0 implies that a(n) = 0.

Lemma 6. Let s ∈ C and a(n) ∈ R. For m ≥ 1, consider the Dirichlet polyno-
mial

R(s) :=
∑

1≤n≤m

a(n)
ns

.

If R(s) has infinitely many real zeros, then R is identically zero.

Proof of Lemma 6. Suppose that R is not identically zero. Since R has infinitely
many zeros, we may assume that a(m) �= 0 with m ≥ 2. Further the set of
real zeros of R cannot be bounded by the identity theorem for holomorphic
functions. For any real zero r of R(s), one has

−a(1) = a(2)2−r + · · · + a(m)m−r.
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We let |r| → ∞. By hypothesis, a(1), . . . , a(m) are real numbers and hence if
r → −∞, then

−a(1) = m−r

(
a(2)

(
2
m

)−r

+ · · · + a(m)

)
→ ±∞

depending on the sign of a(m), a contradiction. On the other hand, if r → +∞,
a(1) = 0 and then we can work with a(2) and so on.

Before we state the next theorem, which plays an important role throughout
the paper, we need to introduce more notations. For every pair of natural
numbers N, k ≥ 2, the space of newforms of weight k, level N is denoted by
S new

k (N). For a normalised Hecke eigenform

f(z) :=
∑

n≥1

a(n)qn ∈ S new
k (N),

and for s ∈ C with �(s) 
 1, let us set for p � N

Lp(Ad(f), s) :=
(

1 − αp

ᾱp
p−s

)−1 (
1 − ᾱp

αp
p−s

)−1 (
1 − p−s

)−2
,

where αp and ᾱp are non-zero algebraic integers satisfying a(p) = αp + ᾱp and
|αp| = p(k−1)/2. We now state the following theorem of D. Ramakrishnan (see
[3], [17]) which will play an important role in proving Theorems 3 and 4.

Theorem 7 (Ramakrishnan [17]). Let

f(z) :=
∑

n≥1

a(n)qn ∈ S new
k1

(N1) and g(z) :=
∑

n≥1

b(n)qn ∈ S new
k2

(N2)

be normalised Hecke eigenforms such that for all primes p outside a set M of
Dirichlet density δ(M) < 1

18 , we have

Lp(Ad(f), s) = Lp(Ad(g), s).

Then k1 = k2 and for all primes p co-prime to N1N2, we have a(p) = χ(p)b(p),
where χ is a Dirichlet character of conductor N dividing N1N2.

Finally, we shall be frequently using a classical theorem of Landau which
asserts that a Dirichlet series with non-negative coefficients has a singularity
on the real line at its abscissa of convergence (see page 16 of [13], for instance).

3. Proof of Theorem 1 and Corollary 2. Proof of Theorem 1. By given hypoth-
esis, we have a(1)b(1) �= 0. First we will show that there exists infinitely many
n such that

a(n)b(n)
a(1)b(1)

< 0. (1)

Without loss of generality, we can assume that

a(1)b(1) > 0 (2)

as otherwise we can replace f by −f . If Equation (1) is not true, then there
exists an n0 ∈ N such that

a(n)b(n) ≥ 0 (3)
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for all n ≥ n0. Set M :=
∏

p≤n0
p,

f1(z) :=
∑

n≥1
(n,M)=1

a(n)qn, and g1(z) :=
∑

n≥1
(n,M)=1

b(n)qn.

Then f1 and g1 are cusp forms of level NM2 and weights k1 and k2 respectively.
For s ∈ C with �(s) 
 1, the Rankin–Selberg L-function of f1 and g1 is defined
by

Rf1,g1(s) :=
∑

n≥1
(n,M)=1

a(n)b(n)
ns

.

For �(s) 
 1, set

Lf1,g1(s) := ζNM2(2s − (k1 + k2) + 2)Rf1,g1(s) :=
∑

n≥1

c(n)n−s,

where

ζNM2(s) :=
∏

p|NM2

(1 − p−s)ζ(s).

It follows from (2) and (3) that c(n) ≥ 0 for all n ≥ 1. It is known (see [10, p.
144] also [5, p. 3565]) that

(2π)−2sΓ(s)Γ(s − k1 + 1)Lf1,g1(s)

is entire, hence Lf1,g1(s) is also entire. By Landau’s Theorem it therefore
follows that the Dirichlet series Lf1,g1(s) converges everywhere. Since Lf1,g1(s)
has real zeros (coming from the poles of the Γ-factors), by Lemma 5, we have
that c(n) = 0 for all n ≥ 1. This contradicts the assumption that a(1)b(1) �= 0
and hence completes the proof of (1).

In order to complete the proof of the theorem, we need to show that there
exist infinitely many n such that

a(n)b(n)
a(1)b(1)

> 0. (4)

It is sufficient to assume that a(1)b(1) > 0. We then have to show that there
exist infinitely many n such that a(n)b(n) > 0. If not, then a(n)b(n) ≤ 0 for
all n large. Note that a(n)b(n) can not be equal to zero for almost all n. For
in this case

∑
n a(n)b(n)n−s is a Dirichlet polynomial and the function

(2π)−2sΓ(s)Γ(s − k1 + 1)ζN (2s − (k1 + k2) + 2)
∞∑

n=1

a(n)b(n)
ns

is entire. The presence of the double Γ-factors ensures that
∑

n a(n)b(n)n−s has
infinitely many real zeros, and hence by Lemma 6, we find that a(1)b(1) = 0, a
contradiction. Hence we can choose a natural number d such that a(d)b(d) < 0.
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Consider

f2(z) :=
∑

n≥1

a(nd)qn :=
∑

n≥1

A(n)qn

and g2(z) :=
∑

n≥1

b(nd)qn :=
∑

n≥1

B(n)qn.

Then f2 and g2 are non-zero cusp forms of level dN and weights k1 and k2
respectively (see[15, p. 28]). Since

A(1)B(1) = a(d)b(d) < 0,

by (1), we have A(n)B(n) > 0 for infinitely many n. This proves our claim.

Proof of Corollary 2. For a cusp form h(z) :=
∑

n≥1 c(n)qn, let hτ denote
the cusp form hτ (z) :=

∑
n≥1 c(n)qn. Consider the non-zero cusp forms

F :=
f + fτ

2
and G :=

g + gτ

2
of level N and weights k1 and k2 respectively with real Fourier coefficients.
Now if we apply Theorem 1 to F and G, we see that there exist infinitely many
n such that �(a(n))�(b(n)) ≷ 0.

Similarly, one can apply Theorem 1 to

F :=
f − fτ

2i
and G :=

g − gτ

2i

to get the desired result for the imaginary part of the Fourier coefficients of f
and g.

4. Simultaneous sign change at prime powers. In this section, we discuss the
simultaneous sign change of Fourier coefficients of Hecke eigenforms which are
newforms at prime powers.

Proof of Theorem 3. For any prime p � N1N2, we define

Fp(s) :=
∞∑

m=0

a(pm)b(pm)
pms

.

Since f and g are normalised Hecke eigenforms, we have
∞∑

m=0

a(pm)
pms

=
1

(1 − αpp−s)(1 − ᾱpp−s)

and
∞∑

m=0

b(pm)
pms

=
1

(1 − βpp−s)(1 − β̄pp−s)
,

where αp, ᾱp, βp, β̄p are non-zero algebraic integers such that a(p) = αp +
ᾱp, |αp| = p(k1−1)/2 and b(p) = βp + β̄p, |βp| = p(k2−1)/2. Then Fp(s) can be
written as (see [2, p. 73] for instance)

Fp(s) =
1 − pk1+k2−2p−2s

(1 − αpβpp−s)(1 − ᾱpβpp−s)(1 − αpβ̄pp−s)(1 − ᾱpβ̄pp−s)
.
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Now consider the following set

A := { p | αpβp �∈ R and ᾱpβp �∈ R} .

For every p ∈ A, p � N1N2, Fp(s) has no real poles. However, Fp(s) has complex
poles and hence is not entire. Indeed, the degree of the numerator as a polyno-
mial in p−s is 2 and that of the denominator is 4. Then by Landau’s Theorem,
for each such prime p, there are infinitely many m1 such that a(pm1)b(pm1) > 0
and infinitely many m2 such that a(pm2)b(pm2) < 0. Thus if A is infinite, we
are done.

Suppose now that A is finite. Then Fp(s) has real poles for almost all
primes. If Fp(s) has a real pole, then either αpβp ∈ R or ᾱpβp ∈ R, that is,

αp

ᾱp
=

βp

β̄p

or
αp

ᾱp
=

β̄p

βp
. (5)

Recall

Lp(Ad(f), s) :=
(

1 − αp

ᾱp
p−s

)−1 (
1 − ᾱp

αp
p−s

)−1

(1 − p−s)−2

Lp(Ad(g), s) :=
(

1 − βp

β̄p
p−s

)−1 (
1 − β̄p

βp
p−s

)−1

(1 − p−s)−2.

Using (5), we see that for almost all primes, we have

Lp(Ad(f), s) = Lp(Ad(g), s).

Then by Theorem 7, we have k := k1 = k2 and a(p) = χ(p)b(p) for all primes
(p,N1N2) = 1. Here χ is a character of conductor N dividing N1N2. Note that
we have χ2 = 1 as a(p), b(p) are real numbers. Further, by the multiplicity one
theorem (see page 30 of [15]), one has

a(p) = χ(p)b(p) �= 0

for a set T of primes of positive density.
If χ is trivial, that is, a(p) = b(p) for almost all primes p, then again by

the multiplicity one theorem, we have f = g, a contradiction. Now suppose
that χ is quadratic. Then a(p) = ±b(p) for almost all primes p. Further, by
the multiplicity one theorem, there is an infinite subset S ⊂ T of primes such
that a(p) = −b(p) �= 0.
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Fix a prime p ∈ S. Then a(p) = −b(p) �= 0 and
∑

m≥0

a(pm)Xm =
1

1 − a(p)X + pk−1X2
(6)

=
1

1 + b(p)X + pk−1X2

=
∑

m≥0

b(pm)(−X)m

=
∑

m≥0

(−1)mb(pm)Xm.

Hence a(pm) = b(pm) for all even natural numbers m ≥ 1 and a(pm) = −b(pm)
for all odd natural numbers m ≥ 1. If

a(pm) = −b(pm) = 0

for all but finitely many odd m ≥ 1, then
∑

m≥0

a(pm)Xm −
∑

m≥0

a(pm)(−X)m =
∑

m≥0
m odd

a(pm)Xm (7)

is a polynomial. But the left hand side of (7) is equal to
1

1 − a(p)X + pk−1X2
− 1

1 + a(p)X + pk−1X2
.

This forces that 1−a(p)X +pk−1X2 = 1+a(p)X +pk−1X2 which implies that
a(p) = 0, a contradiction. Hence for any p ∈ S, there exist infinitely many odd
natural numbers m ≥ 1 such that

a(pm) = −b(pm) �= 0, that is, a(pm)b(pm) < 0.

In a similar way, if we consider
∑

m≥0 a(pm)Xm +
∑

m≥0 a(pm)(−X)m and
argue as before, we can show that for any p ∈ S, we have a(pm) = b(pm) �= 0,
that is, a(pm)b(pm) > 0 for infinitely many even natural numbers m ≥ 1. This
completes the proof of the theorem.

5. Simultaneous sign changes for half-integral weight modular forms. Through-
out the section, we assume that N1, N2 are odd, square-free natural numbers,
and ψ1, ψ2 are real Dirichlet characters modulo 4N1 and 4N2 respectively.
Suppose that

f ∈ S new
k1+1/2(4N1, ψ1) and g ∈ S new

k2+1/2(4N2, ψ2)

are newforms with real Fourier coefficients with a(t)b(t) �= 0 for some t ∈
D. Here we study simultaneous sign changes of Fourier coefficients of these
forms. As mentioned in the introduction, these newforms f and g correspond
to newforms

F (z) =
∞∑

n=1

A(n)qn and G(z) =
∞∑

n=1

B(n)qn

respectively in the spaces S new
2k1

(2N1) and S new
2k2

(2N2). Now we proceed to
the proof of Theorem 4.
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Proof of Theorem 4. For odd primes p with (p,N1N2) = 1, the newforms
f and g are eigenfunctions of T (p2) with eigenvalues λp and γp respectively.
Hence the corresponding integral weight newforms F and G are eigenfunctions
of the Hecke operators T (p) with eigenvalues λp and γp respectively. Since
ψ2
1 = 1 = ψ2

2 , the eigenvalues λp and γp are real. By hypothesis, there exists a
natural number t ∈ D such that a(t)b(t) �= 0.

Further, for s ∈ C with �(s) 
 1, one has
∑

m≥0

a(tp2m)
pms

= a(t)
1 − ψt,N1(p)pk1−1−s

1 − λpp−s + p2k1−1−2s

and
∑

m≥0

b(tp2m)
pms

= b(t)
1 − ψt,N2(p)pk2−1−s

1 − γpp−s + p2k2−1−2s
,

where ψt,Ni
denotes the character

ψt,Ni
(d) := ψi(d)

(
(−1)kit

d

)
.

Write

1 − λpp
−s + p2k1−1−2s = (1 − αpp

−s)(1 − ᾱpp
−s)

and 1 − γpp
−s + p2k2−1−2s = (1 − βpp

−s)(1 − β̄pp
−s),

where αp + ᾱp = λp, βp + β̄p = γp and αpᾱp = p2k1−1, βpβ̄p = p2k2−1. Now
consider

Tp(s) :=
∑

m≥0

a(tp2m)b(tp2m)
pms

.

Using partial fractions, we see that

Tp(s) =
a(t)b(t)H(p−s)

(1 − αpβpp−s)(1 − ᾱpβpp−s)(1 − αpβ̄pp−s)(1 − ᾱpβ̄pp−s)
,

where H is a polynomial of degree ≤ 3. Again Tp(s) has poles and hence is
not entire. Now consider the set

X := { p | αpβp �∈ R and ᾱpβp �∈ R} .

For every p ∈ X, Tp(s) has no real poles and hence by Landau’s Theorem, the
sequence {a(tp2m)b(tp2m)}m has infinitely many sign changes. Thus, if X is
infinite, we are done. Suppose not. Now for any p �∈ X, p � 2N1N2, and s ∈ C,
we have Lp(Ad(F/a(t)), s) = Lp(Ad(G/b(t)), s). Recall

Lp(Ad(F/a(t)), s) :=
(

1 − αp

ᾱp
p−s

)−1 (
1 − ᾱp

αp
p−s

)−1

(1 − p−s)−2,

Lp(Ad(G/b(t)), s) :=
(

1 − βp

β̄p
p−s

)−1 (
1 − β̄p

βp
p−s

)−1

(1 − p−s)−2.

But then by Theorem 7, we have 2k1 = 2k2, a contradiction. This completes
the proof of Theorem 4.
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