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Minimal indices of pure cubic fields

Blair K. Spearman, Qiduan Yang and Jeewon Yoo

Abstract. The minimal index of a pure cubic field was shown to assume
arbitrarily large values by M. Hall. In this paper we extend this result
by showing that every cubefree integer occurs as the minimal index of
infinitely many pure cubic fields.
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1. Introduction. Let K be an algebraic number field with discriminant d(K).
The ring of integers of K is denoted by OK . Let α ∈ OK be such that K =
Q (α) . The minimal polynomial of α over Q is denoted by irrQ (α) , and the
discriminant of irrQ(α) by D(α). Using this notation, we define the index of
α, ind (α) by

ind (α) =

√
D(α)
d(K)

.

The quantity ind (α) is a positive integer (see for example [12, p. 53]). We may
now define the field index i(K) of K by

i(K) = gcd
α∈OK

(ind (α)),

and the minimal index m(K) of K by

m(K) = min
α∈OK

(ind (α)).

In the case of cubic fields, it is known that i(K) = 1 or 2, [3]. On the other
hand, the minimal index of a cubic field can be arbitrarily large. This was
proved for pure cubic fields by Hall [7]. Gaál and Szabó [6] studied distribu-
tions of the minimal indices of pure cubic fields with bounded discriminant.
Unboundedness of the minimal index for cyclic cubic fields was established
by Dummit and Kisilevsky [2]. Nakahara, [10,11] proved the minimal index is
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unbounded for bicyclic and cyclic quartic fields. More recently there has been
a trend towards evaluation of the minimal index for families of number fields.
The minimal index was evaluated for a class of pure quartic fields by Thunder
and Wolfskill [13], and for a class of bicyclic quartic fields by Jadrijević [8].
The purpose of this paper is to return to pure cubic fields and evaluate the
minimal index for infinitely many of these fields, showing that any cubefree
positive integer occurs infinitely often as the minimal index of a pure cubic
field. We prove the following theorem.

Theorem 1.1. Let n be a cubefree positive integer. Then there exist infinitely
many pure cubic fields with minimal index equal to n.

2. Background and proof. First we recall some relevant facts about pure cubic
fields, then we give the proof of our theorem. If K is a pure cubic field, then
there exist squarefree relatively prime integers a and b such that

K = Q

(
3
√

ab2
)

.

Set θ = 3
√

ab2. Dedekind determined an integral basis for K in the following
form [1, p. 340], [2].

Case 1. If a2 �≡ b2(mod 9), then {
1, θ,

θ2

b

}

is an integral basis.

Case 2. If a2 ≡ b2(mod 9) and we choose the signs of a and b so that a ≡ b ≡ 1
(mod 3), then {

1, θ,
θ2 + ab2θ + b2

3b

}

is an integral basis.
Hall [7] used these integral bases to compute index forms I(x, y) for K. The

set of nonzero values of |I(x, y)| as x, y range over the integers is equal to the
set of indices of K. These index forms are as follows.

Case 1. If a2 �≡ b2(mod 9), then

I(x, y) = ax3 − by3 (1)

Case 2. If a2 ≡ b2(mod 9) and we have chosen a ≡ b ≡ 1(mod 3), then

I(x, y) =
a(3x + y)3 − by3

9
(2)

We are now ready to prove our theorem.

Proof. Let n be a cubefree positive integer. We construct infinitely many pure
cubic fields K with

m(K) = n.
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Suppose that n = 1. If p > 3 is any prime, then the pure cubic field

K = Q

(
3
√

3p
)

has minimal index m(K) = 1 since the index form of K is

I(x, y) = 3px3 − y3

by (1) and

I(x, y) = 1

is clearly solvable. Now, assuming that n > 1 and cubefree, it is easily shown
using unique factorization that the set of integers

n2k, k = 1, 2, . . . , n − 1,

contains no perfect cubes. Thus the cubic polynomials

fk(x) = x3 − n2k, k = 1, 2, . . . , n − 1,

are irreducible over Q. The Galois groups of the cubic polynomials fk(x)
contain an element of order 3 so that by the Chebotarev density theorem
[9] we may select prime numbers pk, k = 1, 2, . . . , n − 1 such that fk(x) is
irreducible modulo pk. Clearly pk = 3 is impossible. Furthermore, each pk has
the form 3e + 1 where e is an integer since every integer is a cube modulo
primes of the form 3e+2. This would imply that fk(x) is reducible modulo pk

contradicting our choice of pk. Define the positive integer b to be the product
of the distinct primes in the sequence

p1, p2, . . . , pn−1.

Clearly we have gcd(n, b) = 1, and b is squarefree. Further, we have

b ≡ 1(mod 3). (3)

Let z be an integer. We define the integer a = az by

a = b(3z + 1)3 + 9n. (4)

We may apply a theorem of Erdös [4] on squarefree values of cubic polynomials
to conclude that there exist infinitely many integers z such that a is squarefree.
More information on this theorem is available in a paper of Filaseta [5]. From
now on we assume that the integers a = az have this property. By construction
gcd(a, b) = 1. We now have a family of pure cubic fields

K = Q

(
3
√

ab2
)

.

We will show that these fields have the property that m(K) = n. Using (4) it
is easy to check that

a ≡ b(mod 9),

from which we deduce that we are in case 2 for pure cubic fields. From (3) and
(4) we see that

a ≡ b ≡ 1(mod 3)
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so that an index form for this field, given by (2) is

I(x, y) =
(b(3z + 1)3 + 9n)(3x + y)3 − by3

9
.

A calculation shows that

I(−z, 3z + 1) = n.

If any of the equations

I(x, y) = ±k, k = 1, 2, . . . , n − 1

are solvable for integers x, y then at least one of the congruences

I(x, y) ≡ ±k (mod pk), k = 1, 2, . . . , n − 1

is solvable. These congruences reduce to

n(3x + y)3 ≡ ±k(mod pk),

implying that the congruence

X3 ≡ ±n2k(mod pk)

is solvable for X modulo pk for some k, which contradicts the choice of the pk.
Thus each of the infinitely many pure cubic fields K in this case satisfy

m(K) = n,

completing the proof. �
We finish with two examples and a question.

Example. We use the method in the proof of our theorem to construct a pure
cubic field K with

m(K) = 4.

Begin by choosing primes pk, k = 1, 2, 3 such that the cubic polynomials

fk(x) = x3 − 42k, k = 1, 2, 3

are irreducible modulo pk. We find that we may choose p1 = p2 = 7 and
p3 = 13. Thus b = 7 · 13. Next we choose the positive integer z so that

7 · 13 · (3z + 1)3 + 4 · 9
is squarefree. We find the value z = 0 yields the squarefree integer 127. As in
the proof of our theorem, we have

a = 127 and b = 91.

The pure cubic field

K = Q

(
3
√
127 · 912

)
has index form

I(x, y) =
127(3x + y)3 − 91y3

9
.

The cubic Thue equations

I(x, y) = ±k, k = 1, 2, 3
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are insolvable by construction, but

I(0, 1) = 4,

so that

m(K) = 4.

Next we consider an example which is not covered by our theorem.

Example. We give a pure cubic field K with m(K) = 8. Set

K = Q

(
3
√
23 · 152

)
.

The index form for K is

I(x, y) = 23x3 − 15y3.

Using Magma, we find that the Thue equations

I(x, y) = ±k, k = 1, 2, . . . , 7

are all insolvable. However

I(1, 1) = 8,

so that

m(K) = 8.

We finish by asking the following question: For a fixed positive integer n,
do there exist infinitely many pure cubic fields with minimal index equal to n?
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