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Maximal regularity for non-autonomous evolution equations
governed by forms having less regularity

El Maati Ouhabaz

Abstract. We consider the maximal regularity problem for non-autono-
mous evolution equations

u′(t) + A(t) u(t) = f(t), t ∈ (0, τ ]
u(0) = u0.

(0.1)

Each operator A(t) is associated with a sesquilinear form a(t) on a Hilbert
space H. We assume that these forms all have the same domain V . It is
proved in Haak and Ouhabaz (Math Ann, doi:10.1007/s00208-015-1199-7,
2015) that if the forms have some regularity with respect to t (e.g.,
piecewise α-Hölder continuous for some α > 1/2) then the above prob-
lem has maximal Lp-regularity for all u0 in the real-interpolation space
(H,D(A(0)))1−1/p,p. In this paper we prove that the regularity required
there can be improved for a class of sesquilinear forms. The forms con-
sidered here are such that the difference a(t; ., .) − a(s; ., .) is continuous
on a larger space than the common domain V . We give three examples
which illustrate our results.
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1. Introduction and main results. Let H and V be real or complex Hilbert
spaces such that V is densely and continuously embedded in H. We denote
by V ′ the (anti-)dual of V and by [· | ·]H the scalar product of H and 〈·, ·〉 the
duality pairing V ′ ×V . The latter satisfies (as usual) 〈v, h〉 = [v |h]H whenever
v ∈ H and h ∈ V . By the standard identification of H with H ′, we then obtain
continuous and dense embeddings V ↪→ H � H ′ ↪→ V ′. We denote by ‖ · ‖V
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and ‖ · ‖H the norms of V and H, respectively. We shall always assume that
H is separable.

We consider the non-autonomous evolution equation{
u′(t) + A(t)u(t) = f(t), t ∈ (0, τ ]
u(0) = u0,

(P)

where each operator A(t), t ∈ [0, τ ], is associated with a sesquilinear form a(t).
We assume that t �→ a(t;u, v) is measurable for all u, v ∈ V and
[H1 ] (constant form domain) D(a(t)) = V .
[H2 ] (uniform boundedness) there exists M > 0 such that for all t ∈ [0, τ ]

and u, v ∈ V , we have |a(t;u, v)| ≤ M‖u‖V ‖v‖V .
[H3 ] (uniform quasi-coercivity) there exist α1 > 0, δ ∈ R such that for all

t ∈ [0, τ ] and all u, v ∈ V we have α1‖u‖2
V ≤ 	a(t;u, u) + δ‖u‖2

H .
For each t, we can associate with the form a(t; ·, ·) an operator A(t) defined as
follows

D(A(t)) = {u ∈ V,∃v ∈ H : a(t, u, ϕ) = [v |ϕ]H ∀ϕ ∈ V }
A(t)u := v.

On the other hand, there exists a linear operator A(t) : V → V ′ such that
a(t;u, v) = 〈A(t)u, v〉 for all u, v ∈ V . The operator A(t) can be seen as an
unbounded operator on V ′ with domain V and A(t) is the part of A(t) on H,
that is,

D(A(t)) = {u ∈ V, A(t)u ∈ H}, A(t)u = A(t)u.

It is a known fact that −A(t) and −A(t) both generate holomorphic semigroups
(e−s A(t))s≥0 and (e−s A(t))s≥0 on H and V ′, respectively. For each s ≥ 0,
e−s A(t) is the restriction of e−s A(t) to H. For all this, we refer to Ouhabaz
[10, Chapter 1].

The notion of maximal Lp-regularity for the above Cauchy problem is de-
fined as follows.

Definition 1.1. Fix u0 ∈ H. We say that (P) has maximal Lp-regularity (in
H) if for each f ∈ Lp(0, τ ;H) there exists a unique u ∈ W 1

p (0, τ ;H) such that
u(t) ∈ D(A(t)) for almost all t, which satisfies (P) in the Lp-sense.

Recall that under the assumptions [H1]–[H3], J.L. Lions proved maximal
L2-regularity in V ′ for all initial data u0 ∈ H, see e.g. [8], [12, page 112]. This
means that for every u0 ∈ H and f ∈ L2(0, τ ;V ′), the equation{

u′(t) + A(t)u(t) = f(t)
u(0) = u0

(P′)

has a unique solution u ∈ W 1
2 (0, τ ;V ′)∩L2(0, τ ;V ). It is a remarkable fact that

Lions’s theorem does not require any regularity assumption (with respect to
t) on the sesquilinear forms apart from measurability. Note however that max-
imal regularity in H differs considerably from maximal regularity in V ′. The
fact that the forms have the same domain means that the operators A(t) have
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constant domains in V ′, and this fact plays an important role in proving max-
imal regularity. The operators A(t) may have different domains as operators
on H. The problem of maximal regularity in H for (P) was stated explicitly by
Lions, and it is still open in general. Some progress has been made in recent
years.

First, recall that Bardos [4] proved maximal L2-regularity in H with ini-
tial data u0 ∈ V provided D(A(t)1/2) = V as space and topologically and
assuming that t �→ a(t;u, v) is C1 on [0, τ ]. His result was extended in Arendt
et al. [2] for Lipschitz forms (with respect to t) and allowing a multiplicative
perturbation by bounded operators B(t) which are measurable in t. The max-
imal L2-regularity is then proved for the evolution problem associated with
B(t)A(t). Ouhabaz and Spina [11] proved maximal Lp-regularity on H for all
p ∈ (1,∞) under the assumption that t �→ a(t;u, v) is α-Hölder continuous for
some α > 1/2. The result in [11] concerns the problem (P) with initial data
u(0) = 0. A simple example was given recently by Dier [5] which shows that in
general the answer to Lions’ problem is negative. The following positive result
was proved by Haak and Ouhabaz [7].

Theorem 1.2. Suppose that the forms (a(t))0≤t≤τ satisfy the hypotheses [H1]–
[H3] and the regularity condition

|a(t;u, v) − a(s;u, v)| ≤ ω(|t−s|) ‖u‖V ‖v‖V , (1.1)

where ω : [0, τ ] → [0,∞) is a non-decreasing function such that
τ∫

0

ω(t)

t3/2
dt < ∞. (1.2)

Then the Cauchy problem (P) with u0 = 0 has maximal Lp-regularity in H for
all p ∈ (1,∞). If in addition ω satisfies the p-Dini condition

τ∫
0

(
ω(t)

t

)p

dt < ∞, (1.3)

then (P) has maximal Lp-regularity for all u0 ∈ (H,D(A(0)))1−1/p,p. Moreover,
there exists a positive constant C such that

‖u‖Lp(0,τ ;H) + ‖u′‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

In this theorem, (H,D(A(0)))1−1/p,p denotes the classical real-interpolation
space, see [13, Chapter 1.13] or [9, Proposition 6.2].

In the case where p = 2, we obtain maximal L2-regularity for u(0) ∈
D((δ+A(0))1/2). The theorem can be used in the case where t �→ a(t;u, v) is α-
Hölder continuous for some α > 1

2 . The case of piecewise α-Hölder continuous
is also covered. See [7] for the details.

The aim of the present paper is to weaken the regularity assumption mea-
sured by (1.2) and (1.3) in some situations. More precisely, we assume in
addition to [H1]–[H3] that there exist β, γ ∈ [0, 1] such that for all u, v ∈ V
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|a(t;u, v) − a(s;u, v)| ≤ ω(|t−s|) ‖u‖Vβ
‖v‖Vγ

, (1.4)

where Vβ := [H,V ]β is the classical complex interpolation space for β ∈ [0, 1]
with V0 = H and V1 = V . If β, γ ∈ (0, 1), the assumption (1.4) means that
the difference of the forms is defined on a larger space than the common form
domain V .

Our main result is the following.

Theorem 1.3. Suppose that the forms (a(t))0≤t≤τ satisfy the hypotheses [H1]–
[H3] and (1.4), where ω : [0, τ ] → [0,∞) is a non-decreasing function such
that

τ∫
0

ω(t)

t1+
γ
2

dt < ∞. (1.5)

Then the Cauchy problem (P) with u0 = 0 has maximal Lp-regularity in H for
all p ∈ (1,∞). If in addition ω satisfies the p-Dini condition

τ∫
0

(
ω(t)

t
β+γ

2

)p

dt < ∞, (1.6)

then (P) has maximal Lp-regularity for all u0 ∈ (H,D(A(0)))1−1/p,p. Moreover,
there exists a positive constant C such that

‖u‖Lp(0,τ ;H) + ‖u′‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

A related result was proved recently by Arendt and Monniaux [3] who prove
maximal L2-regularity under the additional condition that β = γ in (1.4). We
observe that in our result β does not come into play if u0 = 0. We expect the
theorem to be true with min(β, γ) in place of γ in (1.5).

The following two corollaries follow immediately from the theorem.

Corollary 1.4. Suppose that the forms (a(t))0≤t≤τ satisfy the hypotheses [H1]–
[H3] and α-Hölder continuous in the sense that

|a(t, u, v) − a(s, u, v)| ≤ C|t − s|α‖u‖Vβ
‖v‖Vγ

. (1.7)

Then the Cauchy problem (P) with u0 = 0 has maximal Lp-regularity in H

for all p ∈ (1,∞) provided α > γ
2 . If in addition α > β+γ

2 − 1
p , then (P) has

maximal Lp-regularity for all u0 ∈ (H,D(A(0)))1−1/p,p. Moreover, there exists
a positive constant C such that

‖u‖Lp(0,τ ;H) + ‖u′‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

Corollary 1.5. Suppose that the forms (a(t))0≤t≤τ satisfy the hypotheses [H1]–
[H3] and are α-Hölder continuous in the sense that

|a(t, u, v) − a(s, u, v)| ≤ C|t − s|α‖u‖Vβ
‖v‖Vγ

, (1.8)
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for some α > γ
2 . Then the Cauchy problem (P) has maximal L2-regularity in

H for all u0 ∈ D((δ + A(0))1/2). Moreover, there exists a positive constant C
such that

‖u‖L2(0,τ ;H) + ‖u′‖L2(0,τ ;H) + ‖A(·)u(·)‖L2(0,τ ;H)

≤ C
[
‖f‖L2(0,τ ;H) + ‖(δ + A(0))1/2u0‖H

]
.

Notation We shall often use C or C ′ to denote all inessential constants. We
use W 1

p (0, τ ;E) as well as Hs(Ω) := W s
2 (Ω) for the classical Sobolev spaces.

The first one is the Sobolev space of order one of Lp-functions on (0, τ) with
values in a Banach space E, and the second one is the Sobolev space of order
s of L2 scalar-valued functions acting on a domain Ω.

2. Proof of the main result. Throughout this section we adopt the notation of
the introduction. We shall use the strategy and ideas of Proof of Theorem 1.2 in
[7] with some modifications in order to incorporate the additional assumption
(1.4).

Recall that the solution u to (P) exists in V ′ by Lions’ theorem mentioned
in the introduction. The aim is to prove that u(t) ∈ D(A(t)) for almost all
t ∈ [0, τ ] and A(.)u(.) ∈ Lp(0, τ ;H). From this and the Cauchy problem (P),
it follows that u ∈ W 1

p (0, τ ;H).
From now on we assume without loss of generality that the forms are co-

ercive, that is [H3] holds with δ = 0. The reason is that by replacing A(t)
by A(t) + δ, the solution v of (P) is v(t) = u(t)e−δt and it is clear that
u ∈ W 1

p (0, τ ;H) if and only if v ∈ W 1
p (0, τ ;H).

First we have the representation formula (see [7] for all what follows)

u(t) =

t∫
0

e−(t−s)A(t)(A(t)−A(s))u(s) ds

+

t∫
0

e−(t−s)A(t)f(s) ds + e−t A(t)u0. (2.1)

In addition,

A(t)u(t) = (QA(·)u(·))(t) + (Lf)(t) + (Ru0)(t), (2.2)

where

(Qg)(t) :=

t∫
0

A(t)e−(t−s)A(t)(A(t) − A(s))A(s)−1g(s) ds

(Lg)(t) :=A(t)

t∫
0

e−(t−s)A(t)g(s) ds and (Ru0)(t) := A(t)e−t A(t)u0.

The aim is to prove boundedness on Lp(0, τ ;H) of the operators L, R, and
Q and then, by a simple scaling argument, the norm of Q is less than 1.
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This allows us to invert (I − Q) on Lp(0, τ ;H) and conclude from (2.2) that
A(.)u(.) ∈ Lp(0, τ ;H).

We start with the operator L. The following result is Lemma 11 in [7].

Lemma 2.1. Suppose that in addition to the assumptions [H1]–[H3] that (1.4)
holds for some β, γ ∈ [0, 1] and ω : [0, τ ] → [0,∞) a non-decreasing function
such that

τ∫
0

ω(t)2

t dt < ∞. (2.3)

Then L is a bounded operator on Lp(0, τ ;H) for all p ∈ (1,∞).

Now we deal with the operator R.
Recall first that −A(t) is the generator of a bounded holomorphic semigoup

of angle π
2 − arctan( M

α0
) where α0 and M are as in the assumptions [H2] and

[H3]. See [10, Chapter 1] or [7]. In addition we have

Lemma 2.2. Let ω : R → R+ be some function, and assume that

|a(t;u, v) − a(s;u, v)| ≤ ω(|t−s|)‖u‖Vβ
‖v‖Vγ

for all u, v ∈ V . Then

‖R(z,A(t)) − R(z,A(s))‖B(H) ≤ cθ

|z|1− β+γ
2

ω(|t−s|)

for all z /∈ Sθ with any fixed θ > arctan(M/α). The constant cθ is independent
of z, t, and s.

Proof. Fix θ > arctan(M/α). Note that (see [7], Proposition 6d)

‖(z − A(t))−1x‖V ≤ Cθ√
|z|‖x‖H for all z /∈ Sθ. (2.4)

Observe that for u, v ∈ V ,

|[R(z,A(t))u − R(z,A(s))u | v]H |
= |[R(z,A(t))(A(s) − A(t))R(z,A(s))u | v]H |
= |[A(s)R(z,A(s))u |R(z,A(t))∗v]H − [A(t)R(z,A(s))u |R(z,A(t))∗v]H |
= |a(s;R(z,A(s))u,R(z,A(t))∗v) − a(t;R(z,A(s))u,R(z,A(t))∗v)|
≤ ω(|t − s|)‖R(z,A(s))u‖Vβ

‖R(z,A(t))∗v‖Vγ

≤ cθ

|z|2− β+γ
2

ω(|t−s|) ‖u‖H ‖v‖H .

Here we used the estimate ‖R(z,A(s))u‖Vβ
≤ cθ

|z|1− β
2

‖u‖H which follows

from (2.4) and ‖R(z,A(s))u‖H ≤ cθ

|z|‖u‖H by complex interpolation since
Vβ := [H,V ]β . A similar estimate holds for ‖R(z,A(t))∗v‖Vγ

. �

Lemma 2.3. Assume (1.6). Then there exists C > 0 such that

‖Ru0‖Lp(0,τ ;H) ≤ C‖u0‖(H,D(A(0)))1−1/p,p

for all u0 ∈ (H,D(A(0)))1−1/p,p.
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Proof. Recall that the operator R is given by (Rg)(t) = A(t)e−t A(t)g for g ∈
H. Let

(R0g)(t) := A(0)e−t A(0)g.

We estimate the difference (R − R0)g. Let v ∈ H and Γ = ∂Sθ with θ < π/2

as in (2.4). Then the functional calculus for the sectorial operators A(t) and
A(0) gives[

A(t)e−t A(t)g − A(0)e−t A(0)g | v
]

H

= 1
2πi

∫
Γ

[
ze−tz

[
R(z,A(t)) − R(z,A(0))

]
g | v]

H
dz

= 1
2πi

∫
Γ

[
ze−tzR(z,A(t))

[A(0) − A(t)
]
R(z,A(0))g | v]

H
dz

= 1
2πi

∫
Γ

[
ze−tz

[A(0) − A(t)
]
R(z,A(0))g |R(z,A(t))∗v

]
H

dz

= 1
2πi

∫
Γ

ze−tz
[
a(0;R(z,A(0))g,R(z,A(t))∗v)

− a(t;R(z,A(0))g,R(z,A(t))∗v)
]
dz.

It follows from (1.4) and Lemma 2.2 that

|[(Rg − R0g)(t) | v]H |

≤ 1
2π

∫
Γ

ω(t)|z|e−t �(z)‖R(z,A(0))g‖Vβ
‖R(z,A(t))∗v‖Vγ

|dz|

≤ Cω(t)‖g‖H‖v‖H

∫
Γ

|z| β+γ
2 −1e−t �z |dz|

≤ C ′ ω(t)

t
β+γ

2
‖g‖H‖v‖H .

Since this is true for all v ∈ H, we conclude that

‖(Ru0)(t) − (R0u0)(t)‖H ≤ C ′ ω(t)

t
β+γ

2
‖u0‖H . (2.5)

From the hypothesis (1.6), it follows that Ru0 − R0u0 ∈ Lp(0, τ ;H). On the
other hand, since A(0) is invertible, it is well-known that A(0)e−t A(0)u0 ∈
Lp(0, τ ;H) if and only if u0 ∈ (H,D(A(0)))1−1/p,p (see Triebel [13, Section
1.14.5]). Therefore, Ru0 ∈ Lp(0, τ ;H) and the lemma is proved. �

Proof of Theorem 1.3 As we already mentioned before, the arguments are
essentially the same as in [7] in which we use the additional assumption (1.4)
to weaken the required regularity on the forms.

We start with the case u0 = 0 and let f ∈ C∞
c (0, τ ;H). From (2.2) we have

(I − Q)A(·)u(·) = Lf(·). (2.6)
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Recall that L is bounded on Lp(0, τ ;H) by Lemma 2.1. We shall now prove
that Q is bounded on Lp(0, τ ;H). Let g ∈ L2(0, τ ;H) and v ∈ H. We have

| [Qg(t) | v]H |

=

t∫
0

[
a(t;A(s)−1g(s),A(t)∗e−(t−s)A(t)∗)v) (2.7)

−a(s;A(s)−1g(s),A(t)∗e−(t−s)A(t)∗)v)
]
ds

≤
t∫

0

ω(|t − s|)‖A(s)−1g(s)‖Vβ
‖A(t)∗e−(t−s)A(t)∗)v‖Vγ

ds. (2.8)

By the coercivity assumption, one has for all s > 0

α1‖A(t)e−sA(t)v‖2
V ≤ 	a(t, A(t)e−sA(t)v,A(t)e−sA(t)v)

≤ ‖A(t)2e−sA(t)v‖H‖A(t)e−sA(t)v‖H .

On the other hand, ‖A(t)e−sA(t)v‖H ≤ C
s ‖v‖H (see Proposition 6b) in [7]) and

‖A(t)2e−sA(t)v‖H = ‖A(t)e− s
2A(t)A(t)e− s

2A(t)v‖H ≤ C′
s2 ‖v‖H . Hence

‖A(t)e−sA(t)v‖V ≤ C

s
3
2
‖v‖H .

Using this and again ‖A(t)e−sA(t)v‖H ≤ C
s ‖v‖H , it follows by complex inter-

polation that

‖A(t)e−sA(t)v‖Vγ
≤ C

s1+ γ
2
‖v‖H . (2.9)

The constant C is independent of t, s, and v. The adjoint operators A(t)∗

satisfy the same estimates.
Now we estimate ‖A(s)−1g(s)‖Vβ

. By coercivity

α1‖A(s)−1g(s)‖2
V ≤	a(s;A(s)−1g(s),A(s)−1g(s))

=	〈A(s)A(s)−1g(s),A(s)−1g(s)〉
=	 [

g(s) | A(s)−1g(s)
]
H

≤‖g(s)‖2
H‖A(s)−1‖B(H).

Hence

‖A(s)−1g(s)‖2
Vβ

≤ C‖A(s)−1g(s)‖2
V ≤ C‖g(s)‖2

H‖A(s)−1‖B(H).

Inserting this and (2.9) (for the adjoint operators) in (2.8), we obtain

‖(Qg)(t)‖H ≤
t∫

0

C′
(t−s)1+γ/2 ω(t−s) ‖A(s)−1‖1/2

B(H)‖g(s)‖H ds. (2.10)

Now, once we replace A(s) by A(s)+μ, (2.9) is valid with a constant indepen-
dent of μ ≥ 0 and using the estimate

‖(A(s) + μ)−1‖B(H) ≤ 1
μ ,
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in (2.10) for A(s)+μ we see that

‖(Qg)(t)‖H ≤ C′√
μ

t∫
0

ω(t−s)
(t−s)1+γ/2 ‖g(s)‖H ds.

The operator S defined by

Sh(t) :=

t∫
0

ω(t−s)
(t−s)1+γ/2 h(s) ds

is bounded on Lp(0, τ ; R) as a convolution by an L1-kernel (here we use (1.5)).
It follows that Q is bounded on Lp(0, τ ;H) with norm of at most C′′√

μ for some
constant C ′′. Taking then μ large enough makes Q strictly contractive such
that (I − Q)−1 is bounded on Lp(0, τ ;H). Then, for f ∈ C∞

c (0, τ ;H), (2.6)
can be rewritten as

A(·)u(·) = (I − Q)−1Lf(·).
This shows that u(t) ∈ D(A(t)) for almost all t and A(·)u(·) ∈ Lp(0, τ ;H).

For general u0 ∈ (H,D(A(0)))1−1/p,p we suppose in addition to (1.5) that
(1.6) holds. Lemma 2.3 shows that Ru0 ∈ Lp(0, τ ;H). As previously we con-
clude that

A(·)u(·) = (I − Q)−1(Lf + Ru0)

whenever f ∈ C∞
c (0, τ ;H). Thus taking the Lp norm yields

‖A(·)u(·)‖Lp(0,τ ;H) ≤ C‖(Lf + Ru0)‖Lp(0,τ ;H).

We use again the previous estimates on L and R to obtain

‖A(·)u(·)‖Lp(0,τ ;H) ≤ C ′
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

Using the Eq. (P), we obtain a similar estimate for u′ and so

‖u′(·)‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C ′′
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

We write u(t) = A(t)−1A(t)u(t) and use once again the fact that the norms of
A(t)−1 on H are uniformly bounded, we obtain

‖u(t)‖Lp(0,τ ;H) ≤ C1‖A(·)u(·)‖Lp(0,τ ;H)

≤ C2

[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
.

We conclude therefore that the following a priori estimate holds

‖u‖Lp(0,τ ;H) + ‖u′‖Lp(0,τ ;H) + ‖A(·)u(·)‖Lp(0,τ ;H)

≤ C
[
‖f‖Lp(0,τ ;H) + ‖u0‖(H,D(A(0)))1−1/p,p

]
, (2.11)

where the constant C does not depend on f ∈ C∞
c (0, τ ;H).

The latter estimate extends by density to all f ∈ Lp(0, τ ;H) (see [7]). This
proves the desired maximal Lp-regularity property. �
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3. Examples.

3.1. Schrödinger operators with time dependent potentials. We consider on
H = L2(Rd) Schrödinger operators A(t) = −Δ + m(t, .) with time dependent
potentials m(t, x). We make the following assumptions:

• There exists a non-negative function m0 ∈ L1,loc and two positive con-
stants c1, c2 such that

c1m0(x) ≤ m(t, x) ≤ c2m0(x), x ∈ R
d, t ∈ [0, τ ]. (3.1)

• There exists a function p0 ∈ L1,loc such that

|m(t, x) − m(s, x)| ≤ |t − s|αp0(x), x ∈ R
d, t, s ∈ [0, τ ]. (3.2)

• There exists C > 0 and s ∈ [0, 1] such that∫
Rd

p0(x)|u(x)|2 dx ≤ C‖u‖Hs(Rd), u ∈ C∞
c . (3.3)

Note that assumption (3.3) is satisfied for several weights p0. For example,
this is the case for p0 = 1

|x|2 and s = 1 by Hardy’s inequality. On the other
hand, by Hölder’s inequality and classical Sobolev embeddings for Hs, one
finds rs such that (3.3) holds for p0 ∈ Lrs

. Obviously, (3.3) holds with s = 0
if p0 ∈ L∞.

The operator A(t) = −Δ + m(t, x) is defined as the operator associated
with the form

a(t;u, v) =
∫
Rd

∇u · ∇v dx +
∫
Rd

m(t, .)uv dx

defined on

V =

⎧⎨
⎩u ∈ H1(Rd),

∫
Rd

m0|u|2 dx < ∞
⎫⎬
⎭ .

The forms a(t; ·, ·) satisfy the standard assumptions [H1]–[H3]. Using the ad-
ditional assumption (3.3), we can estimate the difference a(t;u, v) − a(s;u, v)
as follows

|a(t;u, v) − a(s;u, v)| = |
∫
Rd

[m(t, .) − m(s, .)]uv dx|

≤ |t − s|α
∫
Rd

p0(x)|uv|dx

≤ |t − s|α(
∫
Rd

p0(x)|u|2 dx)1/2

⎛
⎝∫
Rd

p0(x)|v|2 dx

⎞
⎠

1/2

≤ C|t − s|α‖u‖Hs(Rd)‖v‖Hs(Rd).

Therefore we can apply Theorem 1.3 to obtain maximal Lp-regularity for the
evolution equation associated with A(t) = −Δ + m(t, .) under the condition
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α > s/2, where α and s are as in (3.2) and (3.3). For p = 2, the initial data u0

can be taken in V = D(A(0)1/2). For p �= 2 we assume u0 ∈ (H,D(A(0)))1−1/p,p

and α > max(s/2, s − 1/p) by condition (1.6).

3.2. Elliptic operators with Robin boundary conditions. Let Ω be a bounded
domain of R

d with Lipschitz boundary ∂Ω. We denote by Tr the classical trace
operator. Let β : [0, τ ] × ∂Ω → [0,∞) and ak : [0, τ ] × Ω → R be bounded
measurable functions for k = 1, · · · , d such that

|β(t, x) − β(s, x)| ≤ C|t − s|α, t, s ∈ [0, τ ], x ∈ ∂Ω

and

|ak(t, x) − ak(s, x)| ≤ C|t − s|α, t, s ∈ [0, τ ], x ∈ Ω.

We define the form

a(t;u, v) :=
∫
Ω

∇u · ∇v dx +
d∑

k=1

∫
Ω

ak(t, x)∂ku · v dx +
∫

∂Ω

β(t, ·)Tr(u)Tr(v) dσ,

for all u, v ∈ H1(Ω). The associated operator A(t) is formally given by

A(t) = −Δ +
d∑

k=1

ak(t, x)∂ku

and subject to the time dependent Robin boundary condition:

∂u
∂n + β(t, ·)u = 0 on ∂Ω.

Here ∂u
∂n denotes the normal derivative.

Now we check (1.4). We have for u, v ∈ H1(Ω),

|a(t;u, v) − a(s;u, v)|

=

∣∣∣∣∣∣
d∑

k=1

∫
Ω

[ak(t, ·) − ak(s, ·)]∂ku · v dx +
∫

∂Ω

[β(t, ·) − β(s, ·)]Tr(u)Tr(v) dσ

∣∣∣∣∣∣
≤ C|t − s|α

(
‖u‖H1(Ω) + ‖u‖H1/2+ε(Ω)‖v‖H1/2+ε(Ω)

)
,

where we used the fat that the trace operator is bounded from H1/2+ε(Ω) into
L2(∂Ω) for ε > 0. Hence

|a(t;u, v) − a(s;u, v)| ≤ C|t − s|α‖u‖H1(Ω)‖v‖H1/2+ε(Ω).

We apply Theorem 1.3 or the subsequent corollaries to obtain maximal L2-
regularity for the corresponding evolution equation under the condition α >
1/4 for initial data u(0) ∈ H1(Ω) = D(A(0)1/2). We also have maximal Lp-
regularity for 1 < p < ∞ if α > max(1

4 , 3
4 − 1

p ) and u(0) ∈ (H,D(A(0)))1−1/p,p.
In the case p = 2 and ak = 0, this result was proved in [3].
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3.3. Elliptic operators with Wentzell boundary conditions. We wish to con-
sider the heat equation with time dependent Wentzell boundary conditions:

β(t, ·)u +
∂u

∂n
+ Δu = 0 on ∂Ω. (3.4)

As in the previous example, we assume that Ω is a bounded Lipschitz domain
and β : [0, τ ] × ∂Ω → [0,∞) is a bounded measurable function such that

|β(t, x) − β(s, x)| ≤ C|t − s|α, t, s ∈ [0, τ ], x ∈ ∂Ω.

In order to consider the Laplacian with Wentzell boundary conditions, it is
convenient to work on H := L2(Ω) ⊕ L2(∂Ω) (see [1] or [6]). Set

V = {(u,Tr(u)), u ∈ H1(Ω)}.

The Hilbert space V is endowed with the norm

‖(u,Tr(u))‖V :=
(
‖u‖2

H1(Ω) + ‖Tr(u)‖2
L2(∂Ω)

)1/2

.

We define the forms

a(t; (u,Tr(u)), (v,Tr(v)) =
∫
Ω

∇u · ∇v dx +
∫

∂Ω

β(t, ·)Tr(u)Tr(v) dσ,

for u, v ∈ H1(Ω). The forms a(t) are well defined on V and satisfy the assump-
tions [H1]–[H3]. In addition,

|a(t; (u,Tr(u)), (v,Tr(v)) − a(s; (u,Tr(u)), (v,Tr(v))|

≤
∫

∂Ω

|β(t, ·) − β(s, ·)||Tr(u)Tr(v)|dσ

≤ C|t − s|α‖Tr(u)‖L2(∂Ω)‖Tr(v)‖L2(∂Ω)

≤ C|t − s|α‖(u,Tr(u))‖H‖(v,Tr(v))‖H .

We apply again Theorem 1.3 and obtain maximal Lp-regularity on L2(Ω) ⊕
L2(∂Ω) for all p ∈ (1,∞) and u(0) ∈ H1(Ω) under the sole condition that
α > 0.
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