
Arch. Math. 105 (2015), 93–100
c© 2015 Springer Basel

0003-889X/15/010093-8

published online June 24, 2015
DOI 10.1007/s00013-015-0782-1 Archiv der Mathematik

Nonlocal parabolic equation with conserved spatial integral
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Abstract. In this short note, we investigate the behavior of the solution
for a scalar nonlocal semi-linear parabolic equation, in which the nonlocal
term acts to conserve the spatial integral of the solution as time evolves.
For the solution blowing up in finite time, the blow-up rate is estimated.
For the global solution, the global convergence is studied.
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1. Introduction. In this note, we consider the following nonlocal semilinear
parabolic equation:

ut = uxx + u2 − −
∫ 2π

0
u2 dx, (x, t) ∈ (0, 2π) × (0, T ),

ux(0, t) = ux(2π, t) = 0, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ [0, 2π],

(1)

where −
∫ 2π

0
u2 dx = 1

2π

∫ 2π

0
u2 dx, T denotes the maximal existence time of the

solution, and u0(x) ∈ C1([0, π]) with u0x(0) = u0x(2π) = 0. If we denote

ū = −
2π∫

0

u dx,

it is immediately seen that ū is conserved as time evolves. In the sequel we
always assume that

ū = C0.

Problem (1) arises in nuclear science, where the growth of temperature is
known to be very fast, like u2, but some absorption catalytic material is put
into the system in a way such that the total mass is conserved. It can also
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be used to model other phenomena in population dynamics and biological
sciences, where the total mass is often conserved or known, but the growth
of a certain cell is known to be of some form. Budd et al. [1] have considered
(1) on the interval [0, 1] with the condition of −

∫ 1

0
u dx = 0. They obtained the

global existence result for small initial data as well as the nonglobal existence
result for the initial data whose Fourier coefficients satisfy an infinite number
of conditions. For some reasons explained in [1], Problem (1) is also related to
Navier–Stokes equations on an infinite slab.

Problem (1) has been studied by many other authors [2–7,10,14] in a more
general form:

ut = Δu + f(u) − −
∫
Ω

f(u) dx, (x, t) ∈ Ω × (0, T ),
∂u

∂ν
= 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω; ū = C0,

(2)

where Ω is a bounded smooth domain in R
N (N ≥ 1), ν is the outer normal

vector of ∂Ω, and the function f(u) is usually taken to be a power of u. In
contrast with usual nonlocal problems such as discussed in [13], the comparison
principle is not always valid for problem (2) (see Section 4 in [3]). So it is often
necessary to introduce some new techniques.

The case when f(u) = u|u|p−1 and C0 > 1 is studied by Hu and Yin [7],
and the nonglobal existence result is established under an energy condition:

E(u0) =
∫

Ω

[1
2
|∇u0|2 − 1

p + 1
|u0|p+1

]
dx ≤ −C

by using a convexity argument, where C > 0 is a constant depending on the
measure of Ω. When C0 = 0, their result is refined by Gao and Han [6] where
the energy E(u0) is not required to be negative.

In 2007, Jazar et al. [2,10] considered (2) where f(u) = |u|p and C0 = 0.
They show for any p > 1 that the solution must blow up if the initial data
satify

E(u0) =
∫

Ω

[1
2
|∇u0|2 − 1

p + 1
u0|u0|p

]
dx < 0.

A global existence result under an explicit smallness condition on the initial
data is also established in [2].

In the work mentioned above, the emphasis is on sufficient conditions which
guarantee the existence or non-existence of global solutions. To the best of our
knowledge, there are very few results on the blow-up rate for nonglobal solu-
tions. In this work, we consider the simple case (1) and employ the Gagliardo–
Nirenberg interpolation inequality to establish an estimate for the blow-up
rate of nonglobal solutions. Also, the convergence result is given for a global
solution via the Lyapunov functional method. The main theorem is:
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Theorem 1. 1. If the solution of (1) only exists for a finite time T > 0, there
is a constant C > 0, only depending on initial data, such that

2π∫

0

(u − ū)2 dx ≥ C(T − t)−1.

2. If the solution of (1) exists for all time, then for any time sequence
{tj}∞

j=1 → ∞, there is a subsequence {tjk}∞
k=1 such that u(x, tjk) con-

verges uniformly to a function w(x) satisfying

wxx + w2 − −
2π∫

0

w2dx = 0.

We will prove the main theorem in the following sections. Before the end,
we also would like to note that for more general f(u), Problem (2) is studied
in [3,5] from the view point of the stability of stationary solutions. Moreover,
the existence theory is established in [5]. The negative solutions to (2) with
f(u) = |u|p are discussed in [14]. For more about related problems, one may
refer to [12] and the references therein.

2. The proof of Theorem 1(1). Consider the following functional:

Ψ(u) =

2π∫

0

(u − ū)2 dx.

From the equation in (1), we compute to obtain

1
2

d

dt
Ψ(u) =

1
2

d

dt

2π∫

0

u2 dx

=

2π∫

0

uut dx

=

2π∫

0

u(uxx + u2 − −
2π∫

0

u2 dx) dx

= −
2π∫

0

u2
x dx +

2π∫

0

u2(u − ū) dx, (2.1)

and
2π∫

0

u2(u − ū) dx =

2π∫

0

[(u − ū)2 + 2uū − ū2](u − ū) dx

=

2π∫

0

(u − ū)3 dx + 2C0

2π∫

0

(u − ū)2. (2.2)
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We shall use the Gagliardo–Nirenberg inequalities [11]: For a periodic function
w with zero mean,

||w(j)||Lr ≤ C||w||1−θ
Lp ||w(k)||θLq , θ ∈ (0, 1),

where r, p, q, j, k and θ satisfy p, q, r > 1, j ≥ 0,

1
r

= j + θ

(
1
q

− k

)

+ (1 − θ)
1
p
,

and
j

k
≤ θ ≤ 1.

Here the constant C depends on r, p, q, j, and k only. Using the above interpo-
lation inequality, we have (by taking j = 0, r = 3, θ = 1

3 , p = 4
3 , k = 1, q = 2)

⎛

⎝
2π∫

0

|u − ū|3 dx

⎞

⎠

1/3

≤ C

⎛

⎝
2π∫

0

|u − ū|4/3 dx

⎞

⎠

1/2 ⎛

⎝
2π∫

0

u2
x dx

⎞

⎠

1/6

,

that is,

2π∫

0

|u − ū|3 dx ≤ C3

⎛

⎝
2π∫

0

|u − ū|4/3 dx

⎞

⎠

3/2 ⎛

⎝
2π∫

0

u2
x dx

⎞

⎠

1/2

.

By the Cauchy inequality and the Hölder inequality, we have

2π∫

0

|u − ū|3 dx ≤
2π∫

0

u2
x dx +

C6

4

⎛

⎝
2π∫

0

|u − ū|4/3 dx

⎞

⎠

3

≤
2π∫

0

u2
x dx +

C6(2π)1/3

4

⎛

⎝
2π∫

0

|u − ū|2 dx

⎞

⎠

2

.

Combining the above inequality with (2.1) and (2.2), we obtain the following
lemma:

Lemma 2.1. For the functional Ψ, we have
d

dt
Ψ(u) ≤ 2C1Ψ2 + 4C0Ψ,

where C1 = C6(2π)1/3

4 .

Furthermore, we can estimate ux by virtue of Ψ.

Lemma 2.2. For the solution u(x, t) to (1), there holds
2π∫

0

u2
x dx ≤ 2C1Ψ2 + 6C0Ψ + C2,

where C2 only depends on initial data.
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Proof. Recall that

E(u(·, t)) =
1
2

2π∫

0

u2
x dx − 1

3

2π∫

0

u3 dx.

A direct computation yields

d

dt
E(u(·, t)) = −

2π∫

0

u2
t dx ≤ 0,

which implies
2π∫

0

u2
x dx ≤ 2

3

2π∫

0

u3 + 2E(u0). (2.3)

Combining (2.1), (2.3) with Lemma 2.1, we obtain the desired result by taking
C2 := 4πC3

0 + 2E(u0). �

Proof of Theorem 1(1) If the time span T of the solution to (1) is finite, from
the local existence result in [2] we know it must hold that

lim
t→T

||u(·, t)||∞ = ∞.

In fact, we can also deduce that limt→T supΨ(u(·, t)) = ∞. Otherwise, Ψ is
bounded, say

Ψ(u(·, t)) ≤ C3

for some constant C3. Then from Lemma 2.2 we have
2π∫

0

u2
x dx ≤ C4

for some constant C4. Let |u|max(t) = maxx∈[0,2π] |u(x, t)|. Assume that
|u|max(t) = |u(xt, t)| for some xt ∈ [0, 2π]. Notice that

∣
∣
∣u(xt, t) − u(x, t)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

xt∫

x

ux(x, t) dx

∣
∣
∣
∣
∣
∣

≤ |xt − x| 1
2

⎛

⎝
xt∫

x

u2
x dx

⎞

⎠

1
2

≤ |xt − x| 1
2 C

1/2
4 .

Therefore, for any ε > 0, there exists a number δ = C
−1/2
4 ε such that

|u(xt, t) − u(x, t)| ≤ ε

for all x ∈ (xt − δ2, xt + δ2) and all t ∈ (0, T ). Since limt→T |u|max(t) = ∞,
we have limt→T

∫ 2π

0
u2 dx = ∞. Furthermore, we have limt→T Ψ = ∞. A

contradiction! Thus we have shown that limt→T supΨ(u(·, t)) = ∞.
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From Lemma 2.1,

d

dt
Ψ(u) ≤ 2C1Ψ2 + 4C0Ψ ≤

{
2C1Ψ2, if C0 ≤ 0;
(2C1 + 4C0)(Ψ2 + Ψ), if C0 > 0.

Then integration yields the desired result

Ψ(u(·, t)) ≥ C5(T − t)−1,

for some constant C5 > 0 only depending on initial data. �

3. The proof of Theorem 1(2). If the solution exists globally, that is, T = ∞,
then we have the following estimate, which is from [4].

Lemma 3.1. For a global solution u(x, t) of (1), there is a constant C, inde-
pendent of time, such that

||u(·, t)||C1 < C, ∀ t ≥ 0.

Proof of Theorem 1(2) For any time sequence {tj}∞
j=1 → ∞, we can use Lemma

3.1 and the Arzela–Ascoli theorem to conclude that there is a subsequence
{tjk}∞

k=1 such that

||u(x, tjk) − w(x)||∞ → 0, as k → ∞,

for some Lipschitz continuous function w(x). Now we claim that w(x) is in
fact a stationary solution of (1). Recall that

E(u(·, t)) =
1
2

2π∫

0

u2
x dx − 1

3

2π∫

0

u3 dx

and
2π∫

0

u2
t dx = − d

dt
E(u(·, t)).

Thus we have
t∫

0

2π∫

0

u2
t dxdt = E(u(·, t)) − E(u(·, 0)).

By Lemma 3.1, we know that there is a time-independent constant C6 such
that

E(u(·, t)) ≤ C6, ∀ t ≥ 0.

Hence the integral
∫ ∞
0

∫ 2π

0
u2

t dxdt exists, or equivalently,

∞∫

0

2π∫

0

u2
t dxdt < +∞. (3.1)
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By a routine method of regularity estimate [8,9], Lemma 3.1 guarantees
that all the orders of the derivatives of u(x, t) in x and t are uniformly bounded.
So there is a time-independent constant C7 such that

∣
∣
∣
d

dt

2π∫

0

u2
t dx

∣
∣
∣ ≤ C7.

Thus (3.1) implies that limt→∞
∫ 2π

0
u2

t dx = 0. Hence limt→∞ ut = 0 holds
uniformly on [0, 2π]. Then taking the limit in both sides of the equation of (1)
implies that w(x) satisfies wxx + w2 − −

∫ 2π

0
w2dx = 0. �

We remark that there are infinitely many stationary solutions to (1) (see
[1]). Whether the global solution of (1) converges to a unique stationary solu-
tion or not is an open problem.
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Lehrbücher. Birkhäuser Verlag, Basel, 2007.

[13] J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and

nucleation. IMA J. Appl. Math. 48 (1992), 249–264.

[14] M. Wang and Y. Wang, Properties of positive solutions for non-local reaction-

diffusion problems, Math. Methods Appl. Sci. 19 (1996), 1141–1156.

Xiao-Liu Wang, Fang-Zheng Tian, Gen Li

Department of Mathematics,
Southeast University, Nanjing,
210096 People’s Republic of China
e-mail: xlwang@seu.edu.cn

Received: 15 May 2015


	Nonlocal parabolic equation with conserved spatial integral
	Abstract
	1. Introduction
	2. The proof of Theorem 1(1)
	3. The proof of Theorem 1(2)
	Acknowledgements
	References




