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Abstract. In this paper by using the notion of homogeneity property of the
isosceles orthogonality, we derive some characterizations of inner product
spaces. We also prove that a weakened hypothesis of the homogeneity of
the isosceles orthogonality and a weakened reformulation of the Ficken
characterization can still characterize inner product spaces. Finally, we
present a characterization of inner product spaces related to an angular
distance equality.
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1. Introduction. There are a lot of significant natural geometric properties
which fail in general normed linear spaces, such as non Euclidean ones. Some
of these interesting properties hold just when the space is an inner product
one. This is the most important motivation for studying characterizations of
inner product spaces. The first norm characterization of inner product spaces
was given by Fréchet in 1935. Since then, the problem of finding necessary and
sufficient conditions for a normed linear space to be an inner product one has
been investigated by many mathematicians who considered some geometric
aspects of underlying spaces (see [4,5,16]).

We recall two orthogonality types introduced in normed linear spaces. In
1945 James [12] introduced the so-called isosceles orthogonality as follows:

x ⊥I y if and only if ‖x + y‖ = ‖x − y‖.

Birkhoff [2] also introduced Birkhoff orthogonality in 1935 as follows:

x ⊥B y if and only if ‖x‖ ≤ ‖x + ty‖ for all t ∈ R.
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Some other known orthogonalities in normed linear spaces can be found
in [2,3,7] and references therein. One way to obtain characterizations of inner
product spaces is to force these orthogonalities to fulfill some properties of the
orthogonality. For instance James [12] proved that X is an inner product space
if and only if the isosceles orthogonality is homogeneous, i.e., if and only if for
all α ∈ R, x ⊥I y implies x ⊥I αy. Characterizations of inner product spaces,
in which some properties of the orthogonality relations have been used, can
also be derived from [9, Theorem 2.2 and Corollary 3.2], [15, Theorem 16(a)]
and [6, Corollary 1].

In Section 2, we study homogeneity of the isosceles orthogonality in general
normed linear spaces. We prove that a weakened hypothesis of the homogene-
ity of the isosceles orthogonality and a weakened reformulation of the Ficken
characterization can still characterize inner product spaces. In Section 3, us-
ing the notion of the homogeneity of the isosceles orthogonality in Minkowski
planes, we derive some characterizations of Euclidean planes. Finally, in the
last section we present a characterization of inner product spaces related to an
angular distance equality. In this paper (X, ‖.‖) always denotes a real normed
linear space and SX is the corresponding unit sphere.

2. Homogeneity of the isosceles orthogonality in normed linear spaces. Let
(X, ‖.‖) be a normed linear space. It has been proved by Ficken that the norm
comes from an inner product if and only if ‖x + ty‖ = ‖y + tx‖ for all t ∈ R

and x, y ∈ X with ‖x‖ = ‖y‖. This characterization of inner product spaces is
well-known as the Ficken characterization. Using the Ficken characterization,
James showed that the isosceles orthogonality is homogeneous only in inner
product spaces [12]. The hypothesis of homogeneity of the isosceles orthogo-
nality has been weakened in different ways (see [5,10]). Amir in [5] shows that
a normed linear space X is an inner product space if and only if there exists
α ∈ (0, 1) such that for all x, y ∈ X, x ⊥I y ⇒ x ⊥I αy.

In the sequel we improve the above result in such a way that the above α
depends on x and y. First we need the following lemma.

Lemma 1 [5]. Let (X, ‖.‖) be a normed linear space. The norm comes from an
inner product if and only if for all x, y ∈ SX ,

x ⊥I y =⇒ x ⊥B y.

Theorem 2.1. Let (X, ‖.‖) be a normed linear space and h ∈ (0, 1). Then the
norm comes from an inner product if and only if

∀x, y ∈ X, ∃ α ∈ (0, h], x ⊥I y ⇒ x ⊥I αy.

Proof. If X is an inner product space, then the isosceles orthogonality is ho-
mogeneous and obviously the result holds.
Now let x0, y0 ∈ X and x0 ⊥I y0. Define A := {t ∈ R, x0 ⊥I ty0}. The set A
is nonempty, symmetric, and closed. We will show that inf{t > 0, t ∈ A} = 0.
By assumption, we know that there exists α1 ∈ (0, h] such that x0 ⊥I α1y0.
Applying the assumption again for x0 and α1y0, there exists α2 ∈ (0, h] such
that x0 ⊥I α2(α1y0). We can proceed to obtain a sequence {αn} such that
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x0 ⊥I αnαn−1 . . . α1y. Now define the sequence tn := α1α2 . . . αn, (n ≥ 1).
Clearly for all n ∈ N, tn ∈ A, tn ≤ hn and hence tn → 0. So inf{t > 0, t ∈
A} = 0. The function g(t) := ‖x0 + ty0‖ is convex. Since tn ∈ A, we obtain
that g(tn) = g(−tn). Therefore the line y = ‖x0‖ supports g(t) at the point
(0, ‖x0‖) and ‖x0‖ ≤ ‖x0 + ty0‖, for all t ∈ R, i.e. x0 ⊥B y0 and the result
holds by Lemma 1. �

Remark 1. In the proof of [11, Lemma 5], maybe there exists a strictly de-
creasing sequence {γn} of positive numbers which does not converge to 0. Let
ε ∈ (0, 1), we define the following set

H ′
X(ε) := {x ∈ SX , ∀y ∈ X, x ⊥I y ∃ α ∈ (0, ε], x ⊥I αy}.

By choosing H ′
X(ε) instead of H ′

X in [11], the sequence {γn} in [11, Lemma
5] should be converged to 0 and by the same method as in [11, Theorem 6],
we obtain that H ′

X(ε) ⊆ HX . Therefore, Theorem 2.1 is a special case of the
revised version of [11, Corollary 7] which is stated as follows:
Let X be a Banach space whose dimension is at least two. If the relative
interior of H ′

X(ε) in SX is not empty, then X is a Hilbert space.

Now we state a formulation of the Ficken characterization which was proved
by Lorch [5] as follows: A normed linear space X is an inner product space if
and only if there exists c ≥ 1, such that for all u, v ∈ SX , ‖u+ cv‖ = ‖v + cu‖.
In the following theorem, we show that the above c does not need to be a fixed
number.

Theorem 2.2. Let X be a normed linear space and M > 1 be a given number.
Then the norm comes from an inner product if and only if

∀u, v ∈ SX , ∃ c ∈ (1,M ], ‖u + cv‖ = ‖v + cu‖.

Proof. If X is an inner product space, then clearly for all u, v ∈ SX and t ∈ R,
we have ‖u + tv‖ = ‖v + tu‖.
For the coverse, define the real function f(t) := 1+t

1−t . Since the function f(t)
is one to one, by taking h := f−1(M), we have h ∈ (0, 1). Let x, y ∈ X and
x ⊥I y. Without loss of generality, we assume that ‖x±y‖ = 1. Let u := x−y,
v := x + y, and α := c−1

c+1 . Then α ≤ h and

‖x + αy‖ = ‖x +
c − 1
c + 1

y‖ =
1

c + 1
‖(c + 1)x + (c − 1)y‖ =

1
c + 1

‖cv + u‖

=
1

c + 1
‖u + cv‖ =

1
c + 1

‖(c + 1)x + (1 − c)y‖ = ‖x − αy‖.

So by Theorem 2.1, the result holds. �

Using the above Theorem, we have the following corollary.

Corollary 1. Let X be a normed linear space and 0 < m < 1 be a given number.
Then the norm comes from an inner product if and only if

∀u, v ∈ SX , ∃ c ∈ [m, 1), ‖u + cv‖ = ‖v + cu‖.
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3. Homogeneity of the isosceles orthogonality in Minkowski planes. In order
to characterize inner product spaces, sometimes it is more convenient to con-
sider two-dimensional normed linear spaces, since there is a theorem which
implies that a normed linear space X is an inner product space if and only
if each two-dimensional subspace of X is an inner product space [5]. A two-
dimensional real normed linear space is called a Minkowski plane and a two-
dimensional real inner product space is called a Euclidean plane.

The concept of angular distance between nonzero elements x and y in a
normed linear space X was defined as α[x, y] := ‖ x

‖x‖ − y
‖y‖‖. There are inter-

esting characterizations of inner product spaces connected with the concept
of angular distance; see [5,8,14] and references therein. In 2009, Wu proved a
characterization of Minkowski planes which deals with the concept of angular
distance [17, Theorem 5.3.1]. In the following, we state some results which
improve the results due to Wu.

The following lemma deals with the uniqueness property of the isosceles
orthogonality in Minkowski planes. For more information about the uniqueness
property of the isosceles orthogonality, see [1,13].

Lemma 2 [1, Corollary 4]. Let (X, ‖.‖) be a Minkowski plane. For any x ∈ SX

and 0 ≤ α ≤ 1, there exists a point y ∈ αSX which is unique up to the sign
and satisfies x ⊥I y.

Let (X, ‖.‖) be a Minkowski plane with a fixed orientation ω and x ∈ SX .
Let us H+

x and H−
x be the two open half-planes, bounded by the line passing

through x and −x, such that the orientation from (−x) to z and z to x are
given by ω for any point z ∈ H+

x , and the orientations from x to z and z to
(−x) are also given by ω for any point z ∈ H−

x . By the uniqueness property of
the isosceles orthogonality (Lemma 2), for any t ∈ [0, 1] there exists a unique
point Fx(t) such that x ⊥I Fx(t) and Fx(t) ∈ tSX

⋂
H+

x . Also we denote the
unit vector Fx(t)

‖Fx(t)‖ by Tx(t), for all t ∈ (0, 1].

Lemma 3 [17, Lemma 3.2.6]. Let (X, ‖.‖) be a Minkowski plane, {tn} ⊆ (0, 1] be
a sequence such that limn→∞ tn = 0, and that {Tx(tn)} is a Cauchy sequence.
Then x ⊥B limn→∞ Tx(tn).

Using the notion of homogeneity property of the isosceles orthogonality,
we state the following theorem which provides some characterizations of inner
product spaces.

Theorem 3.1. A Minkowski plane X is Euclidean if for any x ∈ SX and any
n ∈ N, we have x ⊥I βx(n)Tx(1/n) for some sequence {βx(n)}∞

n=1 such that
limn→∞ βx(n) = 1.

Proof. Let x ∈ SX , and let y ∈ SX be a vector such that x ⊥I y. Since
{Tx(1/n)}∞

n=1 is a bounded sequence in SX , there exists a convergent subse-
quence {Tx(1/nk)}∞

k=1 in SX and by Theorem 3, x ⊥B limk→∞ Tx(1/nk). Now
let ak = βx(nk)Tx(1/nk), we have

lim
k→∞

ak = lim
k→∞

βx(nk)Tx(1/nk) = lim
k→∞

Tx(1/nk).
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Using the hypothesis, we have x ⊥I βx(nk)Tx(1/nk) for any k ∈ N. So for
any k ∈ N, x ⊥I ak and therefore x ⊥I limk→∞ ak = limk→∞ Tx(1/nk). But
since x ⊥I y, the uniqueness property of the isosceles orthogonality implies
that either limk→∞ Tx(1/nk) = y or limk→∞ Tx(1/nk) = −y. So x ⊥B y and
by Lemma 1, X is Euclidean. �

The results in the following corollaries are derived from the above theorem
as its special cases.

Corollary 2. A Minkowski plane X is Euclidean if and only if for all u, v ∈ SX

with u �= v, α[u − v, v] = α[v − u, u].

Proof. If X is Euclidean plane, then clearly α[u − v, v] = α[v − u, u] for all
u, v ∈ SX with u �= v. Conversely, let x ∈ SX . By Lemma 2 for any n ∈ N,
x ⊥I Fx(1/n). Let u = x+Fx(1/n)

‖x+Fx(1/n)‖ and v = x−Fx(1/n)
‖x−Fx(1/n)‖ , we have

∥
∥
(‖x + Fx(1/n)‖ + ‖Fx(1/n)‖)

Tx(1/n) + x
∥
∥

= ‖x + Fx(1/n)‖
∥
∥
∥
∥

(
1

‖Fx(1/n)‖ +
1

‖x + Fx(1/n)‖
)

Fx(1/n) +
1

‖x + Fx(1/n)‖x

∥
∥
∥
∥

= ‖x + Fx(1/n)‖α[v − u, u] = ‖x − Fx(1/n)‖α[u − v, v]

= ‖x − Fx(1/n)‖
∥
∥
∥
∥

(
1

‖Fx(1/n)‖ +
1

‖x − Fx(1/n)‖
)

Fx(1/n) − 1

‖x − Fx(1/n)‖x

∥
∥
∥
∥

=
∥
∥
(‖x − Fx(1/n)‖ + ‖Fx(1/n)‖)

Tx(1/n) − x
∥
∥.

Taking βx(n) = ‖x + Fx(1/n)‖ + ‖Fx(1/n)‖, we have x ⊥I βx(n)Tx(1/n) and
limn→∞ βx(n) = 1. So by Theorem 3.1, X is Euclidean. �

By taking u = x+Fx(1/n)
‖x+Fx(1/n)‖ , v = Fx(1/n)−x

‖x−Fx(1/n)‖ , βx(n) = ‖x − Fx(1/n)‖ +
‖Fx(1/n)‖ and using Theorem 3.1, we have the following corollary which was
proved by Wu.

Corollary 3 [17, Theorem 5.3.1]. A Minkowski plane X is Euclidean if and
only if for all u, v ∈ SX with u �= v, α[u + v, v] = α[v + u, u].

In a normed linear space X, a vector x is said to be orthogonal to y in the
sense of Singer [2] (x ⊥S y) if either ‖x‖‖y‖ = 0 or

∥
∥
∥ x

‖x‖ + y
‖y‖

∥
∥
∥ =

∥
∥
∥ x

‖x‖ − y
‖y‖

∥
∥
∥.

We know that for all n ∈ N, x ⊥I Fx(1/n). So by taking βx(n) = 1 and using
Theorem 3.1, we have the following corollary, which was proved by Alonso.

Corollary 4 [2]. A Minkowski plane X is Euclidean if and only if for all nonzero
x, y ∈ X, x ⊥I y implies x ⊥S y.

4. An angular distance equality. The results in Corollary 2 and 3 in the pre-
vious section have been based on satisfying the following angular distance
equality

α[u + tv, v] = α[v + tu, u] (4.1)

for t = −1 and t = 1 respectively. In this section we present a new characteri-
zation of inner product spaces involving the equality (4.1).
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Our basic tools in this section are norm derivatives. In a normed linear space
(X, ‖.‖), the norm derivatives are given for fixed x, y ∈ X by the following
expression

ρ′
±(x, y) := lim

λ→±0

‖x + λy‖2 − ‖x‖2
2λ

. (4.2)

Some characterizations of inner product spaces given in terms of norm deriva-
tives were reported in [4,5]. The next two theorems describe several properties
of ρ′

+ and ρ′
−.

Theorem 4.1 [4]. Let (X, ‖.‖) be a normed linear space and ρ′
+ and ρ′

− be given
by (4.2). Then

(i) ρ′
±(0, y) = ρ′

±(x, 0) = 0 for all x, y ∈ X,
(ii) ρ′

±(x, x) = ‖x‖2 for all x ∈ X,
(iii) ρ′

±(αx, y) = ρ′
±(x, αy) = αρ′

±(x, y) for all x, y ∈ X and α ≥ 0,
(iv) ρ′

±(αx, y) = ρ′
±(x, αy) = αρ′

∓(x, y) for all x, y ∈ X and α ≤ 0.

Theorem 4.2 [4,5]. Let (X, ‖.‖) be a normed linear space. Then the following
statements are equivalent:

(i) ρ′
+(x, y) = ρ′

+(y, x) for all x, y ∈ X,
(ii) ρ′

−(x, y) = ρ′
−(y, x) for all x, y ∈ X,

(iii) (X, ‖.‖) is an inner product space.

In the following proposition, we state a necessary condition for our charac-
terization.

Proposition 1. Let (X, ‖.‖) be an inner product space and x, y be two lin-
early independent vectors such that ‖x‖ = ‖y‖. Then α[x + ty, y] = α[y +
tx, x] for all t ∈ R.

Proof. Let 〈·, ·〉 be the inner product on X, x, y ∈ X be linearly independent
vectors with the same norm, and t ∈ R. Then

α2[x + ty, y] =
∥
∥
∥
∥

x + ty

‖x + ty‖ − y

‖y‖
∥
∥
∥
∥

2

=
〈

x + ty

‖x + ty‖ − y

‖y‖ ,
x + ty

‖x + ty‖ − y

‖y‖
〉

= 2 − 2
‖x + ty‖‖y‖

(〈x, y〉 + t‖y‖2) . (4.3)

Similarly we get

α2[y + tx, x] = 2 − 2
‖y + tx‖‖x‖

(〈x, y〉 + t‖x‖2) . (4.4)

From (4.3), (4.4) and the Ficken characterization, we deduce that α[x+ty, y] =
α[y + tx, x]. �

By Corollary 2 or 3, the reverse of Proposition 1 holds. The next result also
provides a reverse of Proposition 1. The proof has been based on the concept
of norm derivatives.
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Theorem 4.3. Let (X, ‖.‖) be a normed linear space. If for any linearly inde-
pendent vectors x and y with the same norm, there exists a real number h ∈ R

such that

‖x + hy‖ = ‖y + hx‖ and α[x + ty, y] = α[y + tx, x] (t ≤ h), (4.5)

then (X, ‖.‖) is an inner product space.

Proof. Assume that a and b are two arbitrary linearly independent vectors in
X. We want to show that ρ′

−(a, b) = ρ′
−(b, a). Let x := ‖b‖a and y := ‖a‖b.

Since ‖x‖ = ‖y‖, by assumption there exists h ∈ R such that (4.5) holds.
Define H := {t ∈ R : ‖x + ty‖ = ‖y + tx‖}. If t ∈ H ∩ (−∞, h], then

α[x + ty, y] = α[y + tx, x] =
∥
∥
∥
∥

x + ty

‖x + ty‖ − y

‖y‖
∥
∥
∥
∥ =

∥
∥
∥
∥

y + tx

‖y + tx‖ − x

‖x‖
∥
∥
∥
∥

=
∥
∥
∥
∥x +

(

t − ‖x + ty‖
‖x‖

)

y

∥
∥
∥
∥ =

∥
∥
∥
∥y +

(

t − ‖x + ty‖
‖x‖

)

x

∥
∥
∥
∥ .

In fact, we showed that

If t ∈ H ∩ (−∞, h], then t − ‖x + ty‖
‖x‖ ∈ H ∩ (−∞, h]. (4.6)

We define the real sequence {cn} as follows:

c1 := h, cn := −‖x + (c1 + · · · + cn−1)y‖
‖x‖ (n ≥ 2).

We will show that limn→∞ cn �= 0, and hence
∑∞

n=1 cn is a divergent series.
First we define a real valued function f as f(t) := ‖x + ty‖. It is clear that
limt→±∞ f(t) = ∞, so there exists M > 0 such that f(t) > 1 for all t satisfying
|t| > M . Putting I = [−M,M ] one can observe that the continuous function
f takes a minimum at some point t0 ∈ I. Therefore f(t) ≥ min{1, f(t0)} for
all t ∈ R. But due to the linearly independence of x and y, min{1, f(t0)} > 0.
So for all n ≥ 2, |cn| ≥ min{1,f(t0)}

‖x‖ , this shows that limn→∞ cn �= 0.
Let {sn} be the sequence of partial sums of the series

∑∞
n=1 cn. Clearly

{sn} is decreasing. We may assume that {sn} is a sequence of negative real
numbers and so sn −→ −∞ as n −→ ∞. Applying (4.6) to

s1 = h, s2 = h − ‖x + hy‖
‖x‖ , s3 = h − ‖x + hy‖

‖x‖ −
‖x + (h − ‖x+hy‖

‖x‖ )y‖
‖x‖ , . . .

frequently, we deduce that sn ∈ H (n = 1, 2, . . .). Putting tn = s−1
n (n =

1, 2, . . .) and the simple fact that H is closed under inversion we have {tn}
is a sequence of negative real numbers in H such that limn→∞ tn = 0. Since
tn ∈ H (n = 1, 2, . . .) and ‖x‖ = ‖y‖, we have
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ρ′
−(a, b) =

1
‖a‖‖b‖ρ′

−(x, y) (by Theorem 4.1)

=
1

‖a‖‖b‖ lim
t→0−

‖x + ty‖2 − ‖x‖2
2t

=
1

‖a‖‖b‖ lim
n→∞

‖x + tny‖2 − ‖x‖2
2tn

=
1

‖a‖‖b‖ lim
n→∞

‖y + tnx‖2 − ‖y‖2
2tn

(tn ∈ H and ‖x‖ = ‖y‖)

=
1

‖a‖‖b‖ lim
t→0−

‖y + tx‖2 − ‖y‖2
2t

=
1

‖a‖‖b‖ρ′
−(y, x) = ρ′

−(b, a). (by Theorem 4.1)

If a and b are linearly dependent, then clearly ρ′
−(a, b) = ρ′

−(b, a) and by
Theorem 4.2, X is an inner product space. �
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