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1. Introduction. Let K be R or C and given α = (α1, . . . , αn) ∈ N
n, define

|α| := α1 + · · · + αn. Also, xα stands for the monomial xα1
1 · · · xαn

n for x =
(x1, . . . , xn) ∈ K

n. The polynomial Bohnenblust–Hille inequality asserts that,
given m,n ≥ 1, if P is a homogeneous polynomial of degree m on �n

∞ given by

P (x1, . . . , xn) =
∑

|α|=m

aαxα,

then
⎛

⎝
∑

|α|=m

|aα| 2m
m+1

⎞

⎠

m+1
2m

≤ Bpol
K,m ‖P‖

for some positive constant Bpol
K,m which does not depend on n (the expo-

nent 2m
m+1 is optimal), where ‖P‖ := supz∈B�n∞

|P (z)|. Precise estimates of

the growth of the constants Bpol
K,m are crucial for different applications. The

following diagram shows the evolution of the estimates of Bpol
K,m for complex

scalars.
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Authors Year Estimate

Bohnenblust and Hille
1931, [6]
(Ann.Math.) Bpol

C,m ≤ m
m+1
2m

(√
2
)m−1

Defant, Frerick, Ortega-Cerdá,
Ounäıes, and Seip

2011, [9]
(Ann.Math.) Bpol

C,m ≤
(
1 + 1

m−1

)m−1

√
m
(√

2
)m−1

Bayart, Pellegrino,
and Seoane-Sepúlveda

2014, [5]
(Adv .Math.) Bpol

C,m ≤ C(ε) (1 + ε)m

In the table above, C(ε) (1 + ε)m means that given ε > 0, there is a constant
C (ε) > 0 such that Bpol

C,m ≤ C(ε) (1 + ε)m for all m.

For real scalars it is shown in [7, Theorem 2.2] that

(1.1)m ≤ Bpol
R,m ≤ C(ε) (2 + ε)m

,

and this means that for real scalars the hypercontractivity of Bpol
R,m is optimal.

From now on, for any map f : R → R we define

f (∞) := lim
p→∞ f(p).

When replacing �n
∞ by �n

p , the extension of the polynomial Bohnenblust–Hille
inequality is called polynomial Hardy–Littlewood inequality and the optimal
exponents are 2mp

mp+p−2m for 2m ≤ p ≤ ∞. More precisely, given m,n ≥ 1, if P

is a homogeneous polynomial of degree m on �n
p with 2m ≤ p ≤ ∞ given by

P (x1, . . . , xn) =
∑

|α|=m aαxα, then there is a constant Cpol
K,m,p ≥ 1 such that

⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Cpol
K,m,p ‖P‖ ,

and Cpol
K,m,p does not depend on n, where ‖P‖ := supz∈B�n

p
|P (z)|.

This is a consequence of the multilinear Hardy–Littlewood inequality (see
[2,10]). More precisely, given an integer m ≥ 1, the multilinear Hardy–
Littlewood inequality (see [1,12,14]) asserts that for 2m ≤ p ≤ ∞ there
exists a constant Cmult

K,m,p ≥ 1 such that, for all continuous m–linear forms
T : �n

p × · · · × �n
p → K and all positive integers n,

⎛

⎝
n∑

j1,...,jm=1

|T (ej1 , . . . , ejm
)| 2mp

mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Cmult
K,m,p ‖T‖

and the exponents 2mp
mp+p−2m are optimal, where ‖T‖ := supz(1),...,z(m)∈B�n

p

|T (z(1), . . . , z(m))|. When p = ∞ we recover the classical multilinear
Bohnenblust–Hille inequality (see [6]). More precisely, it asserts that there
exists a constant Bmult

K,m such that for all continuous m-linear forms T : �n
∞ ×

· · · × �n
∞ → K and all positive integers n,



Vol. 104 (2015) On the polynomial Hardy–Littlewood inequality 261

⎛

⎝
n∑

j1,...,jm=1

|T (ej1 , . . . , ejm
)| 2m

m+1

⎞

⎠

m+1
2m

≤ Bmult
K,m ‖T‖ .

In this paper we look for upper and lower estimates for Cpol
K,m,p. The notation

of the constants Cmult
K,m,p and Bmult

K,m above will be used in all this paper.

2. First (and probably bad) upper estimates for Cpol
K,m,p. Given α = (α1, . . . ,

αn) ∈ N
n, define

(
m
α

)
:= m!

α1!···αn! for |α| = m ∈ N
∗. A straightforward con-

sequence of the multinomial formula yields the following relationship between
the coefficients of a homogeneous polynomial and the polar of the polynomial
(this lemma appears in [8] and is essentially folklore).

Lemma 2.1. If P is a homogeneous polynomial of degree m on K
n given by

P (x1, . . . , xn) =
∑

|α|=m

aαxα

and L is the polar of P (i.e., the unique symmetric m-linear form associated
to P ), then

L(eα1
1 , . . . , eαn

n ) =
aα(
m
α

) ,

where {e1, . . . , en} is the canonical basis of K
n and eαk

k stands for ek repeated
αk times.

The following result is also essentially known. We present here the details
of its proof for the sake of completeness of the paper.

Proposition 2.2. If P is a homogeneous polynomial of degree m on �n
p with

p ≥ 2m given by P (x1, . . . , xn) =
∑

|α|=m aαxα, then
⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Cpol
K,m,p ‖P‖

with

Cpol
K,m,p ≤ Cmult

K,m,p

mm

(m!)
mp+p−2m

2mp

,

where Cmult
K,m,p are the constants of the multilinear Hardy–Littlewood inequality.

Proof. From Lemma 2.1 we have

∑

|α|=m

|aα| 2mp
mp+p−2m =

∑

|α|=m

((
m

α

)∣∣∣L (eα1
1 , . . . , eαn

n )
∣∣∣
) 2mp

mp+p−2m

=
∑

|α|=m

(
m

α

) 2mp
mp+p−2m ∣∣∣L (eα1

1 , . . . , eαn
n )

∣∣∣
2mp

mp+p−2m

.
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However, for every choice of α, the term |L(eα1
1 , . . . , eαn

n )| 2mp
mp+p−2m is repeated(

m
α

)
times in the sum

∑n
i1,...,im=1 |L(ei1 , . . . , eim

)| 2mp
mp+p−2m . Thus

∑

|α|=m

(
m

α

) 2mp
mp+p−2m ∣∣∣L (eα1

1 , . . . , eαn
n )

∣∣∣
2mp

mp+p−2m

=
n∑

i1,...,im=1

(
m

α

) 2mp
mp+p−2m 1(

m
α

) |L (ei1 , . . . , eim
)| 2mp

mp+p−2m

and, since
(
m
α

) ≤ m!, we have

∑

|α|=m

(
m

α

) 2mp
mp+p−2m ∣∣∣L (eα1

1 , . . . , eαn
n )

∣∣∣
2mp

mp+p−2m

≤ (m!)
mp−p+2m
mp+p−2m

n∑

i1,...,im=1

|L(ei1 , . . . , eim
)| 2mp

mp+p−2m .

We finally obtain
⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤
⎛

⎝(m!)
mp−p+2m
mp+p−2m

n∑

i1,...,im=1

|L(ei1 , . . . , eim
)| 2mp

mp+p−2m

⎞

⎠

mp+p−2m
2mp

= (m!)
mp−p+2m

2mp

⎛

⎝
n∑

i1,...,im=1

|L(ei1 , . . . , eim
)| 2mp

mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ (m!)
mp−p+2m

2mp Cmult
K,m,p ‖L‖ .

On the other hand, it is well-known that

‖L‖ ≤ mm

m!
‖P‖

and hence
⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Cmult
K,m,p (m!)

mp−p+2m
2mp

mm

m!
‖P‖

= Cmult
K,m,p

mm

(m!)
mp+p−2m

2mp

‖P‖ .

�

Remark 2.3. Let us define the polarization constants for polynomials on �p

spaces as

K(m, p) := inf{M > 0 : ‖L‖ ≤ M‖P‖},
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where the infimum is taken over all P ∈ P(m�n
p ) and L is the polar of P .

Notice that using K(m, p) instead of mm

m! we may improve the inequality

‖L‖ ≤ mm

m!
‖P‖

used in the proof of Proposition 2.2. For details on polarization constants we
refer to the excellent book of Dineen [11, Section 1.3].

3. The real polynomial Hardy–Littlewood inequality: lower bounds for the
constants. As mentioned in the Introduction, in [7, Theorem 2.2] it is proved
that Cpol

R,m,∞ ≥ (1.1)m for all m ≥ 2. In this section we show that a simi-
lar result holds for the constants Cpol

R,m,p of the polynomial Hardy–Littlewood
inequality.

Theorem 3.1. For all positive integers m ≥ 2 and 2m ≤ p < ∞, we have
(

16
√

2
)m

≤ 2
mp+p−6m+4

4p · m−1
m ≤ Cpol

R,m,p.

Proof. Let m be an even integer. Consider the m-homogeneous polynomial
Pm : �m

p → R given by

Pm(x1, . . . , xm) =
(
x2

1 − x2
2

) (
x2

3 − x2
4

) · · · (x2
m−1 − x2

m

)
.

Notice that

‖Pm‖ = Pm

(
1

p
√

m/2
, 0,

1
p
√

m/2
, . . . ,

1
p
√

m/2
, 0

)
=

(
1

p
√

m/2

)m

.

From the Hardy–Littlewood inequality for Pm, we have
⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Cpol
R,m,p ‖Pm‖ ,

i.e.,

Cpol
R,m,p ≥

(
2

m
2
)mp+p−2m

2mp

(
1

p
√

m/2

)m = 2
mp+p−2m

4p

(m

2

)m
p

= 2
mp+p−6m

4p m
m
p ≥ 2

mp+p−6m
4p .

If m is odd, define

Qm(x1, . . . , xm) =
(
x2

1 − x2
2

) (
x2

3 − x2
4

) · · · (x2
m−2 − x2

m−1

)
xm.

Then

‖Qm‖ ≤ ‖Pm−1‖ =

(
1

p
√

(m − 1) /2

)m−1

.

From the Hardy–Littlewood inequality for Qm, we have
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⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Cpol
R,m,p ‖Qm‖ ,

i.e.,

Cpol
R,m,p ≥

(
2

m−1
2

)mp+p−2m
2mp

(
1

p
√

(m−1)/2

)m−1 = 2
(mp+p−2m)(m−1)

4mp

(
m − 1

2

)m−1
p

= 2
mp+p−6m+4

4p · m−1
m (m − 1)

m−1
p ≥ 2

mp+p−6m+4
4p · m−1

m .

�

Remark 3.2. From the estimates of the last proof, note that if m is even and
m ≥ 4, then

Cpol
R,m,p ≥ 2

mp+p−6m
4p m

m
p ≥ 2

mp+p−6m
4p

(
2

3
2

)m
p

=
(

4
√

2
)m+1

. (3.1)

If m is odd, and m ≥ 5, then

Cpol
R,m,p ≥ 2

mp+p−6m+4
4p · m−1

m (m − 1)
m−1

p ≥ 2
mp+p−6m+4

4p · m−1
m

(
2

3
2

)m−1
p

= 2
pm2+4m−p−4

4mp ≥
(

4
√

2
)m− 1

m

. (3.2)

Thus, by (3.1) and (3.2), if m ≥ 4,

Cpol
R,m,p ≥

(
4
√

2
)m− 1

m

.

4. The complex polynomial Hardy–Littlewood inequality: upper estimates.
The following multi-index notation will come in handy for us: for positive
integers m,n, we set

M(m,n) := {i = (i1, . . . , im); i1, . . . , im ∈ {1, . . . , n}} ,

J (m,n) := {i ∈ M(m,n); i1 ≤ i2 ≤ · · · ≤ im} ,

and for k = 1, . . . , m, Pk(m) denotes the set of the subsets of {1, . . . , m}
with cardinality k. For S = {s1, . . . , sk} ∈ Pk(m), its complement will be
Ŝ := {1, . . . , m}\S, and iS shall mean (is1 , . . . , isk

) ∈ M(k, n). For a multi-
index i ∈ M(m,n), we denote by |i| the cardinality of the set of multi-indexes
j ∈ M(m,n) such that there is a permutation σ of {1, . . . , m} with iσ(k) = jk,
for every k = 1, . . . ,m. The equivalence class of i is denoted by [i]. When we
write c[i] for i ∈M(m,n), we mean cj for j ∈ J (m,n) and j equivalent to i.

The following very recent generalization of the famous Blei inequality will
be crucial for our estimates (see [5, Remark 2.2]).
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Lemma 4.1 (Bayart, Pellegrino, Seoane [5]). Let m,n be positive integers, 1 ≤
k ≤ m and 1 ≤ s ≤ q, satisfying m

ρ = k
s + m−k

q . Then for all scalar matrices
(ai)i∈M(m,n),

⎛

⎝
∑

i∈M(m,n)

|ai|ρ
⎞

⎠

1
ρ

≤
∏

S∈Pk(m)

⎛

⎜⎝
∑

iS

⎛

⎝
∑

iŜ

|ai|q
⎞

⎠

s
q

⎞

⎟⎠

1
s · 1

(m
k )

.

Let us use the following notation: S�n
p

denotes the unit sphere on �n
p if p <

∞, and S�n∞ denotes the n-dimensional torus. More precisely: for p ∈ (0,∞)

S�n
p

:=
{
z = (z1, . . . , zn) ∈ C

n : ‖z‖�n
p

= 1
}

,

and

S�n∞ := T
n = {z = (z1, . . . , zn) ∈ C

n : |zi| = 1} .

Let μn be the normalized Lebesgue measure on the respective set. The fol-
lowing lemma is a particular instance (1 ≤ p = s ≤ 2 and q = 2) of the
Khinchin–Steinhaus polynomial inequalities (for polynomials homogeneous or
not) and p ≤ q.

Lemma 4.2. Let 1 ≤ s ≤ 2. For every m-homogeneous polynomial P (z) =∑
|α|=m aαzα on C

n with values in C, we have
⎛

⎝
∑

|α|=m

|aα|2
⎞

⎠

1
2

≤
(

2
s

)m
2

⎛

⎝
∫

Tn

|P (z)|s dμn(z)

⎞

⎠

1
s

.

When n = 1 a result due to Weissler (see [15]) asserts that the optimal
constant for the general case is

√
2/s. In the n-dimensional case, the best

constant for m-homogeneous polynomials is (
√

2/s)m (see also [4]).
For m ∈ [2,∞] let us define p0(m) as the infimum of the values of p ∈

[2m,∞] such that for all 1 ≤ s ≤ 2p
p−2 there is a Ks,p > 0 such that

⎛

⎝
∑

|α|=m

|aα| 2p
p−2

⎞

⎠

p−2
2p

≤ Km
s,p

⎛

⎜⎝
∫

S�n
p

|P (z)|s dμn(z)

⎞

⎟⎠

1
s

(4.1)

for all positive integers n and all m-homogeneous polynomials P : C
n → C.

For the sake of simplicity, p0(m) will be simply denoted by p0. From Lemma
4.2 we know that this definition makes sense, since from this lemma we know
that (4.1) is valid for p = ∞. We conjecture that p0 ≤ m2.

Now, let us state and prove the main result of this section. The argument
of the proof follows the lines of that in [5,9]. We will use the following result
due L. Harris (see [11, Exercise 1.68]):

Lemma 4.3 (Harris). Let X be a complex normed linear space. If P is a ho-
mogeneous polynomial of degree m on X and L is the polar of P , then, for
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any nonnegative integers m1, . . . ,mk with m1 + · · · + mk = m and for any
x(1), . . . , x(k) unit vectors in X,

∣∣∣∣∣∣
L(x(1), . . . , x(1)

︸ ︷︷ ︸
m1 times

, . . . , x(k), . . . , x(k)

︸ ︷︷ ︸
mk times

)

∣∣∣∣∣∣
≤ m1! · · · mk! · mm

mm1
1 · · · mmk

k · m!
‖P‖.

Theorem 4.4. Let m ∈ [2,∞] and 1 ≤ k ≤ m − 1. If p0(m − k) < p ≤ ∞
(and p = ∞ if p0(m − k) = ∞) then, for every m-homogeneous polynomial
P : �n

p → C defined by P (z) =
∑

|α|=m aαzα, we have

⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤ Km−k
2kp

kp+p−2k ,p
· mm

(m − k)m−k

·
(

(m − k)!
m!

) p−2
2p
(

2√
π

) 2k(k−1)
p

· (Bmult
C,k

) p−2k
p ‖P‖,

where Bmult
C,k is the optimal constant of the multilinear Bohnenblust–Hille in-

equality associated with k-linear forms.

Proof. We can also write

P (z) =
∑

i∈J (m,n)

cizi1 . . . zim
.

Consider

ρ =
2mp

mp + p − 2m
, sk =

2kp

kp + p − 2k
, and q =

2p

p − 2
.

Note that

sk ≤ 2 < q and
m

ρ
=

mp + p − 2m

2p

and

k

sk
+

m − k

q
=

kp + p − 2k

2p
+

(m − k) (p − 2)
2p

=
kp + p − 2k

2p
+

mp − kp − 2m + 2k

2p

=
mp + p − 2m

2p
.

Thus

m

ρ
=

k

sk
+

m − k

q

and we can use Lemma 4.1.
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Let L : �n
p ×· · ·×�n

p → C be the unique symmetric m-linear map associated
to P . Note that

L
(
z(1), . . . , z(m)

)
=

∑

i∈M(m,n)

c[i]

|i| z
(1)
i1

. . . z
(m)
im

.

Thus
∑

|α|=m

|aα| 2mp
mp+p−2m =

∑

i∈J (m,n)

|ci|
2mp

mp+p−2m

=
∑

i∈M(m,n)

|i| −p
mp+p−2m

(∣∣c[i]

∣∣

|i| 1
q

) 2mp
mp+p−2m

≤
∑

i∈M(m,n)

(∣∣c[i]

∣∣

|i| 1
q

) 2mp
mp+p−2m

.

Using Lemma 4.1 with sk = 2kp
kp+p−2k and q = 2p

p−2 , we get

⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤

⎡

⎢⎢⎣
∏

S∈Pk

⎛

⎜⎝
∑

iS∈M(k,n)

⎛

⎝
∑

iŜ∈M(m−k,n)

(∣∣c[i]

∣∣

|i| 1
q

)q
⎞

⎠

sk
q

⎞

⎟⎠

1
sk

⎤

⎥⎥⎦

1

(m
k )

.

Note that |i| ≤ |iŜ | m!
(m−k)! , and thus

⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤
(

m!
(m − k)!

) q−1
q

×

⎡

⎢⎢⎣
∏

S∈Pk

⎛

⎜⎝
∑

iS∈M(k,n)

⎛

⎝
∑

iŜ∈M(m−k,n)

∣∣c[i]

∣∣q

|i|

(∣∣iŜ
∣∣

|i|

)q−1
⎞

⎠

sk
q

⎞

⎟⎠

1
sk

⎤

⎥⎥⎦

1

(m
k )

=
(

m!
(m − k)!

) q−1
q

×

⎡

⎢⎢⎣
∏

S∈Pk

⎛

⎜⎝
∑

iS∈M(k,n)

⎛

⎝
∑

iŜ∈M(m−k,n)

∣∣c[i]

∣∣q

|i|q
∣∣iŜ
∣∣q−1

⎞

⎠

sk
q

⎞

⎟⎠

1
sk

⎤

⎥⎥⎦

1

(m
k )

.

Let us fix S ∈ Pk(m). There is no loss of generality in supposing S =
{1, . . . , k}. We then fix some iS ∈ M(k, n) and we introduce the following
(m − k)-homogeneous polynomial on �n

p :
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PiS (z) = L (ei1 , . . . , eik
, z, . . . , z) .

Observe that

PiS (z) =
∑

iŜ∈M(m−k,n)

c[i]

|i| ziŜ
=

∑

iŜ∈J (m−k,n)

c[i]

|i|
∣∣iŜ
∣∣ ziŜ

and so

‖PiS (z)‖q =

⎛

⎝
∑

iŜ∈J (m−k,n)

∣∣c[i]

∣∣q

|i|q
∣∣iŜ
∣∣q
⎞

⎠

1
q

=

⎛

⎝
∑

iŜ∈M(m−k,n)

∣∣c[i]

∣∣q

|i|q
∣∣iŜ
∣∣q−1

⎞

⎠

1
q

.

By the definition of p0, we have

‖PiS (z)‖sk

q ≤ K(m−k)sk
sk,p

∫

S�n
p

|L (ei1 , . . . , eik
, z, . . . , z)|sk dμn(z).

Thus,

∑

iS

⎛

⎝
∑

iŜ

∣∣c[i]

∣∣q

|i|q
∣∣iŜ
∣∣q−1

⎞

⎠

1
q

×sk

≤ K(m−k)sk
sk,p

∫

S�n
p

∑

iS

|L (ei1 , . . . , eik , z, . . . , z)|sk dµn(z).

Now fixing z ∈ S�n
p

we apply the multilinear Hardy–Littlewood inequality to
the k−linear form

(
z(1), . . . , z(k)

) 	→ L
(
z(1), . . . , z(k), z, . . . , z

)
and we obtain,

from [3, Theorem 1.1] and Lemma 4.3,
∑

iS

|L (ei1 , . . . , eik
, z, . . . , z)|sk

≤
⎛

⎝
(

2√
π

) 2k(k−1)
p

·(Bmult
C,k

) p−2k
p · sup

z(1),...,z(k)∈S�n
p

∣∣∣L
(
z(1), . . . , z(k), z, . . . , z

) ∣∣∣

⎞

⎠
sk

≤
⎛

⎝
(

2√
π

) 2k(k−1)
p

· (Bmult
C,k

) p−2k
p · (m − k)! · mm

(m − k)m−k · m!
‖P‖

⎞

⎠
sk

.

Thus
⎛

⎝
∑

|α|=m

|aα| 2mp
mp+p−2m

⎞

⎠

mp+p−2m
2mp

≤
(

m!
(m − k)!

) q−1
q

· Km−k
sk,p · (m − k)! · mm

(m − k)m−k · m!
·
(

2√
π

) 2k(k−1)
p

· (Bmult
C,k

) p−2k
p ‖P‖.

�
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5. Real versus complex estimates. As it happens with the constants of the
Bohnenblust–Hille inequality, we observe that

Cpol
R,m,p ≤ 2m−1Cpol

C,m,p. (5.1)

In fact, from [13] we know that if P : �p → R is an m-homogeneous polynomial
and PC : �p → C is the same polynomial, then

‖PC‖ ≤ 2m−1 ‖P‖ .

We thus obtain (5.1). So if one succeeds in proving that Cpol
R,m,p ≤ Cm (for

all p ≥ 2m) for a certain C ≥ 1, as it happens with the constants of the
Bohnenblust–Hille inequality, then we immediately conclude that a similar
result holds for real scalars (with the constant multiplied by two).

Acknowledgements. The authors thank the referee for important remarks and
suggestions.
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270 G. Araújo et al. Arch. Math.
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