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1. Basics. We begin with the classical definition of Jordan algebras.

Definition 1.1. Let k be a field with char k �= 2.
(a) A commutative, unital k-algebra J is called a (linear) Jordan algebra if

a2 · (b · a) = (a2 · b) · a holds for all a, b ∈ J .
(b) A non-zero element a of Jordan algebra J is called invertible if there is an

element a−1 ∈ J with a · a−1 = 1 and a2 · a−1 = a.
(c) A Jordan algebra is called a Jordan division algebra if every non-zero

element is invertible.

The standard example for a Jordan algebra arises in the following way: Let
A be an associative k-algebra. Define a new multiplication ◦ on A by

a ◦ b =
1
2
(ab + ba).

Then A+ = (J, ◦) is a Jordan algebra.
Of course, in this example the constraint that char k �= 2 is essential. But

since Jordan algebras have been a useful tool to describe some algebraic groups
that are also defined over fields of characteristic 2, one has to alter the defi-
nition of a Jordan algebra to include the case characteristic 2. In 1966 Kevin
McCrimmon came up with a new definition for Jordan algebras which works
for a field of arbitrary characteristic (see [5]). For convenience, we first intro-
duce some more definitions.
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Definition 1.2. Let k be a field of arbitrary characteristic.
(a) If V,W are two vector spaces over k, then a map Q : V → W is called

quadratic if Q(tv) = t2Q(v) for all t ∈ k, v ∈ V and if there is a k-bilinear
map f : V × V → W with Q(v + w) = Q(v) + Q(w) + f(v, w) for all
v, w ∈ V .

(b) A quadratic algebra over k is a pair (J,Q) where J is a k-vector space and
Q : J → Endk(J) : a �→ Qa is quadratic.

(c) For a quadratic algebra (J,Q) and a, b ∈ J , one defines the maps Qa,b, Va,b :
J → J by cQa,b = cQa+b − cQa − cQb and cVa,b = bQa,c for c ∈ J . Of
course, one has cVa,b = aVc,b for all a, b, c ∈ J . The map J×J → Endk(J) :
(a, b) �→ Va,b is k-bilinear.

(d) An element a ∈ J is called invertible if Qa is invertible. The element
a−1 := aQ−1

a is called the inverse of a. We denote the set of invertible
elements of J by J∗.

(e) If K is an extension field of k, then one defines the quadratic algebra
JK := (K ⊗k J, Q̂) by Q̂∑n

i=1 ti⊗ai
=

∑n
i=1 t2i Qai

+
∑

i<j titjQai,aj
. We say

that an identity in J holds strictly if it holds in JK for all extensions K/k.

Definition 1.3. Let (J,Q) be a quadratic algebra over k and 1 ∈ J# := J \{0}.
Then (J,Q, 1) is called a weak quadratic Jordan algebra if the following holds
for all a, b ∈ J .
(QJ1) Q1 = idJ .
(QJ2) QaVa,b = Vb,aQa.
(QJ3) QbQa

= QaQbQa.
A weak quadratic Jordan algebra is called a quadratic Jordan algebra if (QJ1)–
(QJ3) hold strictly, i.e. if JK is a weak quadratic Jordan algebra for all exten-
sion fields K/k.

Example. (a) Let R be a unital, associative algebra over k. For a ∈ R define
Qa : R → R : b �→ bab. Then R+ := (R,Q, 1) is a quadratic Jordan
algebra. If J is a Jordan subalgebra of R+, i.e. if J is a subspace of R
with 1 ∈ J and aba ∈ J for all a, b ∈ J , then we can restrict Q to J and
hence J is again a quadratic Jordan algebra. A quadratic Jordan algebra
is called special if it is isomorphic to a Jordan subalgebra of J .

(b) The author doesn’t know an example of a weak quadratic Jordan algebra
which is not a quadratic Jordan algebra.

The requirement that the identities (QJ1)–(QJ3) have to hold strictly is of
course a bit unusual. There is another way to express this condition.

Lemma 1.4. Let J be a weak quadratic Jordan algebra.
(a) J is a quadratic Jordan iff the linearized versions of (QJ2) and (QJ3)

hold, i.e. iff
(QJ2*) QaVb,c + Qa,bVa,c = Vc,aQa,b + Vc,bQa.
(QJ3*) QcQa,cQa,b

= Qa,bQcQa + QaQcQa,b.
(QJ3**) QcQa,b

+ QcQa,cQb
= QaQcQb + QbQcQa + Qa,bQcQa,b.

hold for all a, b, c ∈ J .
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(b) If (QJ3*) holds, then (QJ3**) holds.
(c) If |k| ≥ 3, then (QJ2*) holds.
(d) If |k| ≥ 4, then (QJ3*) holds.
(e) If |k| ≥ 4, then every weak quadratic Jordan algebra is a quadratic Jordan

algebra.

Proof. (a) See Theorem 1 of Chapter 1.3 in [4], where (QJ2*) equals QJ9,
(QJ3*) equals QJ6 and (QJ3**) equals QJ7. Note that Jacobson’s identity
QJ8 is redundant since it can be deduced from QJ7.

(b) Suppose that (QJ3*) holds. Let a, b, c ∈ J . If we apply (QJ3) with a + b
instead of a and c instead of b, we get

QcQa+b
= Qa+bQcQa+b,

hence

QcQa+cQb+cQa,b
= (Qa + Qb + Qa,b)Qc(Qa + Qb + Qa,b)

and therefore

QcQa
+ QcQb

+ QcQa,b
+ QcQa,cQb

+ QcQa,cQa,b
+ QcQb,cQa,b

= QaQcQa + QbQcQb + QaQcQb + QbQcQa + Qa,bQcQa,b

+Qa,bQcQa + QaQcQa,b + QbQcQa,b + Qa,bQbQa,b

If we apply (QJ3) for the terms QcQa
and QcQb, we get

QcQa,b
+ QcQa,cQb

+ QcQa,cQa,b
+ QcQb,cQa,b

= QaQcQb + QbQcQa + Qa,bQcQa,b + Qa,bQcQa

+QaQcQa,b + QbQcQa,b + Qa,bQcQa,b

If we apply (QJ3*) twice, we get

QcQa,b
+ QcQa,cQb

= QaQcQb + QbQcQa + Qa,bQcQa,b,

which is just identity (QJ3**).
(c) Let a, b, c ∈ J and λ ∈ k∗. If we apply (QJ2) with a + λc instead of a, we

get

Qa+λcVa+λc,b = Vb,a+λcQa+λc,

thus

QaVa,b + λ(Qa,cVa,b + QaVc,a) + λ2(Qa,cVc,b + QcVa,c) + λ3QcVc,b

= Vb,aQa + λ(Vb,aQa,c + Vc,aQa) + λ2(Vb,aQc + Vb,cQa,c) + λ3Vb,cQc.

If we apply (QJ2) for a and c and divide by λ, we get

QaVc,b + Qa,cVa,b − (Vb,aQa,c + Vb,cQa)

+ λ(Qa,cVc,b + QcVa,b − Vb,aQc − Vb,cQa,c) = 0.

Since |k∗| ≥ 2, identity (QJ2*) now follows.
(d) This can be done in a similar way.
(e) This follows from (c) and (d).

�
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Remark 1.5. (a) If J is a weak quadratic Jordan algebra and a ∈ J is invert-
ible, then we have Qa−1 = Q−1

a . Indeed, we have a = a−1Qa and thus
with (QJ3)

Qa = Qa−1Qa
= QaQa−1Qa,

hence Q−1
a = Qa−1 . Note that if a, b ∈ J are invertible, then aQb and a−1

are also invertible.
(b) Let J be a linear Jordan algebra over k. For a ∈ J define Qa : J → J

by bQa = −a2 · b + 2a · (a · b). Then (J,Q, 1) is a quadratic Jordan
algebra. If char k �= 2 and J is a quadratic Jordan algebra, then we define
a multiplication · on J by a · b = 1

21Qa,b. Then one can show that J
is a linear Jordan algebra. Therefore for char k �= 2 these two concepts
coincide (see for example [4] or [5]). Moreover, an element is invertible
in the linear Jordan algebra iff it is invertible in the quadratic Jordan
algebra.

We now recall the important concept of an isotope (see also Chapter 1.11
of [4]).

Definition 1.6. Let J = (J,Q) be a quadratic algebra and a ∈ J∗. We define
the a-isotope Ja = (J,Qa) of J by xQa

y = xQ−1
a Qy for all x, y ∈ J .

Lemma 1.7. Let J be a quadratic algebra and a, b, c ∈ J . Let V a
b,c be the V -map

for b and c in Ja, i.e. xV a
b,c = cQa

b,x = cQ−1
a Qb,x for all x ∈ J .

(a) Qa
a = idJ .

(b) Qa
b,c = Q−1

a Qb,c.
(c) V a

b,c = Vb,cQ−1
a

.

Proof. (a) and (b) are clear. For (c) let x ∈ J . Then we have

xV a
b,c = cQa

b,x = cQ−1
a Qb,x = xVb,cQ−1

a
.

Thus the claim follows. �

Proposition 1.8. Let J be a (weak) quadratic Jordan algebra and a ∈ J∗. Then
Ja = (J,Qa, a) is also a (weak) quadratic Jordan algebra.

Proof. See Chapter 1.11 of [4]. �

In this paper we are mainly interested in (weak) quadratic Jordan division
algebras.

Definition 1.9. A (weak) quadratic Jordan algebra is called a (weak) quadratic
Jordan division algebra if every non-zero element in J is invertible.

The theory of quadratic Jordan division algebras is connected with the the-
ory of Moufang sets, which was first noted in [3], see also [2] as an introduction
to Moufang sets.

Definition 1.10. A Moufang set consists of a set X with |X| ≥ 3 and a family
(Ux)x∈X of subgroups in SymX such that the following holds:
(a) For all x ∈ X the group Ux fixes x and acts regularly on X\{x}.
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(b) For all x, y ∈ X and all g ∈ Ux, we have Ug
y = Uyg.

The groups Ux are called the root groups of the Moufang set. The group
G† := 〈Ux;x ∈ X〉 is called the little projective group of the Moufang set. G†

is a 2-transitive subgroup of SymX. The Moufang set is called proper if G† is
not sharply 2-transitive and improper else.

Every Moufang set can be constructed as follows: Let (U,+) be a (not
necessarily abelian) group, let ∞ be a new symbol and set X := U ∪{∞}. For
a ∈ U let αa ∈ Sym X be defined by bαa = b + a for b ∈ U and ∞αa = ∞.
Then U∞ := {αa; a ∈ U} is a subgroup of SymX isomorphic to U . Let τ be a
permutation of X which interchanges 0 and ∞. We set U0 := Uτ

∞, Ua := Uαa
0

for a ∈ U and M(U, τ) := (X, (Ux)x∈X). By [3] M(U, τ) is a Moufang set iff
for all a ∈ U# the map ha := ταaατ

−aτ−1α−(−aτ−1)τ induces an isomorphism
on U . The map ha is called the Hua map correspondig to a.

Example. (a) Let X be a set with at least 3 elements, G ≤ Sym X be a
sharply 2-transitive group. Then (X, (Gx)x∈X) is an improper Moufang
set with little projective group G† = G.

(b) Let k be a field, X := P
1(k), and for x ∈ X let Ux be the subgroup

of PSL2(k) ≤ Sym X induced by the group of unipotent matrices that
fix x. Then (X, (Ux)x∈X) is a Moufang set with little projective group
G† = PSL2(k). It is proper iff |k| ≥ 4.

The second construction can be generalized to weak quadratic Jordan di-
vision algebras. In [3] the authors showed the following.

Theorem 1.11. Let J be a weak quadratic Jordan division algebra, X = J ∪
{∞}, and τ ∈ Sym X with ∞τ = 0, 0τ = ∞ and aτ = −a−1 for a ∈ J#. Then
for all a ∈ J#, x ∈ J we have xha = xQa, and thus M(J) := M(J, τ) is a
Moufang set.

De Medts and Weiss didn’t use the concept of a weak quadratic Jordan
algebra and formulated their theorem for quadratic Jordan division algebras,
but their proof doesn’t make use of the strictness of (QJ1)–(QJ3), so it also
holds for weak Jordan division algebras.

One of the big open problems concerning Moufang sets is the following
conjecture:

Conjecture 1.12. If (X, (Ux)x∈X) is a proper Moufang set with Ux abelian for
all x ∈ X, then there is a field k and a quadratic Jordan division algebra J
over k such that (X, (Ux)x∈X) is isomorphic to M(J).

If 1.12 is true, then one has a classification of proper Moufang sets with
abelian root groups since quadratic Jordan division algebras have been classi-
fied by McCrimmon and Zel’manov (see [7]). The proof follows from the clas-
sification of strongly prime quadratic Jordan algebras over an algebraically
closed field, therefore it is essential that scalar extensions are allowed. There
has been progress in proving 1.12 (see [1]), but in general this conjecture is still
open. The requirement that (QJ2) and (QJ3) have to hold strictly is of course
an obstacle. If there would be be a weak quadratic Jordan division algebra
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which is not a quadratic Jordan algebra, then conjecture 1.12 would be false.
Such an algebra could a priori exist over F2 or F3. In this paper we will prove
that no such algebra exists.

Main Theorem Every weak quadratic Jordan division algebra is a quadratic
Jordan algebra.

2. Some useful identities. In the following let (J,Q, 1) be a weak quadratic
Jordan algebra. We collect some identities we will need later. These identities
are already known for quadratic Jordan algebras and can be found for instance
in [4].

Lemma 2.1. yQaQx,x = aQyQx,x for all a, x, y ∈ J .

Proof. (QJ2) implies xQa,yQx = yVa,xQx = yQxVx,a = aQx,yQx
. Since the

first expression is symmetric in a and y, so is the last. Hence we get aQx,yQx
=

yQaQx,x. �

Lemma 2.2. For all x ∈ J we have Qx,1 = Vx,1 = V1,x.

Proof. By (QJ2) we have Vx,1 = Vx,1Q1 = Q1V1,x = V1,x. We have xQ1,y =
yV1,x = yVx,1 = 1Qx,y for all y ∈ J . Since the last expression is symmetric in
x and y, so is the first. Thus we have yV1,x = xQ1,y = yQ1,x. �

Lemma 2.3. If a ∈ J∗ and x ∈ J , then we have Vx,a−1 = Va,xQ−1
a

= Q−1
a Qx,a.

Proof. We apply 2.2 for the isotope Ja and have

V a
x,a = V a

a,x = Qa
a,x

and therefore

Vx,a−1 = Va,xQ−1
a

= Q−1
a Qa,x.

�

Lemma 2.4. Q1,xQx = QxQ1,x for all x ∈ J .

Proof. We have QxQ1,x = QxVx,1 = V1,xQx = Q1,xQx by (QJ2) and 2.2. �

Lemma 2.3 for x = 1 and a−1 in place of a and Lemma 2.4 together imply

Lemma 2.5. For all a ∈ J∗ we have Q1,a−1 = Va,1Q
−1
a .

Lemma 2.6. If x ∈ J∗, then Q−1
x Va,x = Vx,aQ−1

x = Qa,x−1 for all a ∈ J .

Proof. We have aQyQx,x = yQaQx,x = yQxQa,x−1Qx for all a ∈ J by (QJ3)
and 2.1. Replacing y by yQ−1

x , we get yVx,a = aQy,x = yQa,x−1Qx. Thus the
second equation follows. The first now follows from (QJ2). �

Lemma 2.7. If x, y ∈ J∗, then we have

Q−1
x Qx+yQ−1

y = Qx−1+y−1 .
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Proof. Using the previous lemma for x−1 in place of a and y in place of x, and
then with x−1 instead of x and y instead of a, we have

Q−1
x Qx,yQ−1

y = Vy,x−1Q−1
y = Qy−1,x−1 .

Since Q−1
x QxQ−1

y = Q−1
y and Q−1

x QyQ−1
y = Q−1

x , we get

Q−1
x Qx+yQ−1

y = Q−1
x (Qx + Qy + Qx,y)Q−1

y

= Q−1
y + Q−1

x + Qx−1,y−1 = Qx−1+y−1 .

�
We will also make use of the following “Hua-identity” for weak quadratic

Jordan division algebras. It was proved by De Medts and Weiss in [3] in order
to show that a quadratic Jordan division algebra defines a Moufang set. As
mentioned before, the proof doesn’t make use of the strictness of (QJ1)–(QJ3),
so it still holds for weak quadratic Jordan division algebras.

Theorem 2.8. Let J be a weak quadratic Jordan division algebra and a, b ∈ J∗

with a �= b−1. Then we have

aQb = b − (b−1 − (b − a−1)−1)−1.

Proof. See 4.1 of [3]. �
3. Derivations and anti-derivations of weak quadratic Jordan algebras.

Definition 3.1. Let J be a weak quadratic Jordan algebra and ε ∈ {+,−}. A
linear map δ : J → J is called an ε-derivation if δ(aQb) = εδ(a)Qb + aQb,δ(b)

holds for all a, b ∈ J .

We will call the +-derivations just derivations and the −-derivations anti-
derivations.

Remark 3.2. Our definition of a derivation differs slightly from the usual defi-
nition of a derivation of a quadratic Jordan algebra which additionally invokes
that δ(1) = 0 (see [6]). To the author’s knowledge the concept of an anti-
derivation of a quadratic Jordan algebra hasn’t been considered before.

Example. Let A be an associative algebra and J ⊆ A a special quadratic
Jordan algebra. If δ : A → A is an (anti-)derivation of A with δ(J) ≤ J , then
δ induces an (anti-)derivation of J . Indeed, for a, b ∈ J we have δ(aQb) =
δ(bab) = δ(b)ab + εbδ(ab) = δ(b)ab + εbδ(a)b + ε2baδ(b) = εδ(a)Qb + aQb,δ(b)

with ε = + if δ is a derivation and ε = − for δ an anti-derivation.

Lemma 3.3. Let δ be an ε-derivation for ε = ± and a, b, c ∈ J . Then we have:
(a) δ(aQb,c) = εδ(a)Qb,c+aQδ(b),c+aQb,δ(c) and δ(aVb,c) = δ(a)Vb,c+aVδ(b),c+

εaVb,δ(c) for all a, b, c ∈ J .
(b) If a ∈ J∗, then δ(a−1) = −εδ(a)Q−1

a .
(c) The identity is an anti-derivation.
(d) If char k �= 2 and δ is a derivation, then δ(1) = 0.
(e) If char k = 2, then Q1,δ(1) = 0.
(f) If char k �= 2 and δ is an anti-derivation, then δ(a) = 1

2aQ1,δ(1).
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Proof. (a) The first equation follows by linearizing the defining property of
an ε-derivation. The second equation can be obtained by the first.

(b) We have

δ(a−1) = δ(aQa−1) = εδ(a)Qa−1 + aQa−1,δ(a−1).

Now aQa−1,δ(a−1) = aVa,δ(a−1)Q
−1
a = δ(a−1)Qa,aQ−1

a = 2δ(a−1) by 2.6.
Thus we get −δ(a−1) = εδ(a)Qa−1 = εδ(a)Q−1

a .
(c) We have id(aQb) = aQb = −id(a)Qb + aQb,id(b), which shows that the

identity is an anti-derivation.
(d) We have δ(1) = δ(1−1) = −δ(1)Q−1

1 = −δ(1), thus the claim follows.
(e) For all a ∈ J we have

δ(a) = δ(aQ1) = δ(a)Q1 + aQ1,δ(1) = δ(a) + aQ1,δ(1),

hence the claim follows.
(f) We have

δ(a) = δ(aQ1) = −δ(a)Q1 + aQ1,δ(1) = −δ(a) + aQ1,δ(1)

and thus δ(a) = 1
2aQ1,δ(1).

�

We set Dε(J) := {δ ∈ Endk(J); δ is an ε-derivation of J} and D(J) :=
D+(J) + D−(J). If char k = 2, then we have D+(J) = D−(J) = D(J), while
for char k �= 2 we have D(J) = D+(J) ⊕ D−(J). We call the elements of D(J)
generalized derivations.

Lemma 3.4. For ε1, ε2 ∈ {+,−} we have [Dε1(J),Dε2(J)] ⊆ Dε1ε2(J). In
particular D+(J) and D(J) are Lie subalgebras of Endk(J), and if char k �= 2,
then D(J) is Z2-graded.

Proof. For i = 1, 2 let δi ∈ Dεi
(J). For a, b ∈ J we have

δ1(δ2(aQb)) = δ1(ε2δ2(a)Qb + aQb,δ2(b))
= ε1ε2δ1(δ2(a))Qb + ε2δ2(a)Qb,δ1(b) + ε1δ1(a)Qb,δ2(b)

+aQδ1(b),δ2(b) + aQδ1(δ2(b)),b

and analogously

δ2(δ1(aQb)) = ε1ε2δ2(δ1(a))Qb + ε1δ1(a)Qb,δ2(b) + ε2δ2(a)Qb,δ1(b)

+ aQδ1(b),δ2(b) + aQδ2(δ1(b)),b.

Thus we get

[δ1, δ2](aQb) = ε1ε2(δ1(δ2(a)) − δ2(δ1(a)))Qb + aQδ1(δ2(b)),b − aQδ1(δ2(b)),b

= ε1ε2[δ1, δ2](a)Qb + aQ[δ1,δ2](b),b.

Hence the claim follows. �

Lemma 3.5. If J is a quadratic Jordan algebra, then for all a ∈ J the map
Q1,a is an anti-derivation of J .
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Proof. Q1,a is an anti-derivation iff for all b ∈ J we have

QbQ1,a = −Q1,aQb + Qb,bQ1,a
.

But this is just identity (QJ3*) with 1 in place of a and a in place of b which
holds by definition in a quadratic Jordan algebra. �

Remark 3.6. As an application of 3.5 and 3.4, one gets that for a linear Jordan
algebra J and a, c ∈ J , the map b �→ [a, b, c] is a derivation of J , where
[a, b, c] = (ab)c − a(bc) is the associator of a, b and c. This fact was already
noted in [4].

Theorem 3.7. Let J be a weak quadratic Jordan algebra. Suppose that for all
a, y ∈ J# there is a generalized derivation δ with δ(a) = y. Then J is a
quadratic Jordan algebra.

Proof. Let a ∈ J . We set

LJ(a) := {y ∈ J : Vb,yQa + Vb,aQa,y = QaVy,b + Qa,yVa,b and
QbQa,bQa,y

= QaQbQa,y + Qa,yQbQa for all b ∈ J}.

Then LJ(a) is a subspace of J . Now let b, x ∈ J , ε = ±, and δ ∈ Dε(J). Then
we have

δ(xQaQbQa) = εδ(xQaQb)Qa + xQaQbQa,δ(a)

= δ(xQa)QbQa + εxQaQb,δ(b)Qa + xQaQbQa,δ(a)

= εδ(x)QaQbQa + xQa,δ(a)QbQa + εxQaQb,δ(b)Qa

+ xQaQbQa,δ(a).

On the other hand,

δ(xQaQbQa) = δ(xQbQa
) = εδ(x)QbQa

+ xQbQa,δ(bQa)

= εδ(x)QaQbQa + xQbQa,εδ(b)Qa
+ xQbQa,bQa,δ(a)

= εδ(x)QaQbQa + εxQaQb,δ(b)Qa + xQbQa,bQa,δ(a) .

Hence we get

Qa,δ(a)QbQa + QaQbQa,δ(a) = QbQa,bQa,δ(a) .

Moreover, we have

δ(xVb,aQa) = εδ(xVb,a)Qa + xVb,aQa,δ(a)

= εδ(x)Vb,aQa + xVb,δ(a)Qa + εxVδ(b),aQa + xVb,aQa,δ(a).

On the other hand, we have

δ(xVb,aQa) = δ(xQaVa,b) = δ(xQa)Va,b + xQaVδ(a),b + εxQaVa,δ(b)

= εδ(x)QaVa,b + xQa,δ(a)Va,b + xQaVδ(a),b + εxQaVa,δ(b).

Thus we get

Vb,δ(a)Qa + Vb,aQa,δ(a) = QaVδ(a),b + Qa,δ(a)Va,b.

This shows that δ(a) ∈ LJ(a) for all δ ∈ Dε(J), ε = ±. Thus the claim
follows. �
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4. The proof of the main theorem.

Theorem 4.1. Let J be a weak Jordan division algebra, ε ∈ {+,−}. Then
δ ∈ Endk(J) is an ε-derivation of J if and only if δ(a−1) = −εδ(a)Q−1

a for all
a ∈ J∗.

Proof. For δ ∈ Dε(J) it follows from 3.3 (b) that δ(a−1) = −εδ(a)Q−1
a .

Now we assume that δ : J → J be an endomorphism with δ(a−1) = −εδ(a)
Q−1

a . Let a, b ∈ J∗ with a �= b−1. Then we have by the Hua-identity 2.8

aQb = b − (b−1 − (b − a−1)−1)−1.

Thus we get

δ(aQb) = δ(b) − δ(b−1 − (b − a−1)−1)−1

= δ(b) + ε(δ(b−1) − δ((b − a−1)−1))Q−1
b−1−(b−a−1)−1

= δ(b) + ε(−εδ(b)Q−1
b + εδ(b − a−1)Q−1

b−a−1)Q−1
b−1−(b−a−1)−1

= δ(b) − δ(b)Q−1
b Q−1

b−1−(b−a−1)−1 + δ(b)Q−1
b−a−1Q

−1
b−1−(b−a−1)−1

+εδ(a)Q−1
a Q−1

b−a−1Q
−1
b−1−(b−a−1)−1 .

Now for x = b and y = −(b − a−1) we have by 2.7

Qb−1−(b−a−1)−1 = Qb−1Qb−(b−a−1)Q−(b−a−1)−1 = Q−1
b Q−1

a Q−1
b−a−1

and with x = −(b − a−1) and y = b we get

Qb−1−(b−a−1)−1 = Q−(b−a−1)−1+b−1 = Q−1
b−a−1Q

−1
a Q−1

b .

Thus we get using 2.6

δ(aQb) = δ(b) − δ(b)QaQb−a−1 + δ(b)QaQb + εδ(a)Qb

= εδ(a)Qb + δ(b)Qa(Q−a−1 − Qb−a−1 + Qb)
= εδ(a)Qb − δ(b)QaQb,−a−1

= εδ(a)Qb + δ(b)QaQa−1,b

= εδ(a)Qb + δ(b)Vb,a

= εδ(a)Qb + aQb,δ(b),

as desired.
We still have to prove δ(aQb) = εδ(a)Qb + aQb,δ(b) for b ∈ {0, a−1}. The

statement is clear for b = 0, while we have by 2.6

εδ(a)Qa−1 + aQa−1,δ(a−1) = εδ(a)Q−1
a + aVa,δ(a−1)Q

−1
a

= −δ(a−1) + δ(a−1)Qa,aQ−1
a

= δ(a−1) = δ(aQa−1).

�

Lemma 4.2. Let J be a weak quadratic Jordan division algebra. Then for all
a ∈ J the map δa = Q1,a is an anti-derivation of J .
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Proof. We have by 2.2, 2.5 and 2.6

δa(x−1) = x−1Q1,a = x−1V1,a = aQ1,x−1 = aVx,1Q
−1
x

= aV1,xQ−1
x = xQ1,aQ−1

x = δa(x)Q−1
x

for all x ∈ J∗. The result now follows from 4.1. �

Corollary 4.3. For all a ∈ J∗ and all b ∈ J , the map Qa
a,b = V a

a,b = V a
b,a is an

anti-derivation of Ja.

For characteristic not 2 we can show that the converse of 3.5 holds. Thus
4.2 implies that a weak quadratic Jordan division algebra in characteristic not
2 is a quadratic Jordan algebra.

Theorem 4.4. Let J be a weak quadratic Jordan algebra over a field k with
char k �= 2. Suppose that for all a ∈ J the map Q1,a is an anti-derivation of
J . For a, b ∈ J define a · b = 1

2aQ1,b. Then (J,+, ·) is a linear Jordan division
algebra. Thus J is a quadratic Jordan algebra.

Proof. We have a · b = 1
2aQ1,b = 1

2aV1,b = 1
2bQ1,a = b · a by 2.2, so · is

commutative. Moreover, we have 1 · a = a · 1 = 1
2aQ1,1 = 1

2 · 2aQ1 = a, so 1
is the neutral element. It remains to show that a2 · (b · a) = (a2 · b) · a holds
for all a, b ∈ J . Note that a2 = 1

2aQ1,a = 1
21Qa,a = 1Qa. Since Q1,a·b is an

anti-derivation, we have

a2 · (a · b) =
1
2
1QaQ1,a·b = −1

2
1Q1,a·bQa +

1
2
1Qa,aQ1,a·b

= −(a · b)Qa +
1
2
aQ1,2a·(a·b) = −(a · b)Qa + 2a · (a · (a · b)).

Moreover, we have

(a2 · b) · a =
1
4
1QaQ1,bQ1,a = −1

4
1Q1,bQaQ1,a +

1
4
1Qa,aQ1,b

Q1,a

= −1
2
bQ1,aQa +

1
4
aQ1,2a·bQ1,a = −(a · b)Qa + (a · (a · b))Q1,a

= −(a · b)Qa + 2(a · (a · b)) · a = −(a · b)Qa + 2a · (a · (a · b)).

Thus (J, ·) is a linear Jordan algebra. �

The following proof works for a field in arbitrary characteristic.

Theorem 4.5. A weak quadratic Jordan division algebra is a Jordan division
algebra.

Proof. We have to show (QJ2*) and (QJ3*), the first only for k = F2. Since
these equalities automatically hold if one of the elements involved is zero, we
only have to show them for non-zero elements. So let a, b, c ∈ J∗. Since Qc

b,c is
an anti-derivation of Jc by 4.3, we have

Qc
aQc

b,c = −Qc
b,cQ

c
a + Qc

aQc
b,c,a,

hence

Q−1
c QaQ−1

c Qb,c = −Q−1
c Qb,cQ

−1
c Qa + Q−1

c QaQ−1
c Qb,c,a.
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Multiplying Qc on the left yields

QaQ−1
c Qb,c + Qb,cQ

−1
c Qa = QaQ−1

c Qb,c,a. (4.1)

Replacing a by aQc and applying (QJ3) yields

QcQaQb,c + Qb,cQaQc = QaQb,c,aQc
.

This shows (QJ3*).
We now show (QJ2*). If we replace c by c−1 in (4.1), we get

QaQcQb,c−1 + Qb,c−1QcQa = QaQcQb,c−1 ,a.

By Lemma 2.6 we have QcQb,c−1 = Vb,c and Qb,c−1Qc = Vc,b, therefore we get

QaVb,c + Vc,bQa = QaVb,c,a = Qa,cQb,a

and thus

QaVb,c = −Vc,bQa + Qa,cQb,a
. (4.2)

Moreover, since Qa
a,c = V a

a,c = V a
c,a is an anti-derivation of Ja, we have

Qa
a,bV

a
a,c = −V a

a,cQ
a
a,b + Qa

aV a
a,c,b + Qa

a,bV a
a,c

= −V a
c,aQa

a,b + Qa
cQa

a,a,b + Qa
a,bV a

a,c
= −V a

c,aQa
a,b + Qa

2c,b + Qa
a,bV a

a,c
.

Hence we have

Q−1
a Qa,bVa,cQ−1

a
= −Vc,a−1Q−1

a Qa,b + Q−1
a Q2c,b + Q−1

a Qa,bV
a,cQ

−1
a

.

Using (QJ2) and multiplying Qa on the left yields

Qa,bVa,cQ−1
a

= −Va−1,cQa,b + 2Qc,b + Qa,cQ−1
a Qa,b

.

Replacing c by cQa yields

Qa,bVa,c = −Va−1,cQa
Qa,b + 2QcQa,b + Qa,cQa,b

.

By 2.3 we have Va−1,cQa
= Vc,a. Hence we get

Qa,bVa,c = −Vc,aQa,b + 2QcQa,b + Qa,cQa,b
. (4.3)

Adding (4.2) and (4.3) yields

Qa,bVa,c + QaVb,c = −Vc,bQa − Vc,aQa,b + 2QcQa,b + 2Qa,cQa,b
.

This gives (QJ2*) for char k = 2. �
5. An application for Moufang sets. Let M(U, τ) be a proper Moufang set
with abelian root groups. We may suppose that τ = μe for an element e ∈ U#,
where μe is the unique element in the double coset U0αeU0 which interchanges
0 and ∞.

By [8] M(U, τ) is special, so by [9, Thm. 5.2(a)] U is either torsion free and
uniquely divisible or an elementary-abelian p-group for a prime p. We write
char U = 0 in the first case and charU = p in the second. We can view U as a
k-vector space for k = Q if char U = 0 and k = Fp if char U = p.

In order to give U the structure of a quadratic Jordan algebra, we need
a quadratic map between U and Endk(U). There is a natural candidate for
this map. For a ∈ U# let ha be the Hua map corresponding to a and set
h0 = 0. Let H : U → Endk(U) : a �→ ha. Then (U,H, e) satisfies (QJ1)
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and (QJ3) and one has haτ = h−1
a for a ∈ U# and ha·s = ha · s2 for a ∈ U

and all s ∈ k. Moreover, if (U,H, e) is a quadratic Jordan division algebra,
then M(U) ∼= M(U, τ). It remains to show that (QJ2) holds and that the map
(a, b) �→ ha,b := ha+b − ha − hb is biadditive. In [1] the authors showed the
following:

Theorem 5.1. Let M(U, τ) be a proper Moufang set with U abelian. Assume
that char U �= 2, 3. If (QJ2) holds, then (U,H, e) is a quadratic Jordan division
algebra.

The authors had to exclude the case charU ∈ {2, 3} because (QJ1)–(QJ3)
are required to hold strictly, which was only guaranteed if |k| ≥ 4. But our
main theorem shows that this is always the case for weak Jordan division
algebras. Thus we get

Corollary 5.2. 5.1 also holds for char U ∈ {2, 3}.
Remark 5.3. (a) It is sufficient to prove a weaker version of axiom (QJ2)

which has to hold in all isotopes of (U,H, e), i.e. for all choices of e ∈ U#,
compare 5.6 of [1].

(b) If char U �= 2, 3, then in order to prove that (U,H, e) is a quadratic Jordan
division algebra, it is also sufficient to prove that the map (a, b) �→ ha,b

is biadditive (5.12 of [1]). In this case however, the strictness is not the
only obstacle for charU ∈ {2, 3} and therefore it is not yet clear if the
statement is also true in this case.
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