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Extension of a result of Haynsworth and Hartfiel

Minghua Lin

Abstract. Haynsworth (Proc Am Math Soc 24:512–516, 1970) used a re-
sult of the Schur complement to refine a determinant inequality for posi-
tive definite matrices. Haynsworth’s result was improved by Hartfiel (Proc
Am Math Soc 41:463–465, 1973). We extend their results to a larger class
of matrices, namely, matrices whose numerical range is contained in a
sector. Our proof relies on a number of new relations for the Schur com-
plement of this class of matrices.
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1. Introduction. Let Mn be the set of all n×n complex matrices. For A ∈ Mn,
the conjugate transpose of A is denoted by A∗, the real and imaginary parts
of A are in the sense of the Cartesian decomposition and they are denoted
by �A = 1

2 (A + A∗) and �A = 1
2i (A − A∗), respectively. For two Hermitian

matrices A,B ∈ Mn, we write A ≥ B (or B ≤ A) to mean that A − B is
positive semidefinite. We also consider A ∈ Mn to be partitioned as

A =
[
A11 A12

A21 A22

]
, (1.1)

where diagonal blocks are square matrices. If A is nonsingular, then we parti-
tion A−1 conformally as A. If A11 is nonsingular, then the Schur complement
of A11 in A is defined by A/A11 = A22 − A21A

−1
11 A12. The term “Schur com-

plement” and the notation were first brought in by Haynsworth. We refer
the readers to [14] for a survey of this important notion and its far reaching
applications in various branches of mathematics.

Recall that the numerical range (also known as the field of values) of A ∈
Mn is defined by

W (A) = {x∗Ax : x ∈ C
n, x∗x = 1}.
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Also, we define a sector on the complex plane

Sα = {z ∈ C : �z > 0, |�z| ≤ (�z) tan α}, α ∈ [0, π/2).

Clearly, if A is positive definite, then W (A) ⊂ S0.
For fundamentals of numerical range, see [4,8]. As 0 /∈ Sα, if W (A) ⊂ Sα,

then A is necessarily nonsingular.
The main object of this paper is a class of matrices whose numerical range is

contained in Sα. Part of the motivation for investigating this class of matrices
comes from the search for the optimal growth factor in Gaussian elimination;
see, for example, [1,2,7,10,12].

Let A,B ∈ Mn be positive definite. It is well known that (e.g., [9, p. 511])

det(A + B) ≥ det A + det B. (1.2)

Haynsworth proved the following refinement of (1.2).

Theorem 1.1. ([6, Theorem 3]) Suppose A,B ∈ Mn are positive definite. Let
Ak and Bk, k = 1, . . . , n − 1, denote the k-th principal submatrices of A and
B respectively. Then

det(A + B) ≥
(

1 +
n−1∑
k=1

det Bk

det Ak

)
det A +

(
1 +

n−1∑
k=1

det Ak

det Bk

)
det B. (1.3)

Hartfiel [5] obtained an improvement of (1.3): under the same condition as
in Theorem 1.1,

det(A + B) ≥
(

1 +
n−1∑
k=1

det Bk

detAk

)
detA +

(
1 +

n−1∑
k=1

det Ak

det Bk

)
det B

+(2n − 2n)
√

det AB. (1.4)

Haynsworth’s proof of (1.3) relies on an inequality for the Schur comple-
ment [6, Theorem 2]: Let A,B ∈ Mn be positive definite and be comformally
partitioned as in (1.1). Then

(A + B)/(A11 + B11) ≥ A/A11 + B/B11. (1.5)

In this paper, we first extend (1.5), then as an application, we obtain a
generalization of (1.4) and so (1.3).

2. Preliminaries. We first show a closure property of numerical range under
the Schur complement.

Proposition 2.1. Let A ∈ Mn be partitioned as in (1.1). If W (A) ⊂ Sα, then
W (A/A11) ⊂ Sα.

Proof. Clearly, if W (A) ⊂ Sα, then W (A∗) ⊂ Sα and W (A22) ⊂ Sα. Also,
for any nonsingular X ∈ Mn, W (A) = W (XAX∗). Therefore, W (A−1) =
W (AA−1A∗) = W (A∗) ⊂ Sα. The desired result follows by observing that
(A/A11)−1 = (A−1)22. �

In the remaining of this section, we present a few auxiliary results.
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Lemma 2.2. Let A ∈ Mn with W (A) ⊂ Sα. Then A can be decomposed as
A = XZX∗ for some invertible X ∈ Mn and Z = diag(eiθ1 , . . . , eiθn) with
|θj | ≤ α for all j.

Remark 2.3. The decomposition appears first in [1, Lemma 1.1]. In [15], it is
shown that the diagonal entries of Z are unique up to permutation.

Lemma 2.4. Let A ∈ Mn with �A positive definite. Then

(�A)−1 ≥ �(A−1).

Proof. By [13, Lemma 2.1], �(A−1) =
(
�A + (�A)(�A)−1(�A)

)−1

. As (�A)

(�A)−1(�A) is positive semidefinite, �(A−1) ≤ (�A)−1 follows. �

Lemma 2.5. Let A ∈ Mn be partitioned as in (1.1). If �A is positive definite,
then

�(A/A11) ≥ (�A)/(�A11).

Proof. The notation (�A)/(�A11) makes sense as �A11 is the (1, 1) block
of �A. Consider the Cartesian decomposition A = M + iN with M = �A,
N = �A being conformally partitioned as A. Then we have the following
equality relating the Schur complements [11, Lemma 2.2],

A/A11 = M/M11 + i(N/N11) + Y (M−1
11 − iN−1

11 )−1Y ∗,

where Y = M21M
−1
11 − N21N

−1
11 .

As �
(
(M−1

11 − iN−1
11 )−1

)
is positive semidefinite, so is �

(
Y (M−1

11

−iN−1
11 )−1Y ∗

)
. The desired result follows. �

Lemma 2.6. Let A ∈ Mn with W (A) ⊂ Sα. Then

secn(α) det(�A) ≥ |det A|.
Proof. Consider the decomposition A = XZX∗ as in Lemma 2.2. Then after
dividing by |det X|2, it suffices to show secn(α) det(�Z) ≥ 1. But each diag-
onal entry of the diagonal matrix sec(α)�Z is no less than one, implying the
result. �

Remark 2.7. The above inequality may be regarded as a complement of the
Ostrowski–Taussky inequality (see [9, p. 510]). With some minor modification
in the proof of [15, Lemma 3.1], Zhang showed that actually the eigenvalues
of sec(α)�Z weakly log majorize the singular values of A.

3. An extension of (1.5). First of all, we remark that a direct extension of
(1.5) is not valid. That is, assuming that A,B ∈ Mn with W (A),W (B) ⊂ Sα

are comformally partitioned as in (1.1), it does not hold in general that

�
(
(A + B)/(A11 + B11)

)
≥ �(A/A11) + �(B/B11). (3.1)

To see this, take B = A∗, then (3.1) contradicts Lemma 2.5.
The main result of this section is a correct version of (3.1).
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Theorem 3.1. Let A,B ∈ Mn with W (A),W (B) ⊂ Sα be comformally parti-
tioned as in (1.1). Then

sec2(α)�
(
(A + B)/(A11 + B11)

)
≥ �(A/A11) + �(B/B11).

Proof. We prove the following claim first, which may be regarded as a reverse
complement of Lemma 2.5.

Claim 1. sec2(α)(�A)/(�A11) ≥ �(A/A11).

Proof of Claim 1. We consider the decomposition A = XZX∗ as in

Lemma 2.2. We further partition X as a 2-by-1 block matrix X =
[
X1

X2

]
. Then

A =
[
X1ZX∗

1 X1ZX∗
2

X2ZX∗
1 X2ZX∗

2

]
. Let Y = (X∗)−1 =

[
Y1

Y2

]
be comformally partitioned

as X. Then A−1 =
[
Y1Z

−1Y ∗
1 Y1Z

−1Y ∗
2

Y2Z
−1Y ∗

1 Y2Z
−1Y ∗

2

]
. Clearly,

cos2(α)(�Z)−1 ≤ �(Z−1),

it follows that

cos2(α)Y2(�Z)−1Y ∗
2 ≤ �(Y2Z

−1Y ∗
2 ),

i.e.,

cos2(α)
(
(�A)−1

)
22

≤ �(A−1)22,

or

cos2(α)
(
(�A)/(�A11)

)−1

≤ �
(
(A/A11)−1

)
.

Taking the inverses of both sides yields

sec2(α)
(
(�A)/(�A11)

)
≥

(
�

(
(A/A11)−1

))−1

≥ �(A/A11),

in which the second inequality is by Lemma 2.4. This completes the proof of
Claim 1.

To finish the proof of Theorem 3.1, we observe the following chain of in-
equalities

�
(
(A + B)/(A11 + B11)

)
≥ �(A + B)/�(A11 + B11) by Lemma 2.5

≥ (�A)/(�A11) + (�B)/(�B11) by (1.5)

≥ cos2(α)
(
�(A/A11) + �(B/B11)

)
by Claim 1.

�

4. An extension of (1.4). As an applicaton of Theorem 3.1, we present the
following extension of Haynsworth and Hartfiel’s result mentioned in the In-
troduction.
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Theorem 4.1. Suppose A,B ∈ Mn such that W (A),W (B) ⊂ Sα. Let Ak and
Bk, k = 1, . . . , n−1, denote the k-th principal submatrices of A and B respec-
tively. Then

sec3n−2(α)|det(A + B)| ≥
(

1 +
n−1∑
k=1

∣∣∣∣det Bk

detAk

∣∣∣∣
)

|det A|

+

(
1 +

n−1∑
k=1

∣∣∣∣det Ak

det Bk

∣∣∣∣
)

|det B| + (2n − 2n)
√

|det AB|.

Proof. Clearly, (Ak+1 + Bk+1)/(Ak + Bk) ∈ C, so

|(Ak+1+Bk+1)/(Ak + Bk)| ≥ �
(
(Ak+1+Bk+1)/(Ak + Bk)

)
, k=1, . . . , n−1.

Here we set An = A,Bn = B. By Proposition 2.1, W (Ak+1/Ak),W (Bk+1/Bk)
⊂ Sα; then by Theorem 3.1 and Lemma 2.6,

sec2(α)�
(
(Ak+1 + Bk+1)/(Ak + Bk)

)
≥ �(Ak+1/Ak) + �(Bk+1/Bk)

≥ cos(α)
(
|Ak+1/Ak| + |Bk+1/Bk|

)
.

Hence,

sec3(α)|(Ak+1 + Bk+1)/(Ak + Bk)| ≥ |Ak+1/Ak| + |Bk+1/Bk|,
that is,

sec3(α)
∣∣∣∣det(Ak+1 + Bk+1)

det(Ak + Bk)

∣∣∣∣ ≥
∣∣∣∣det Ak+1

det Ak

∣∣∣∣ +
∣∣∣∣det Bk+1

det Bk

∣∣∣∣ (4.1)

for k = 1, . . . , n − 1.
Taking the product for k from 1 to n − 1 in (4.1) yields

sec3(n−1)(α)|det(A + B)| ≥ |A1 + B1|
n−1∏
k=1

(∣∣∣∣det Ak+1

det Ak

∣∣∣∣ +
∣∣∣∣det Bk+1

det Bk

∣∣∣∣
)

.

As |A1 + B1| ≥ cos(α)(|A1| + |B1|), we therefore arrive at

sec3n−2(α)|det(A + B)| ≥ (|A1| + |B1|)
n−1∏
k=1

(∣∣∣∣det Ak+1

det Ak

∣∣∣∣ +
∣∣∣∣det Bk+1

det Bk

∣∣∣∣
)

=
n∏

k=1

(∣∣∣∣ det Ak

det Ak−1

∣∣∣∣ +
∣∣∣∣ det Bk

det Bk−1

∣∣∣∣
)

,

where, by convention, detA0 = det B0 = 1.
The conclusion follows by taking ak = |det Ak|, bk = |det Bk|, k = 0,

1, . . . , n, in Claim 2.

Claim 2. Let ak, bk > 0, k = 1, . . . , n, also let a0 = b0 = 1. Then
n∏

k=1

(
ak

ak−1
+

bk

bk−1

)
≥ an

(
1 +

n−1∑
s+1

bs

as

)
+ bn

(
1 +

n−1∑
s+1

as

bs

)

+ (2n − 2n)
√

anbn.
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Proof of Claim 2. Let Nn = {1, 2, . . . , n}, and let P(Nn) be the set of subsets
of Nn. We consider special subsets (Bs)1≤s≤n and (B′

s)2≤s≤n defined by

Bs = {1, 2, . . . , s}, B′
s = {s, s + 1, . . . , n}.

Finally we define Ω = {∅} ∪ {Bs : 1 ≤ s ≤ n} ∪ {B′
s : 2 ≤ s ≤ n} and

Ω′ = P(Nn) \ Ω. Note that |Ω′| = 2n − 2n, and that each k ∈ Nn belongs to
exactly n of the subsets of Ω.

With this notation, for every x1, x2, . . . , xn > 0, we infer that
∏
B∈Ω

∏
k∈B

xk

=
n∏

k=1

xn
k and so

∏
B∈Ω′

∏
k∈B

xk =
n∏

k=1

x2n−1−n
k , moreover,

n∏
k=1

(1 + xk) =
∑

B∈P(Nn)

∏
k∈B

xk

=
∑
B∈Ω

∏
k∈B

xk +
∑

B∈Ω′

∏
k∈B

xk.

But
∑
B∈Ω

∏
k∈B

xk = 1 +
n∑

s=1

x1x2 · · · xs +
n∑

s=2

xsxs+1 · · · xn

and using the arithemtic mean-geometric mean inequality

∑
B∈Ω′

∏
k∈B

xk ≥ |Ω′|
( ∏

B∈Ω′

∏
k∈B

xk

)1/|Ω′|

= (2n − 2n)

(
n∏

k=1

x2n−1−n
k

)1/(2n−2n)

= (2n − 2n)
√

x1x2 · · · xn.

So we have
n∏

k=1

(1 + xk) ≥ 1 +
n∑

s=1

x1x2 · · · xs +
n∑

s=2

xsxs+1 · · · xn + (2n − 2n)
√

x1x2 · · · xn.

Taking xk = ak−1bk

bk−1ak
, for k = 1, . . . , n, gives

n∏
k=1

(
1 +

ak−1bk

bk−1ak

)
≥ 1 +

n∑
s=1

bs

as
+

bn

an

n∑
s=2

as−1

bs−1
+ (2n − 2n)

√
bn/an

= 1 +
n−1∑
s=1

bs

as
+

bn

an

(
1 +

n−1∑
s=1

as

bs

)
+ (2n − 2n)

√
bn/an.

Multiplying both sides of the inequality by
n∏

k=1

ak

ak−1
= an yields the desired

inequality. This completes the proof of Claim 2. �
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Apparently, Theorem 4.1 reduces to (1.4) when α = 0. A matrix A ∈ Mn

is accretive-dissipative if both �A, �A are positive definite (see [3]). Note
that if A is accretive-dissipative, then W (e−iπ/4A) ⊂ Sπ/4. Thus, we have the
following corollary.

Corollary 4.2. Suppose A,B ∈ Mn are accretive-dissipative. Let Ak and Bk,
k = 1, . . . , n−1, denote the k-th principal submatrices of A and B respectively.
Then

2
3
2 n−1|det(A + B)| ≥

(
1 +

n−1∑
k=1

∣∣∣∣det Bk

det Ak

∣∣∣∣
)

|det A|

+

(
1 +

n−1∑
k=1

∣∣∣∣det Ak

detBk

∣∣∣∣
)

|det B| + (2n − 2n)
√

|det AB|.

Note added in proof. After the acceptance of the paper, the author is aware of
that Lemma 2.5 has also appeared in Theorem 7 of (J. Liu, J. Wang, Linear
Algebra Appl 293:233–241, 1999).
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