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Hölder estimates for the noncommutative Mazur maps

Éric Ricard

Abstract. For any von Neumann algebra M, the noncommutative Mazur
map Mp,q from Lp(M) to Lq(M) with 1 � p, q < ∞ is defined by

f �→ f |f | p−q
q . In analogy with the commutative case, we gather estimates

showing that Mp,q is min{ p
q
, 1}-Hölder on balls.
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1. Introduction. In the integration theory, the Mazur map Mp,q from Lp(Ω)
to Lq(Ω) is defined by f �→ f |f | p−q

q . It is an easy exercise to check that it
is min{p

q , 1}-Hölder. These maps also make sense in the noncommutative Lp-
setting, for which one should expect a similar behavior. We refer to [8] for the
definitions of Lp-spaces for semifinite von Neumann algebras or more general
ones. Having a quantitative result on Mazur maps may be useful when dealing
with the structure of noncommutative Lp-spaces (see also [10]). By the way,
these maps are used implicitly in the definition of Lp. It is known that Mp,q

is locally uniformly continuous in full generality [10, Lemma 3.2]. The lack of
references for quantitative estimates motivates this note. When dealing with
the Schatten classes (when M = B(�2)), some can be found in [1], more
precisely Mp,q is p

q -Hölder when 1 < p < q. The techniques developed there
can be adapted to semifinite von Neumann algebras but can’t reach the case
p = 1. An estimate when q = p′ and 1 < p < ∞ can also be found in [5]. Here
we aim to give the best possible estimates especially for p = 1.

Theorem Let M be a von Neumann algebra, for 1 � p, q < ∞, Mp,q is
min{p

q , 1}-Hölder on the unit ball of Lp(M).

When p > q, the Lipschitz constant is of order p
q as in the commutative

case. But when p < q, the proofs provide a strange behavior of the Hölder
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constants cp,q as cp,q → ∞ if q → 1 or p → ∞. This reflects the fact that
the absolute value is not Lipschitz on L1 or L∞, or that the main triangular
projection is not bounded on S1 or B(�2). We don’t know if the result holds
with an absolute constant for p < q as in the commutative case.

We follow a basic approach, showing first the results for semifinite von
Neumann algebras in section 2. We start by looking at positive elements and
then use some commutator or anticommutator estimates. The ideas here are
inspired by [2,6]. In section 3, we explain briefly how the Haagerup reduction
technique from [7] can be used to get the theorem in full generality.

2. Semifinite case. In this section M is assumed to be semifinite with a nsf
trace τ . We refer to [8] for definitions. We denote by L0(M, τ) the set of
τ -measurable operators, and

Lp(M, τ) =
{

f ∈ L0(M, τ) | ‖f‖p
p = τ

(|f |p) < ∞
}

.

We drop the reference to τ in this section.
First we focus on the Mazur maps for positive elements using some basic

inequalities. The first one can be found in [4, Lemma 1.2]. An alternative proof
can be obtained by adapting the arguments of [2, Theorem X.1.1] to semifinite
von Neumann algebras.

Lemma 2.1. If p � 1, 0 < θ � 1, for any x, y ∈ L+
θp(M), we have

∥∥xθ − yθ
∥∥

p
�
∥∥x − y

∥∥θ

θp
.

Its proof relies on the fact that s �→ sθ is operator monotone and has an
integral representation

sθ = cθ

∫

R+

tθs

s + t

dt

t
with cθ =

⎛
⎜⎝
∫

R+

uθ

u(1 + u)
du

⎞
⎟⎠

−1

.

Lemma 2.2. If p � 1, 0 < θ � 1, for any x, y ∈ L+
(1+θ)p(M), we have:

∥∥x1+θ − y1+θ
∥∥

p
� 3
∥∥x − y

∥∥
(1+θ)p

max
{∥∥x∥∥

(1+θ)p
,
∥∥y∥∥

(1+θ)p

}θ

.

Proof. By standard arguments, cutting x and y by some of their spectral
projections, we may assume that τ is finite x and y are bounded and invertible
to avoid differentiability issues. We use

s1+θ = cθ

∫

R+

tθs2

s + t

dt

t
.

On bounded and invertible elements, the maps ft : s �→ s2

s+t = s(s + t)−1s are
differentiable and

Dsft(δ) = δ(s + t)−1s + s(s + t)−1δ − s(s + t)−1δ(s + t)−1s.
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Hence putting δ = x − y, we get the integral representation

x1+θ − y1+θ = cθ

1∫

0

∫

R+

tθDy+uδft(δ)
dt

t
du.

We get, letting gt(s) = s(s + t)−1,

x1+θ − y1+θ =

1∫

0

(
(y + uδ)θδ + δ(y + uδ)θ

)
du

−cθ

1∫

0

∫

R+

tθgt(y + uδ)δgt(y + uδ)
dt

t
du.

The first term is easily handled by the Hölder inequality. When u is fixed, note
that gt(y + uδ) is an invertible positive contraction. Put

γ2 = cθ

∫

R+

tθgt(y + uδ)2
dt

t
� (y + uδ)θ,

and write gt(y + uδ) = vtγ so that vt and y + uδ commute and

cθ

∫

R+

tθv2
t

dt

t
= 1.

Therefore the map defined on M, x �→ cθ

∫
R+

tθvtxvt
dt
t = 1 is unital completely

positive and trace preserving. Hence it is a contraction on both L1 and L∞,
thus it extends to a contraction on Lq when 1 � q � ∞ by interpolation (see
[7, section 5] for a general version of this fact). Applying it to x = γδγ, we
deduce∥∥∥∥∥∥∥

cθ

∫

R+

tθgt(y + uδ)δgt(y + uδ)
dt

t

∥∥∥∥∥∥∥
p

�
∥∥γδγ

∥∥
p

�
∥∥δ∥∥

(1+θ)p
.
∥∥γ∥∥2

2(1+θ)p
θ

�
∥∥δ∥∥

(1+θ)p
.
∥∥y + uδ

∥∥θ

(1+θ)p

thanks to the Hölder inequality again, this is enough to get the conclusion. �

Corollary 2.3. Let α > 1, p � 1, for any x, y ∈ L+
αp(M):

∥∥xα − yα
∥∥

p
� 3α

∥∥x − y
∥∥

αp
max

{∥∥x∥∥
αp

,
∥∥y∥∥

αp

}α−1

.

Proof. When α = n ∈ N, the result is obvious with constant n. For the general
case, put n = [α], so that α = n(1 + δ) with 0 � δ < 1, then use the result for
n and then Lemma 2.2. �

Coming back to the Mazur map Mp,q, Corollary 2.3 says that Mp,q is Lip-
schitz on the positive unit ball of Lp(M) if q < p. On the other hand, Lemma
2.1 says that it is p

q -Hölder if q > p. To release the positivity assumption,
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we will need a couple of Lemmas, but we start by reducing the problem to
selfadjoint elements by a well known 2 × 2-trick.

If x, y ∈ Lp(M) are in the unit ball with polar decompositions x = u|x|
and y = v|y|, we want to prove that with θ = min{p

q , 1}
∥∥∥u|x| p

q − v|y| p
q

∥∥∥
q

� cp,q

∥∥∥x − y
∥∥∥

θ

p
. (1)

In M2(M) equipped with the tensor trace, let

x̃ =
(

0 x
x∗ 0

)
and ỹ =

(
0 y
y∗ 0

)
.

They are selfadjoint with polar decompositions

x̃= ũ|x̃|=
(

0 u
u∗ 0

)
.

(
u|x|u∗ 0

0 |x|
)

and ỹ= ṽ|ỹ|=
(

0 v
v∗ 0

)
.

(
v|y|v∗ 0

0 |y|
)

.

The estimates for x̃ and ỹ imply that for x and y as

ũ|x̃| p
q =

(
0 u|x| p

q

|x| p
q u∗ 0

)
and ṽ|ỹ| p

q =

(
0 v|y| p

q

|y| p
q v∗ 0

)
,

we have∥∥∥x̃ − ỹ
∥∥∥

p
= 2

1
p

∥∥∥x − y
∥∥∥

p

∥∥∥ũ|x̃| p
q − ṽ|ỹ| p

q

∥∥∥
q

= 2
1
q

∥∥∥u|x| p
q − v|y| p

q

∥∥∥
q
.

Next, we reduce the theorem to a commutator estimate by using the 2× 2-
trick again. We use the commutator notation [x, b] = xb − bx. Put

x̃ =
(

x 0
0 y

)
and b̃ =

(
0 1
0 0

)
.

So that
∥∥[Mp,q(x̃), b̃]

∥∥
q

=
∥∥Mp,q(x) − Mp,q(y)

∥∥
q

and
∥∥[x̃, b̃]

∥∥
p

=
∥∥x − y

∥∥
p
.

Lemma 2.4. If p � 1, 0 < θ � 1 and x ∈ L+
p (M) and b ∈ M, then

∥∥∥[xθ, b
]∥∥∥

p
θ

� 2θ
∥∥b∥∥1−θ

∞
∥∥[x, b]

∥∥θ

p
,

∥∥[x, b]
∥∥

p
� 12

θ

∥∥x∥∥1−θ

p

∥∥∥[xθ, b
]∥∥∥

p
θ

.

Proof. We start with the first inequality. We may assume ‖b‖∞ = 1 by homo-
geneity. Using the 2 × 2-trick with

x̃ =
(

x 0
0 x

)
and b̃ =

(
0 b
b∗ 0

)
,

we may assume b = b∗ (without loosing on the constant).
Next, as b = b∗, we may use the Cayley transform defined by

u = (b − i)(b + i)−1, b = 2i(1 − u)−1 − i.
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Clearly u is unitary, and the functional calculus gives that ‖(1−u)−1‖∞ � 1√
2
.

We have, using Lemma 2.1,
∥∥[xθ, b]

∥∥
p
θ

� 2
∥∥xθ(1 − u)−1 − (1 − u)−1xθ

∥∥
p
θ

� 2
∥∥(1 − u)−1

∥∥2

∞
∥∥xθ(1 − u) − (1 − u)xθ

∥∥
p
θ

�
∥∥u∗xθu − xθ

∥∥
p
θ

�
∥∥xu − ux

∥∥θ

p

�
∥∥(b + i)−1

∥∥2θ

∞
∥∥(b + i)x(b − i) − (b − i)x(b + i)

∥∥θ

p

� 2θ
∥∥xb − bx

∥∥θ

p
.

For the second one, we proceed similarly using Corollary 2.3. �

Lemma 2.5. If p � 1, 0 < θ � 1, there are constants C and Ct (t � 1) so that
for any x, y ∈ L+

p (M) and b ∈ M then
∥∥∥xθb + byθ

∥∥∥
p
θ

� C p
θ

∥∥b∥∥1−θ

∞
∥∥xb + by

∥∥θ

p
,

∥∥xb + by
∥∥

p
� C

∥∥x∥∥1−θ

p

∥∥∥xθb + byθ
∥∥∥

p
θ

.

Proof. Using the 2 × 2-trick, we may assume x = y. Moreover, we may
assume that x has full support in M. Indeed let e = 1(0,∞)(x) and e⊥ = 1− e:

∥∥xb + bx
∥∥

p
∼ ∥∥xebe + ebex

∥∥
p

+
∥∥exbe⊥∥∥

p
+
∥∥e⊥bxe

∥∥
p∥∥xθb + bxθ

∥∥
p
θ

∼ ∥∥xθebe + ebexθ
∥∥

p
θ

+
∥∥exθbe⊥∥∥

p
θ

+
∥∥e⊥bxθe

∥∥
p
θ

If we apply the result in eMe where xe ∈ eMe has full support, we get
control for the first terms. For the two middle terms, this is clear by in-
terpolation as

∥∥exθbe⊥∥∥
p
θ

�
∥∥exbe⊥∥∥θ

p
‖b‖1−θ

∞ and
∥∥exbe⊥∥∥

p
�
∥∥exθbe⊥∥∥

p
θ

‖ex‖1−θ
p .

We will use techniques from [11] based on Schur multiplier estimates and
interpolation. We use Mcb for the completely bounded norm of a Schur multi-
plier on B(�2). By an obvious approximation, we may also assume that x has a
finite spectrum. Let (λi)i=1...n be the spectrum of x with associated projections
(pi)i=1...n. We start by the second inequality. For any α ∈ [0, 1], the matrix(

λα
i λ1−α

j +λ1−α
i λα

j

λi+λj

)
i,j

defines a unital completely positive Schur multiplier on

B(�n
2 ), see the computation in [11, Corollary 2.5]; this implies that

∥∥∥x1−αbxα + xαbx1−α
∥∥∥

p
�
∥∥∥xb + bx

∥∥∥
p
.

We use

xb + bx = x1−θ(xθb + bxθ) + (xθb + bxθ)x1−θ − (x1−θbxθ + xθbx1−θ).
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Assume θ � 1
3 , by the Hölder inequality

∥∥∥xb + bx
∥∥∥

p
�
∥∥x∥∥1−θ

p

(
2
∥∥∥xθb + bxθ

∥∥∥
p
θ

+
∥∥∥x 1−θ

2 bx
3θ−1

2 + x
3θ−1

2 bx
1−θ
2

∥∥∥
p
θ

)
.

Using the above argument with α = 1−θ
2 :

∥∥∥xb + bx
∥∥∥

p
� 3
∥∥x∥∥1−θ

p

∥∥∥xθb + bxθ
∥∥∥

p
θ

.

When θ < 1
3 , we use

∥∥∥x1−θbxθ + xθbx1−θ
∥∥∥

p
� 2
∥∥x∥∥1−θ

p

∥∥∥x θ
2 bx

θ
2

∥∥∥
p
θ

.

And one corrects again by the above argument with α = 1
2 to get

∥∥∥x1−θbxθ + xθbx1−θ
∥∥∥

p
�
∥∥x∥∥1−θ

p

∥∥∥xθb + bxθ
∥∥∥

p
θ

.

For the first inequality, the result is a particular case of the main theo-
rem of [11] assuming x has full support. The latter says the Banach spaces
defined by norms ‖b‖Lq(xα) = ‖xαb + bxα‖q interpolate, so that L p

θ
(xθ) =

(L∞(x0), Lp(x))θ. As a corollary,
∥∥∥xθb + bxθ

∥∥∥
p
θ

� C p
θ

∥∥b∥∥1−θ

∞
∥∥xb + bx

∥∥θ

p
.

To avoid the use of [11], we provide an alternate proof of the latter inequal-
ity with a better constant only when p = 1 and θ � 1

2 . Assuming ‖b‖∞ � 1, we
use the Jensen inequality from [3] for the convex function x �→ x

1
2θ (for us it

follows easily from the operator convexity of xα for α ∈ [1, 2] and an iteration
argument):

∥∥∥xθb + bxθ
∥∥∥

1
θ

1
θ

� 2
1
θ

(∥∥xθb
∥∥ 1

θ
1
θ

+
∥∥bxθ

∥∥ 1
θ
1
θ

)

� 2
1
θ τ
((

b∗x2θb
) 1

2θ +
(
bx2θb∗) 1

2θ

)

� 2
1
θ τ
(
b∗xb + bxb∗

)

� 2
1
θ

∥∥xb + bx
∥∥

1
.

�

Lemma 2.6. There is an absolute constant C > 0 and constants Ct (t � 1) so
that:

• If q > p � 1, and x ∈ Lp(M), x = x∗ and b ∈ M, then
∥∥∥[Mp,q(x), b

]∥∥∥
q

� Cq

∥∥b∥∥1− p
q

∞
∥∥[x, b]

∥∥ p
q

p
. (2)

• If p > q � 1, and x ∈ Lp(M), x = x∗ and b ∈ M, then
∥∥∥[Mp,q(x), b

]∥∥∥
q

� C
p

q

∥∥x∥∥
p
q −1

p

∥∥[x, b]
∥∥

p
. (3)
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Proof. For (2), write e+ = 1[0,∞)(x) and e− = 1(−∞,0)(x) and put b±,± =
e±be±. So that

[
Mp,q(x), b

]
=
[
x

p
q

+, b+,+

]− [
x

p
q

−, b−,−
]
+
(
x

p
q

+b+,− + b+,−x
p
q

−
)

−(x
p
q

−b−,+ + b−,+x
p
q

+

)
.

We can apply either Lemmas 2.4 or 2.5 to each term. In any case, the upper
bound we get is smaller than the right side of (2).

A similar argument works for (3). �

Remark 2.7. The techniques developed here work if one replaces Mp,q by any
function f : R → R. With such a general function f , 2.6 boils down to the
boundedness of some Schur multipliers on Sp[Lp(M)] (by the discretization
from [11]), this is the argument of [6]. This also explains why the results of
[1,6,9] remain true for semifinite von Neumann algebras.

3. General case. In the general case, we use the Haagerup definition of Lp-
spaces [12] and the Haagerup reduction technique from [7] (see [4] for an ex-
tension from states to weights). As the construction is very technical, we only
give a sketch to keep the paper short. Let M be a general von Neumann al-
gebra with a fixed faithful normal semifinite weight ϕ. As usual σϕ denotes
the automorphism group of ϕ and we use the classical notation nϕ, mϕ,... for
other constructions associated to ϕ. We let M̂ = M �σϕ R be the core of M.
It is a semifinite von Neumann algebra with a distinguished trace τ such that
τ ◦ σ̂s = e−sτ , where σ̂ is the dual action of R on M̂. The definition is then

Lϕ
p (M) =

{
f ∈ L0(M̂, τ) | σ̂s(x) = e− s

p x
}

.

Then Lϕ
1 (M) is order isometric to M∗, and the evaluation at 1 is denoted

by tr. The Lϕ
p norm is given by ‖x‖p

p = tr|x|p. We also denote by Dϕ the
Radon–Nykodym derivative of the dual weight ϕ̂ with respect to τ .

These Lϕ
p spaces are disjoint, and the norm topology coincides with the

measure topology of L0(M̂, τ) (Proposition 26 in [12]). The construction does
not depend on the choice of ϕ up to ∗-topological isomorphisms (see below)
so that we may drop the superscript ϕ when no confusion can arise.

The Haagerup reduction theorem is (see [7, Theorem 2.1] or [4, Theorem
7.1]):

Theorem 3.1. For any (M, ϕ) there is a bigger von Neumann algebra (R, ϕ̃),
where ϕ̃ is a nfs weight extending ϕ, a family an in the center of the centralizer
of ϕ̃ so that

i) there is a conditional expectation E : R → M such that

ϕ ◦ E = ϕ̃ and E ◦ σϕ̃
s = σϕ

s ◦ E for all s ∈ R,

ii) the centralizer Rn of ϕn(.) = ϕ̃(e−an .) is semifinite for all n � 1 (with
trace ϕn),

iii) there exist conditional expectations En : R → Rn such that

ϕ̃ ◦ En = ϕ̃ and En ◦ σϕ̃
s = σϕ̃

s ◦ En for all s ∈ R,
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iv) En(x) → x σ-strongly for x ∈ nϕ̃ and
⋃

n�1 Rn is σ-strongly dense in R.

The modular conditions for the conditional expectations imply that we can
view Lp(M) and Lp(Rn) as subspaces of Lp(R) and there are extensions

Ep : Lp(R) → Lp(M) and Ep
n : Lp(R) → Lp(Rn).

Moreover from iv), for any x ∈ Lp(R) (1 � p < ∞) we have (see [4, Lemma
7.3] for instance):

lim
n→∞

∥∥Ep
n(x) − x

∥∥
p

= 0.

Now we make explicit the independence of Lp(Rn) relative the choice of
the weight. Considering Rn with ϕn or ϕ̃n gives two constructions, the corre-
sponding spaces of measurable operators Nϕn

= L0(Rn �σϕn R, ϕ̂n) and Nϕ̃ =
L0(Rn �σϕ̃ R, τ) in which the Lp-spaces live. By [12, Corollary 38], there is a
topological ∗-homomorphism κ : Nϕ̃ → Nϕn

so that κ(Lϕ̃
p (Rn)) = Lϕn

p (Rn)
and that is isometric on Lp.

As ϕn is a trace, we know that Rn �σϕn R 
 Rn ⊗ L∞(R) and the identi-
fication ιp : Lp(Rn, ϕn) → Lϕn

p (Rn) is ιp(x) = x ⊗ e
.
p . Hence we get isometric

isomorphisms κp = ι−1
p ◦ κ : Lp(Rn) → Lp(Rn, ϕn) that are compatible with

left and right multiplications by elements of Rn and powers in the sense that
for 1 � q, p < ∞ and x ∈ L+

p (Rn)

κp(x)
p
q = κq

(
x

p
q
)
. (4)

One can check that κp is formally given by κp(D
1
2p

ϕ̃ xD
1
2p

ϕ̃ ) = e− an
2p xe− an

2p for
x ∈ mϕn

.
Now we can conclude the proof of the theorem in the general case. Take x

and y in Lp(M), then
∥∥x−y

∥∥
p
= lim

n→∞
∥∥En(x)−En(y)

∥∥
Lp(Rn)

= lim
n→∞

∥∥κp(En(x))−κp(En(y))
∥∥

Lp(Rn,ϕn)
.

By Lemma 3.2 in [10], the map Mp,q is continuous on Nϕ̃, thus also Lp → Lq,
hence∥∥Mp,q(x) − Mp,q(y)

∥∥
q

= lim
n→∞

∥∥κq(Mp,q(En(x))) − κq(Mp,q(En(y)))
∥∥

Lq(Rn,ϕn)
.

But thanks to (4), κq(Mp,q(En(x))) = Mp,q(κp(En(x)), so that we can use the
estimate for semifinite von Neumann algebras to conclude.

In the same way, all inequalities from section 2 can be extended to arbitrary
von Neumann algebras (except Remark 2.7 as one can not make sense of
f(x) ∈ Lq when x ∈ Lsa

p for general functions other than powers).
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Laboratoire de Mathématiques Nicolas Oresme,
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