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Abstract. We consider the existence of at least one positive solution to a
semipositone boundary value problem with nonlocal, nonlinear boundary
conditions, which can be quite general since the nonlinearity is realized as
a Stieltjes integral. By assuming that the associated Stieltjes measure de-
composes in a certain way, the classical Leray-Schauder degree is utilized
to derive the existence result.
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1. Introduction. In this note we show that the boundary value problem (BVP)

− y′′(t) = f(t, y(t)), t ∈ (0, 1)
y(0) = H(ϕ(y))
y(1) = 0 (1.1)

has at least one positive solution when certain growth and structure conditions
are imposed on f , H, and ϕ. In (1.1) the functions f : [0, 1] × R → R and H :
R → R will always be assumed to be continuous, with H([0,+∞)) ⊆ [0,+∞).
Furthermore, the functional ϕ : C([0, 1]) → R is linear and, in particular,
realizable in the Stieltjes integral representation

ϕ(y) =
∫

[0,1]

y(s) dα(s), (1.2)

with α : [0, 1] → R of bounded variation on [0, 1]. We do not assume that α
is necessarily monotonically increasing. Consequently, in this note we permit
the map y �→ ϕ(y) to be possibly negative even if y is nonnegative.
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The study of semipositone problems has a long history in the literature,
with the work of Anuradha et al. [2] being an early, classic example. More
recent papers include those by Goodrich [8], Graef and Kong [11], Sun and Li
[21], and Infante and Webb [23]. Furthermore, recently there have been many
papers on nonlocal BVPs with either linear or nonlinear boundary conditions.
The reader is invited to consult recent papers by Anderson [1], Goodrich [3–
7,9,10], Infante et al. [12–17], and Karakostas et al. [18,19]. In particular, the
general theory for treating problems with linear, nonlocal boundary conditions
realized as Stietjes integrals was developed by Infante and Webb [22] with some
earlier work in this direction produced by Yang [25,26]. Finally, an interesting
and perhaps not-too-well-known review of the nonlocal BVP theory known
in the early 1940s may be found by the interested reader in the paper by
Whyburn [24].

In this note we continue these studies by considering problem (1.1). In
particular, we are not aware of any contributions concerning the semipositone
problem when the boundary conditions are nonlocal, nonlinear and the non-
locality is signed. Moreover, we do not assume that H satisfies any uniform
growth behavior but rather that it satisfies merely an asymptotic condition.
This strategy works only because we assume that ϕ decomposes in a partic-
ular way. Essentially, we assume that ϕ(y) = ϕ1(y) + ϕ2(y), for each y in an
appropriate cone, and where ϕ1 essentially traps the negativity of ϕ, whilst ϕ2

satisfies an appropriate coercivity condition—see the example in Section 3 as
well as [3–7,10] for much more discussion regarding this technique in a variety
of contexts for the positone problem.

2. Preliminary lemmata and notation. In order to keep the exposition of
this section as brief as possible, we shall recall some necessary facts that
are relatively standard and well-known in the existing literature, and we di-
rect the reader to the references for further details. We begin by recalling
that Green’s function associated to the conjugate problem is the function
G : [0, 1] × [0, 1] → R defined by

G(t, s) :=

{
t(1 − s), 0 ≤ t ≤ s ≤ 1
s(1 − t), 0 ≤ s ≤ t ≤ 1

. (2.1)

Furthermore, if 0 < a < b < 1 are fixed with [a, b] ⊂ [0, 1], then there
exists a constant γ∗ = γ∗(a, b) := mint∈[a,b]{t, 1 − t} ∈ (0, 1) such that
mint∈[a,b] G(t, s) ≥ γ∗ maxt∈[0,1] G(t, s) = γ∗G(s, s) for each s ∈ [0, 1].

Let us next define the function q : [0, 1] → [
0, 1

4

]
by q(t) := t(1−t). Observe

that q has previously appeared in [21, Lemma 2.4], and it plays a prominent
role in the proof of the existence theorem. Equipping C([0, 1]) with the max
norm, denoted ‖ · ‖, we shall work within the cone K ⊆ C([0, 1]) defined by
K := {y ∈ C([0, 1]) : ϕ1(y) ≥ 0 and y(t) ≥ q(t)‖y‖, for t ∈ [0, 1]}.

The general program for analyzing the semipositone problem (with local
boundary conditions) may be found essentially in Anuradha et al. [2] and is
very well known. In particular, we consider the auxiliary problem

− w′′(t) = u(t), t ∈ (0, 1) subject to w(0) = 0 = w(1), (2.2)
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where u : [0, 1] → [0,+∞) is a map satisfying u ∈ L1([0, 1]) and is nonzero on
a set of positive measure; the purpose of u will be seen in condition (H5) in
the sequel. Henceforth, we shall denote by w the unique solution of problem
(2.2), and we note that w may be realized in the form

w(t) =

1∫

0

G(t, s)u(s) ds, (2.3)

where G is as in (2.1) above. Additionally, defining the map y∗ : [0, 1] →
[0,+∞) by y∗(t) := max{0, y(t) − w(t)} and

H∗(t) := H (max{0, t}), (2.4)

we also require the modified problem

− y′′ = f (t, y∗(t)) + u(t), t ∈ (0, 1),
y(0) = H∗(ϕ(y − w)), y(1) = 0. (2.5)

To this end, it is standard to show that the completely continuous operator
T : C([0, 1]) → C([0, 1]) defined by

(Ty)(t) := (1 − t)H∗(ϕ(y − w)) +

1∫

0

G(t, s) [f (s, y∗(s)) + u(s)] ds (2.6)

has the property that if Ty = y, then y is a solution of the modified problem
(2.5); it is not difficult to show that T (K) ⊆ K. The utility of problem (2.5) is
due to the following standard lemma, whose proof we omit.

Lemma 2.1. Suppose both that y is a solution of the modified problem (2.5) and
w is the solution of the auxiliary problem (2.2). If it holds both that ϕ(y−w) ≥ 0
and that (y −w)(t) ≥ 0 for each t ∈ [0, 1], then Υ(t) := (y −w)(t) is a positive
solution of the original problem (1.1).

Proof. Omitted. �

The following simple lemma will be required in Section 3.

Lemma 2.2. For each (t, s) ∈ [0, 1] × [0, 1] it holds that G(t, s) ≤ q(t).

Proof. We simply observe that

G(t, s) =

{
t(1 − s), 0 ≤ t ≤ s ≤ 1
s(1 − t), 0 ≤ s ≤ t ≤ 1

≤
{

t(1 − t), 0 ≤ t ≤ s ≤ 1
t(1 − t), 0 ≤ s ≤ t ≤ 1

= q(t),

(2.7)

which completes the proof. �

We next list the hypotheses imposed on problem (1.1) and then provide
some notation to be utilized in Section 3. Some discussion of these hypotheses
will be provided at the conclusion of Section 3; in particular, we provide an
example to illustrate their applicability and use. The decomposition hypotheses
(H0)–(H1) originated in [5].



180 C. S. Goodrich Arch. Math.

H0: There are two linear functionals ϕ1, ϕ2 : C([0, 1]) → R such that ϕ(y) =
ϕ1(y)+ϕ2(y). Moreover, assume that there exists a constant C0 > 0 such
that ϕ2(y) ≥ C0‖y‖ holds for each y ∈ K. (Note that since ϕ is continuous,
there is another constant, say C1 ≥ 0, such that |ϕ(y)| ≤ C1‖y‖, for each
y ∈ C([0, 1]). Henceforth, C1 shall denote this constant.)

H1: The functionals ϕ(y), ϕ1(y), and ϕ2(y) are linear and are realized as

ϕ(y) :=
∫

[0,1]

y(t) dα(t), ϕi(y) :=
∫

[0,1]

y(t) dαi(t), i = 1, 2

where α, α1, α2 : [0, 1] → R satisfy α, α1, α2 ∈ BV ([0, 1]).
H2: There exist 0 ≤ ξ1 ≤ ξ2 ≤ 1 such that limy→+∞

f(t,y)
y = +∞ uniformly

for t ∈ [ξ1, ξ2].
H3: There is a number C2 ≥ 0 such that limz→+∞

|H(z)−C2z|
z = 0.

H4: It holds that ∫

[0,1]

(1 − t) dα1(t),
∫

[0,1]

G(t, s) dα1(t) ≥ 0,

where the latter inequality holds for each s ∈ [0, 1].
H5: There exists a function u : [0, 1] → [0,+∞) which is not identically

zero on any subinterval of [0, 1] and satisfies u ∈ L1([0, 1]), such that
f(t, y) ≥ −u(t) for each (t, y) ∈ [0, 1] × R.

H6: Assume both that
[∫ 1

0
1 − t dα(t)

]−1

−C2 > 0 and that
∫ 1

0
1−t dα(t) �= 0.

Then there exists a number ε > 0 satisfying 0 < ε <
[∫ 1

0
1 − t dα(t)

]−1

−
C2 and a number r2 �= 0 satisfying

r2 >

inf
{

z ∈ (0,+∞) :
|H(x) − C2x|

x
≤ ε, ∀x ∈ [z − ϕ(w),+∞) ∩ (0,+∞)

}

such that for each (t, y) ∈ [0, 1] ×
[
0, r2

C0

]
it holds that f(t, y) ≤ r2ϑ(t),

where ϑ : [0, 1] → [0,+∞) is continuous.

Remark 2.3. Henceforth, we shall utilize the following notation.

• For each r > 0, Ωr := {y ∈ C([0, 1]) : ‖y‖ < r}.
• For each r > 0, Vr :=

{
y ∈ K : mint∈[ξ1,ξ2] y(t) < r

}
.

Note that the idea of using sets of the form Vr rather than merely Ωr appears
to have been introduced first by Lan [20].

Remark 2.4. We remark that due to condition (H0), the requirement that
ϕ2(y) ≥ 0 need not be incorporated into the definition of K as it is superfluous.
Consequently, we did not include this condition when we earlier defined the
cone K. We also note that condition (H3) permits H to be linear; thus, our
result includes the possibility that y(0) = Mϕ(y) for some M > 0.
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Finally, we state the fixed point result that we utilize in the proof of The-
orem 3.1—see Infante et al. [16] or, for more general results on the Leray-
Schauder index, Zeidler [27].

Lemma 2.5. Let D be a bounded open set and, with K a cone in a Banach
space X, suppose both that D ∩ K �= ∅ and that D ∩ K �= K. Let D1 be open in
X with D1 ⊆ D ∩ K. Assume that T : D ∩ K → K is a compact map such that
Tx �= x for x ∈ K ∩ ∂D. If iK (T,D ∩ K) = 1 and iK (T,D1 ∩ K) = 0, then
T has a fixed point in (D ∩ K)\ (

D1 ∩ K)
. Moreover, the same result holds if

iK(T,D ∩ K) = 0 and iK (T,D1 ∩ K) = 1.

3. Proof of the existence theorem and discussion. We now state and prove
the main result of this paper. We then conclude with some brief comments on
both its applicability and use.

Theorem 3.1. Suppose that conditions (H0)–(H6) hold. In addition, assume
that each of the inequalities

(C2 + ε)

1∫

0

1 − t dα(t) +

1∫

0

1∫

0

G(t, s)
[

1
r2

u(s) + ϑ(s)
]

dα(t) ds < 1,

C1

1∫

0

u(s) ds < r2 (3.1)

is satisfied. Then problem (1.1) has at least one positive solution.

Proof. Begin by putting q0 := mint∈[ξ1,ξ2] q(t). Then q0 ∈ (0, 1). Let η > 0 be
a number selected sufficiently large such that

ηq0

ξ2∫

ξ1

G(s, s) ds >
1
q0

+

1∫

0

u(s) ds. (3.2)

Condition (H2) implies the existence of a number r1 > 0 such that f(t, y) > ηy,
for each t ∈ [ξ1, ξ2], whenever y ∈ [r1,+∞). Since we may assume without loss
that r1 ≥ 1, this together with the choice of η in (3.2) implies that

ηq0

ξ2∫

ξ1

G(s, s) ds >
1
q0

+

1∫

0

u(s) ds ≥ 1
q0

+
1
r1

1∫

0

u(s) ds. (3.3)

Now, for notional convenience in the sequel, put

r̂1 :=
r1

q0
+

1∫

0

u(s) ds,
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and let y ∈ ∂Vr̂1 be fixed but arbitrary. Observe that by Lemma 2.2, for each
t ∈ [ξ1, ξ2] we estimate

(y − w)(t) ≥ q(t)‖y‖ −
1∫

0

G(t, s)u(s) ds

≥ q(t)

⎡
⎣‖y‖ −

1∫

0

u(s) ds

⎤
⎦

≥ q(t)

⎡
⎣r1

q0
+

1∫

0

u(s) ds −
∫ 1

0

u(s) ds

⎤
⎦ ≥ r1. (3.4)

Inequality (3.4) implies that for any y ∈ ∂Vr̂1 we have

f (t, y∗(t)) = f(t, (y − w)(t)) ≥ η(y − w)(t) (3.5)

for t ∈ [ξ1, ξ2]. Moreover, since without loss we may assume that

r1

q0
+

1∫

0

u(s) ds >
r2

C0

by simply selecting r1 sufficiently large, which will not affect the previous
estimates, we henceforth assume that this is so. This inequality will be used
at the end of this proof.

We now conclude the first part of the proof by demonstrating that

iK (T, Vr̂1) = 0. (3.6)

To this end, assume for contradiction the existence of y ∈ ∂Vr̂1 such that
(Ty)(t) ≤ y(t) for each t ∈ [0, 1]; we shall show that this leads to an absurdity
when t ∈ [ξ1, ξ2]. Indeed, we estimate, for each t ∈ [ξ1, ξ2],

(Ty)(t) ≥
ξ2∫

ξ1

G(t, s) [f (s, y∗(s)) + u(s)] ds

≥ ηq0

ξ2∫

ξ1

G(s, s)(y − w)(s) ds

≥ r1ηq0

ξ2∫

ξ1

G(s, s) ds >
r1

q0
+

1∫

0

u(s) ds, (3.7)

where we have utilized estimates (3.3)–(3.5); note that in (3.7) we have used
the fact that G(t, s) ≥ γ∗ (ξ1, ξ2) G(s, s) ≥ q0G(s, s) for each (t, s) ∈ [ξ1, ξ2] ×
[ξ1, ξ2]. But then since y ≥ Ty, by the contradiction hypothesis, we obtain
from (3.7) that
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y(t) ≥ (Ty)(t) >
r1

q0
+

1∫

0

u(s) ds = r̂1, (3.8)

which contradicts the assumption that y ∈ ∂Vr̂1 . Consequently, it follows that
Ty > y, and so, (3.6) holds, as claimed—see the proof of [27, Theorem 13.D]
for a precise justification of this index calculation.

On the other hand, we next show that

iK
(
T,Ω r2

C0

)
= 1. (3.9)

So, suppose for contradiction that μy = Ty for some y ∈ K ∩ ∂Ω r2
C0

with
μ ≥ 1. Now, it can be shown that the second inequality in (3.1) together with
the fact that w ∈ K jointly imply that r2 − ϕ(w) ≥ 0. This combined with the
observation that ‖y‖ = r2

C0
implies the estimate

ϕ(y − w) ≥ C0‖y‖ − ϕ(w) = r2 − ϕ(w) ≥ 0,

which by condition (H6) implies that H∗(ϕ(y−w)) = H(ϕ(y−w)) ≤ (ε + C2)
ϕ(y − w). In addition, since y(s) ∈

[
0, r2

C0

]
for each s ∈ [0, 1], condition (H6)

implies that f (s, y∗(s)) ≤ r2ϑ(s) for each s ∈ [0, 1]. Putting this together and
using the fact that 0 ≤ ϕ(y − w) ≤ ϕ(y), we compute

μϕ(y) = H∗(ϕ(y − w))
∫ 1

0

1 − t dα(t)

+

1∫

0

1∫

0

G(t, s) [f (s, y∗(s)) + u(s)] dα(t) ds

≤ [C2ϕ(y) + εϕ(y)]

1∫

0

1 − t dα(t)

+

1∫

0

1∫

0

G(t, s) [r2ϑ(s) + u(s)] dα(t) ds. (3.10)

Since ϕ(y) ≥ C0‖y‖ > 0, we may divide both sides of (3.10) by ϕ(y) and thus
obtain

μ ≤ (C2 + ε)

1∫

0

1 − t dα(t) +
1

ϕ(y)

1∫

0

1∫

0

G(t, s) [r2ϑ(s) + u(s)] dα(t) ds

≤ (C2 + ε)

1∫

0

1 − t dα(t) +
1

C0‖y‖

1∫

0

1∫

0

G(t, s) [r2ϑ(s) + u(s)] dα(t) ds

= (C2 + ε)

1∫

0

1 − t dα(t)+
1
r2

1∫

0

1∫

0

G(t, s) [r2ϑ(s)+ u(s)] dα(t) ds, (3.11)
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using the fact that ‖y‖ = r2
C0

. But then combining (3.11) with assumption
(3.1) implies that

μ ≤ (C2 + ε)

1∫

0

1 − t dα(t) +
1
r2

1∫

0

1∫

0

G(t, s) [r2ϑ(s) + u(s)] dα(t) ds < 1,

(3.12)

which contradicts the fact that μ ≥ 1. Thus, (3.9) holds.
Now, recall that

r̂1 =
r1

q0
+

1∫

0

u(s) ds >
r2

C0

so that

K ∩
(
Vr̂1\Ω r2

C0

)
�= ∅, (3.13)

where we have used the simple fact that Ωρ ⊆ Vρ for each ρ > 0. Consequently,
combining (3.6) and (3.9), we obtain from an application of Lemma 2.5 that
there exists y0 ∈ Vr̂1\Ω r2

C0
such that Ty0 = y0.

It remains only to show that the function Υ : [0, 1] → R defined by
Υ(t) := (y0 − w) (t) is nonnegative for each t ∈ [0, 1]. Since y0 ∈ K\Ω r2

C0
, using

the fact that C1 > C0, we may estimate for each t ∈ [0, 1]

(y0 − w) (t) ≥ q(t)

⎡
⎣‖y0‖ −

1∫

0

u(s) ds

⎤
⎦

≥ q(t)

⎡
⎣ r2

C0
−

1∫

0

u(s) ds

⎤
⎦

≥ q(t)
(

C1

C0
− 1

)

︸ ︷︷ ︸
≥0

1∫

0

u(s) ds ≥ 0, (3.14)

where the second-to-last inequality is a consequence of assumption (3.1). Con-
sequently, due to (3.14) and recalling that ϕ(y − w) ≥ 0 for y ∈ K\Ω r2

C0
, an

application of Lemma 2.1 implies that Υ is a positive solution of (1.1). And
this completes the proof. �

Example. Suppose that ϕ(y) := 1
2y

(
1
3

) − 1
5y

(
1
2

)
. Then we may use the de-

composition

ϕ(y) =
1
3
y

(
1
3

)
− 1

5
y

(
1
2

)

︸ ︷︷ ︸
:=ϕ1(y)

+
1
6
y

(
1
3

)

︸ ︷︷ ︸
:=ϕ2(y)

. (3.15)
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It is easy to compute that (3.15) implies that C0 := 1
27 and C1 := 7

10 . If,
for definiteness, we put H(z) := z

1
3 , then C2 = 0 and a simple calculation

shows that r2 may be taken to be
(

7
29

) 3
2 . It may be checked, furthermore, that

conditions (H1) and (H4) hold.
Now, assume for the sake of simplicity that ϑ(t) ≡ ϑ0 and u(t) ≡ u0. Then

provided condition (3.1) holds, which in this case is

29
30

+
119
3240

[(
7
29

)− 3
2

u0 + ϑ0

]
< 1

u0 <
10
7

(
7
29

) 3
2

, (3.16)

problem (1.1) would have at least one positive solution provided that (t, y) �→
f(t, y) satisfies both the superlinear growth condition (H2) as well as f(t, y) <(

7
29

) 3
2 ϑ0, for each (t, y) ∈ [0, 1]×

[
0, 27

(
7
29

) 3
2
)
. Finally, it is worth noting that

the inequalities presented in (3.16) are easily attained. Indeed, this system of
inequalities can be satisfied for infinitely many choices of ϑ0, u0 > 0.

Remark 3.2. It is also worth observing that, regarding the first of the two
inequalities presented in (3.1), it holds that

(C2 + ε)

1∫

0

1 − t dα(t) < C2

1∫

0

1 − t dα(t) + 1 − C2

∫ 1

0

1 − t dα(t)
︸ ︷︷ ︸

>ε
1∫
0

1−t dα(t)

= 1,

(3.17)

by means of condition (H6). We conclude from (3.17) that the first addend
in the first inequality presented in (3.1) cannot alone violate the inequality.
Consequently, in some loose sense, as long as the maps s �→ 1

r2
u(s) and s �→

ϑ(s) can be kept sufficiently small, then the first inequality of (3.1) can always
be satisfied.
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