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On Fréchet–Hilbert algebras

M. Măntoiu and R. Purice

Abstract. We consider Hilbert algebras with a supplementary Fréchet
topology and get various extensions of the algebraic structure by using
duality techniques. In particular we obtain optimal multiplier-type invo-
lutive algebras which in applications are large enough to be of significant
practical use. The setting covers many situations arising from quantiza-
tion rules, as those involving square-integrable families of bounded oper-
ators
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Introduction. Hilbert algebras [6] (see also Definition 1.1) play an impor-
tant role in the theory of von Neumann algebras, group representations, and
Tomita–Takesaki theory. Each Hilbert algebra defines canonically two semi-
finite von Neumann algebras, each one being the commutant of the other.
Reciprocally, a von Neumann algebra endowed with a faithful normal semi-
finite trace defines a Hilbert algebra. In physics they often arise in the context
of quantization theory, being non-commutative deformations of some classical
commutative structure. Having such physical applications in view, we deal with
the problem of restricting and (especially) extending the algebraical informa-
tion contained in a Hilbert algebra to different spaces. Our aim is to perform
this in a model-independent way, with a minimal extra structure involved.
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In many concrete situations, besides the Hilbert norm, there is a second
stronger Fréchet topology compatible with the involutive algebra structure.
We codify the entire structure in the first section of the paper under the name
Fréchet–Hilbert algebra. In the second section, we show that in such a setting
the algebraic structure extends considerably by duality techniques. In particu-
lar, one gets naturally an optimal multiplier-type algebra that we call the Moyal
algebra. Such an object has been studied in connection with the Weyl pseu-
dodifferential calculus [1,8,9], starting with the natural algebraico-topological
structure of the Schwartz space S(Rn). An adaptation for the Gelfand–Shilov
spaces is contained in [22]. Moyal algebras for the magnetic pseudodifferential
theory [12] were introduced and used in [14].

As said before, the abstractization we propose here works under somewhat
minimal assumptions and does not need the setting of spaces of functions or
distributions. It also opens the way to some developments and applications
that will be the subject of a forthcoming article which will also contain com-
plements on the relevant topologies on the Moyal algebras, a representation
theory by operators in locally convex spaces and applications to the matrix-
valued pseudodifferential theory on compact Lie groups initiated in [17–19].

In [5] a very general form of a symbolic calculus has been introduced and
studied. It is defined by a family of bounded Hilbert space operators indexed
by a space Σ and having a property of square-integrability with respect to a
measure μ on Σ. The main novelty is that no topology or group properties are
involved in the development of this calculus. Besides the usual pseudodifferen-
tial theory on R

n [7–9], many topics are particular cases of this approach, as
is shown in [5]. This includes twisted convolution algebras associated to pro-
jective group representations, the magnetic pseudodifferential calculus [12–15],
Weyl operators on nilpotent groups [2–4,16], pseudodifferential operators on
Abelian locally compact groups [10,11,21,24] and others. In a final section,
we are going to review briefly the constructions of [5], putting them in the
perspective of Fréchet–Hilbert algebras. In this way the formalism of Moyal
algebras will become available to the examples covered in [5], which is a novelty
for some of them.

1. Fréchet–Hilbert algebras.

Definition 1.1. A Hilbert algebra is a ∗-algebra (A ,#,# ) endowed with a
scalar product 〈·, ·〉 : A × A → C such that

1. one has 〈g#, f#〉 = 〈f, g〉, ∀ f, g ∈ A ,
2. one has 〈f#g, h〉 = 〈g, f##h〉, ∀ f, g, h ∈ A ,
3. for all f ∈ A , the map Lf : A → A , Lf (g) := f#g is continuous,
4. A #A is total in A .

A complete Hilbert algebra is called an H∗-algebra.

Clearly one also has

〈f#g, h〉 = 〈f, h#g#〉, ∀ f, g, h ∈ A
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and the map Rf : A → A , Rf (g) := g#f is also continuous; therefore A ×
A

#→ A is separately continuous.
The completion B of A is a Hilbert space, but in general it is no longer an

algebra. But the mappings Lf and Rf do extend to elements of B(B), defining
nondegenerate commuting representations L,R : A → B(B). We can regard L
and R as giving separately continuous bilinear extensions

A × B
#−→ B and B × A

#−→ B.

By taking weak closures in B(B), one gets von Neumann algebras L(A )
and R(A ) which are the commutant of each other.

An element f of B is called bounded if the mapping A � g → f#g ∈
B is continuous (or, equivalently, if the mapping A � g → g#f ∈ B is
continuous). We denote by A � ⊂ B the space of all bounded elements; it
becomes naturally a Hilbert algebra containing A densely. One defines [6] on
L(A ) (resp. R(A )) a normal faithful semifinite trace τL (resp. τR) for whom
the finite-trace operators correspond to the elements of LA � (resp. RA �).

Definition 1.2. A Fréchet ∗-algebra is a ∗-algebra (A ,#,# ) with a Fréchet
locally convex space topology T such that the involution

A � f → f# ∈ A

is continuous and the product

A × A � (f, g) → f#g ∈ A

is separately continuous.

Remark 1.3. By Theorem 41.2 in [23], separate continuity of the map # implies
hypocontinuity. This means that for any bounded subset A of A , the families
of linear maps

{A � g 	→ f#g ∈ A | f ∈ A} and {A � g 	→ g#f ∈ A | f ∈ A}
are equicontinuous.

On the dual A † one can consider various topologies Tν which are stronger
than the weak∗-topology Tσ but weaker than the strong topology Tβ . Such a
topology Tν will be called admissible if it has as a basis of neighborhoods of
the origin the polars of a family Bν of bounded subsets of A satisfying the
following:
1. if A,B ∈ Bν , there exists C ∈ Bν such that A ∪ B ⊂ C,
2. if A ∈ Bν and α ∈ C, then αA ⊂ B for some B ∈ Bν ,
3. if A ∈ Bν and f ∈ A , then f#A ∈ Bν and A#f ∈ Bν .

Let us write A †
ν for the dual A † when considered with the topology Tν .

A net {Fλ}λ∈Λ converges to 0 in A †
ν if and only if Fλ(g) converges to 0

uniformly in g ∈ A for every A ∈ Bν . Both the weak∗-topology Tσ and the
strong topology Tβ are admissible topologies; for this one takes Bσ the family of
all finite subsets of A and Bβ the family of all bounded subsets of A . Another
interesting example is the family Bγ of all compact subsets of A , leading to the
topology Tγ of convergence which is uniform on compact sets. By [23, Theorem
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33.1], the bounded subsets of A †
ν are the same for all admissible topologies Tν

(and are exactly the equicontinuous subsets).

Remark 1.4. Weak duals of infinite-dimensional Fréchet spaces are definitely
not complete. But it is known that they are quasi-complete. On the other
hand, the strong dual A †

β (the dual A † endowed with the strong topology Tβ

described above) of any Fréchet space is complete.

We introduce now our main mathematical object.

Definition 1.5. A Fréchet–Hilbert algebra (A ,#,# ,T , 〈·, ·〉) is both a Fréchet
∗-algebra and a Hilbert algebra, the topology T being assumed finer that the
norm topology associated to the scalar product.

As before, we denote by B the Hilbert space completion of A ; by the
Riesz Lemma it is identified with its strong dual B†. We also denote by ι the
canonical inclusion of (A ,T ) into (B, ‖ · ‖); it is continuous and has dense
range. For each admissible topology Tν on the dual, using Riesz’ identification,
one gets a continuous linear injection ι† : (B, ‖ · ‖) → (A †, Tν); thus any
Fréchet–Hilbert algebra A generates a Gelfand triple (A ,B,A †

ν ). Actually we
are going to treat (A ,B,A †) as the Gelfand triple and specify the topology Tν

when needed. The duality between A and A † will be denoted by 〈·, ·〉 because
it is consistent with the scalar product of B.

Remark 1.6. Note that B (and hence A ) is dense in A †
σ [23, Prop. 35.4].

2. Extensions of the product and Moyal algebras. Let us fix a Fréchet–Hilbert
algebra (A ,#,# ,T , 〈·, ·〉) and an admissible topology Tν on the topological
dual A †, given by a family Bν of bounded subsets of A as above.

Proposition 2.1. 1. The composition law # extends to bilinear separately
continuous mappings # : A × A †

ν → A †
ν and # : A †

ν × A → A †
ν .

2. For any f ∈ A † and g, h ∈ A , one has

f#(g#h) = (f#g)#h,

h#(g#f) = (h#g)#f,

(g#f)#h = g#(f#h).

3. The involution # extends to a topological anti-linear isomorphism # :
A †

ν → A †
ν which is an involution, such that for every f ∈ A † and g ∈ A ,

one has

(f#g)# = g##f#, (g#f)# = f##g#.

Proof. 1. We are going to justify only the second extension; the first one follows
in the same way. For f ∈ A † and g, h ∈ A , one sets

〈f#g, h〉 := 〈f, h#g#〉.
Clearly this defines an element f#g of the topological dual of A which coin-
cides with the one given by the Hilbert algebra structure of A if f ∈ A .

We still have to show separate continuity.
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First fix g ∈ A and pick a net {fλ}λ∈Λ converging to 0 in A †
ν . This means

that for every B ∈ Bν one has 〈fλ, k〉 → 0 uniformly in k ∈ B. For any A ∈ Bν ,
since B := A#g# ∈ Bν , one has

〈fλ#g, h〉 = 〈fλ, h#g#〉 → 0 uniformly in h ∈ A,

thus fλ#g → 0 in A †
ν .

Now fix f ∈ A † and assume that gλ → 0 in A . For any A ∈ Bν it follows
from Remark 1.3 that h#g#

λ → 0 uniformly in h ∈ A. Then

〈f#gλ, h〉 = 〈f, h#g#
λ 〉 → 0 uniformly in h ∈ A,

thus f#gλ → 0 in A †
ν and we are done.

2. Recall that A is dense in A †
σ . Then the associativity properties follow

easily by approximation from the associativity of the composition law # in A
and from the continuity property we have just proved, with ν = σ.

3. The extension of # is defined by transposition: if f ∈ A †
ν one sets

〈f#, h〉 := 〈f, h#〉, ∀h ∈ A .

It follows immediately that it is an involution. It is a topological isomorphism
for any ν because the family Bν is stable under the involution of A . For f ∈ A †

and g, h ∈ A , we compute using the definition of the involution and the axioms
of a Hilbert algebra

〈(f#g)#, h〉 = 〈f#g, h#〉 = 〈f, h##g#〉 = 〈(h##g#)#, f#〉
= 〈g#h, f#〉 = 〈f#, g#h〉 = 〈g##f#, h〉,

so the first equality is proven. The second follows similarly. �

Definition 2.2. Let A be a Fréchet–Hilbert algebra with topological dual A †.
One introduces
1. the right Moyal algebra MR :=

{
f ∈ A † | A #f ⊂ A

}
,

2. the left Moyal algebra ML :=
{
f ∈ A † | f#A ⊂ A

}
,

3. the (bi-sided) Moyal algebra

M := MR ∩ ML =
{
f ∈ A † | f#A ⊂ A ⊃ A #f

}
.

Thus we have bilinear maps

A × MR
#−→ A , ML × A

#−→ A .

If f ∈ A , g ∈ ML, and h ∈ MR, by using Proposition 2.1 and the definitions
we check immediately that the identity (g#f)#h = g#(f#h) holds in A . One
also shows easily that M #

R = ML and M #
L = MR, implying that M # = M .

Proposition 2.3. One gets bilinear extensions

MR × A † #−→ A †, A † × ML
#−→ A †.

If f ∈ A †, g ∈ MR, and h ∈ ML, we have

(g#f)#h = g#(f#h).
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Proof. We treat the first one. For f ∈ MR and g ∈ A † define f#g ∈ A † by

〈f#g, h〉 := 〈g, f##h〉, ∀h ∈ A .

The right-hand side is clearly linear in h, but we also need to justify continu-
ity. By a simple application of the Closed Graph Theorem, if k ∈ ML then
A � h 	→ k#h ∈ A is continuous. Taking k = f# and recalling that g is a
continuous functional, we conclude that f#g ∈ A † indeed.

Associativity follows if we apply the definitions and the associativity prop-
erties already obtained. �

We gather the basic properties of ML,MR, and M in the following state-
ment.

Proposition 2.4. 1. Both ML and MR are algebras.
2. The involution # on A † restricts to reciprocal anti-linear isomorphisms

# : ML → MR and # : MR → ML satisfying

(f#g)# = g##f#, ∀f, g ∈ ML (or ∀f, g ∈ MR).

3. M is an involutive algebra.
4. One has A #MR ⊂ A and ML#A ⊂ A , thus A , a self-adjoint bi-sided

ideal in the ∗-algebra M .

Proof. 1. We treat ML. Let f, g ∈ ML and h ∈ A ; by Proposition 2.3 we need
to show that (f#g)#h ∈ A . This follows from the definition of ML if the
equality (f#g)#h = f#(g#h) is established. We are going to get it working
weakly on any k ∈ A :

〈(f#g)#h, k〉 = 〈f#g, k#h#〉 = 〈f, (k#h#)#g#〉
= 〈f, k#(h##g#)〉 = 〈f, k#(g#h)#〉
= 〈f#(g#h), k〉.

During the computation we used an associativity relation that is already
known.

There is still some associativity to prove, but we leave it to the reader.
2. This has been mentioned above and is easy.
3 follows from 1 and 2, since M is the intersection of ML and MR.
4 is obvious. �

Remark 2.5. By inspection it can be shown that the locally convex space
(A ,T ) only needs to be barrelled and Br-convex [20], the main issue being
the validity of the Closed Graph Theorem. This extra generality, needed to
cover Gelfand–Shilov spaces in connection with the Weyl calculus [22], will
not be considered here.

Remark 2.6. In [8,14,22], studying the particular case of the (magnetic) Weyl
composition on Schwartz or Gelfand–Shilov spaces, it is shown that the Moyal
algebras are much larger than the initial A . In the Weyl quantization, many
symbols from the Moyal algebra are turned into unbounded operators on L2.
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Remark 2.7. However, the Hilbert space B and the Moyal algebras are not
comparable in general. For the Weyl pseudodifferential calculus with A =
S(R2n), one has B = L2(R2n) and A † is the space of tempered distributions.
In the Schrödinger representation, the Weyl correspondence maps isomorphi-
cally B to the ideal of Hilbert–Schmidt operators in L2(Rn), while ML corre-
sponds to linear continuous operators in S(Rn) and MR corresponds to linear
continuous operators in S ′(Rn). Then clearly no inclusion is available (think
of rank-one operators |u〉〈v| with various types of vectors u, v).

Example. Many examples of Fréchet–Hilbert algebras are constructed from the
Gelfand triple

(
A = S(Rm), B = L2(Rm), A † = S ′(Rm)

)
, where S(Rm) is

the Schwartz space endowed both with the L2 scalar product and with its stan-
dard Fréchet topology and S ′(Rm) is the space of all tempered distributions on
R

m. The simplest non-trivial situation is f#g = fg (pointwise product) and
f# = f (complex conjugation). In this case one has A � = L2(Rm)∩L∞(Rm),
L(A ) = R(A ) ∼= L∞(Rm), and ML = MR = M = C∞

pol(R
m) (C∞ functions

with polynomially bounded derivatives). One sees from this example that al-
though M can be quite big (containing all the Hörmander classes of symbols
[7]), it does not contain the Hilbert space B or at least A �. It is also clear
that A #A † is not contained in any of the Moyal algebras.

3. Fréchet–Hilbert algebras associated to square-integrable families of
bounded operators. We are given a measure space (Σ, μ) (as a locally com-
pact topological space endowed with a Radon measure, for instance). Let
{π(s) | s ∈ Σ} ⊂ B(H) be a family of bounded operators in the separable
complex Hilbert space H. We assume that s → π(s) is weakly measurable and
satisfies the condition

∫

Σ

dμ(s) |〈π(s)u, v〉H|2 = ‖u‖2 ‖v‖2, ∀u, v ∈ H.

The space Σ is not a group, and we don’t know anything on the products
π(s)π(t). We are going to describe some constructions from [5], to which we
refer to for proofs, technical details, and further information.

Let us set Φu⊗v(·) := 〈π(·)u, v〉; this defines an isomorphism from H⊗H to a
closed subspace B2(Σ) of L2(Σ) (we set H for the opposite of the Hilbert space
H and ⊗ for the Hilbert space tensor product). In many (but not all) particular
cases one has B2(Σ) = L2(Σ). Then a correspondence Π : B2(Σ) → B(H) is
defined essentially by

Π(f) :=
∫

Σ

dμ(s)f(s)π(s)∗.

This correspondence sends isomorphically B2(Σ) to B2(H) (the ideal of all
Hilbert–Schmidt operators on H). Actually one has

〈Π(f),Π(g)〉B2(H) := Tr[Π(f)Π(g)∗] =
∫

Σ

dμ(s)f(s)g(s) =: 〈f, g〉L2(Σ).

The mapping Π is uniquely defined by the relation Π(Φu⊗v) = 〈·, v〉u, specify-
ing the way we obtain the rank one operators. Being a closed subspace of L2(Σ),
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the set of “symbols” B2(Σ) is a Hilbert space. We complete this structure to
a H∗-algebra (Definition 1.1)

(
B2(Σ),#,# , 〈·, ·〉L2(Σ)

)
by transporting the ∗-

algebra structure of B(H). So the product is defined by f#g := Π−1[Π(f)Π(g)]
and the involution by f# := Π−1[Π(f)∗]. More explicit expressions are deduced
in [5], but they are not needed here.

Suppose now given a Fréchet space G continuously and densely embedded
in the Hilbert space H. This is very common in applications, where H might
be a L2-space, G could be a space of more regular functions, with a natural
Fréchet topology, and the topological dual G† is some space of distributions.
No compatibility between G and the basic family {π(s) | s ∈ Σ} is needed.
Let us denote by G⊗̂G the completed projective tensor product and define
G (Σ) := Φ(G⊗̂G) with the topology transported by Φ from G⊗̂G. It is shown
in [5] that G (Σ) is a Fréchet–Hilbert algebra; thus we can take A = G (Σ) and
B = B2(Σ) in the preceding sections.

Remark 3.1. Actually the Fréchet–Hilbert algebra described above admits a
representation in the Gelfand triple (G,H,G†). By definition, such a represen-
tation is an isomorphism Π : A † → B(G,G†) which restricts to an isomorphism
Π : A → B(G†,G) and satisfies Π(f#g) = Π(f)Π(g) and Π(f)∗ = Π(f#) for
all f, g ∈ A . In such a setting, one shows easily that A #A †#A ⊂ A , which
implies immediately that A #A † ⊂ ML and A †#A ⊂ MR. As noticed in
Example 2, this does not hold for all Fréchet–Hilbert algebras.

Concrete examples are given in [5], along the lines described in the intro-
duction; it can be seen that, although G (Σ) is defined indirectly, in applica-
tions it coincides with some known useful Fréchet space. However, its ∗-algebra
structure can be highly non-trivial. Our approach makes available the Moyal
algebra formalism for all these situations.
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