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Abstract. By a classical result of Jordan, each finite subgroup of a com-
plex linear group GLn(C) has an abelian normal subgroup whose in-
dex is bounded by a constant depending only on n. It has been asked
whether this remains true for finite subgroups of the diffeomorphism
group Diff(M) of every compact manifold M ; in the present paper, using
the geometrization of 3-manifolds, we prove it for compact 3-manifolds M .
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1. Introduction. By a classical result of Jordan, each finite subgroup G of a
complex linear group GLn(C) has an abelian normal subgroup whose index in
G is bounded by a constant depending only on n (by [2] the optimal bound
is (n + 1)!, for n ≥ 71, realized by the symmetric group Sn+1 occurring as a
subgroup of GLn(C); this uses the classification of the finite simple groups).
Recently there has been much interest in generalizations, replacing GLn(C) by
more general geometrically interesting groups such as diffeomorphism groups
of smooth manifolds and automorphism groups of algebraic varieties ([12–17],
[20, Theoreme 3.1], [5], [22, Section 5]).

Following [16,17] we say that a group is a Jordan group or has the Jor-
dan property if there exists a constant such that every finite subgroup has an
abelian normal subgroup whose index is bounded by this constant (note that
it is sufficient to find an abelian, not necessarily normal subgroup of bounded
index). Denoting by Diff(M) the diffeomorphism group of a smooth manifold
M , the present paper is motivated by the following question:

For which (classes of) smooth manifolds M is Diff(M) a Jordan group?
And for what types of bounds?
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Whereas this is in general not the case for noncompact manifolds, it is
likely to be true and has been conjectured for compact manifolds (see [12,14],
and [5,22] for the case of spheres). For example, there is the classical Hurwitz-
bound 186(g − 1) for closed surfaces of genus g > 1, the bound 24(g − 1) for
3-dimensional handlebodies of genus g > 1 ([26], [7, Theorem 7.2]), a quadratic
polynomial bound for the closed 3-manifolds which are a connected sum of
g > 1 copies of S2 × S1 (which admit S1-actions; see [23]), and polynomial
bounds of higher degrees for higher-dimensional handlebodies ([27]). It has
recently been shown by Mundet i Riera ([14]) that Diff(Sn−1) and Diff(Rn)
are Jordan groups; it remains open here whether the bound (n + 1)! for the
case of finite subgroups of O(n) ⊂ GLn(C) is still valid.

In the present paper we consider the case of compact 3-manifolds; using
the geometrization of compact 3-manifolds after Thurston and Perelman (see
[1,11]), we prove the following.

Theorem 1. For a compact 3-manifold M , Diff(M) is a Jordan group.

For compact 2-manifolds this is basically a consequence of the classical for-
mula of Riemann-Hurwitz (see [15]). It is not true for noncompact 2-manifolds,
in general: map the fundamental group of some compact surface onto a free
group of rank two and then onto a 2-generator group H which contains an
isomorphic copy of every finite group; the regular covering corresponding to
this projection is a surface (whose fundamental group is not finitely generated)
on which H acts as group of covering transformations, and clearly H does not
have the Jordan property (an example of such a group H is the group of per-
mutations of the integers Z generated by the translation i → i + 1 and the
transposition (1, 2) which contains a copy of every symmetric group Sn and
hence of every finite group).

Concerning dimension four, it is shown in [17] that there are noncompact
simply-connected smooth 4-manifolds M such that Diff(M) is not a Jordan
group. On the other hand, Diff(M) is a Jordan group for compact 4-manifolds
M with non-zero Euler characteristic ([13]); by [14] the same holds in fact for
such manifolds in arbitrary dimensions, using the classification of the finite
simple groups.

We note that in a preliminary arXiv-version of the present paper ([24]), we
proved that Diff(Rn) is a Jordan group for n ≤ 6; shortly after, this was proved
in [14] for general n for both Sn and R

n, again on the basis of the classification
of the finite simple groups. The proof for the case of Sn in [14] uses also a result
in [5] which implies, by the classification, that for each n there are only finitely
many finite simple groups which admit an action on a sphere Sn (note that
a Jordan group contains only finitely many finite nonabelian simple groups,
up to isomorphism). It would be interesting to avoid the classification in these
results but it seems likely that it is intrinsically needed.

Stronger results are valid for the sphere S4 and Euclidean space R
4 which

we collect in the following:

Theorem 2. (i) ([8,9]) Let G be a finite group of orientation-preserving dif-
feomorphisms of S4, or of any homology 4-sphere. Then G, or a subgroup
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of index two if G is solvable, is isomorphic to a subgroup of the orthogonal
group SO(5).

(ii) ([4]) Every finite group of diffeomorphisms of R
4, or of any acyclic 4-

manifold M , is isomorphic to a subgroup of the orthogonal group O(4).

For the cases of S3 and R
3 this follows from the geometrization of finite

group actions in dimension three (see [3]). For arbitrary dimensions this raises
the following:

Problem. Is every finite group of (orientation-preserving) diffeomorphisms of
a sphere Sn−1 or a Euclidean space R

n isomorphic to a subgroup of the or-
thogonal group O(n) (SO(n))?

If this is the case, the classical Jordan bound applies for finite groups of
diffeomorphisms of Sn−1 and R

n, see [2]. We note that this is not true for
finite groups of homeomorphisms of Sn and R

n, in general, see [4, Section 7].
Finally, it would be interesting to give a proof of Theorem 1 which avoids

the geometrization of closed 3-manifolds (or prove more generally that Diff(M)
is a Jordan group for closed manifolds M with Euler characteristic zero).

2. Proof of Theorem 1. It is easy to see that, if M̃ is a finite covering of M such
that Diff(M̃) is a Jordan group, then also Diff(M) is a Jordan group. So it is
sufficient to consider the case of orientable manifolds, and also of orientation-
preserving actions of a finite group G (passing eventually to a subgroup of
index two of G). Also, it is sufficient to consider the case of closed manifolds
since, for a compact manifold M with non-empty boundary, one can reduce
to the closed case by taking the double of M along the boundary and also the
double of a finite group action on M .

So let M be a closed orientable 3-manifold and G a finite group of orien-
tation-preserving diffeomorphisms of M . We consider several cases.

2.1. If π1(M) is finite then, by the geometrization of 3-manifolds after Perel-
man ([1,11]), M is a spherical 3-manifold and finitely covered by S3; also, any
finite group of diffeomorphisms of M is conjugate to a linear (orthogonal) ac-
tion ([3]). By the classical Jordan bound for linear groups, Diff(S3) is a Jordan
group, and hence also Diff(M) is a Jordan group.

2.2. Assume next that M is irreducible and has infinite fundamental group;
again by the geometrization of 3-manifolds, we can assume that M is a geomet-
ric (admits a decomposition along tori into geometric pieces). Then, if M does
not admit a circle action, by [6, Theorem 4.1] there is a bound on the order of
finite subgroups of Diff(M) so we are done (by Mostow’s rigidity theorem in
the presence of hyperbolic pieces; if all pieces of the torus-decomposition are
Seifert fibered, one uses that finite group actions on Seifert fiber spaces are
fiber-preserving but that the Seifert fibrations of the pieces of the decomposi-
tion don’t match up along the boundary tori). For Haken 3-manifolds M this
follows also from the stronger results [25, 4.1 and 4.2] stating that, if M is not
Seifert fibered, there are only finitely many finite group actions on M up to
conjugation.
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2.3. Suppose that M is irreducible, has infinite fundamental group and a
circle action. Then M is a Seifert fiber space, and by the geometrization of
finite group actions on Seifert fiber spaces ([10, Theorems 2.1 and 2.2]), we
can assume that the action of the finite group G of diffeomorphisms of M is
geometric, in particular fiber-preserving and normalizing the S1-action of M .
Considering a suitable finite covering of M , we can moreover assume that M
has no exceptional fibers, and hence that the base space of the Seifert fibration
(the quotient of the S1-action) is a closed orientable surface B without cone
points. The finite group G projects to a finite group Ḡ of diffeomorphisms of
the base-surface B, and we can again assume that Ḡ is orientation-preserving.

If B is a hyperbolic surface (that is, of genus g ≥ 2) then, by the formula
of Riemann-Hurwitz, the order of the finite group Ḡ of diffeomorphisms of B
is bounded, and hence G has a finite cyclic subgroup of bounded index (the
intersection of G with the S1-action).

If B is a torus T 2, then there are two cases. First, M may be a 3-dimensional
torus T 3; this acts by rotations on itself. Since the action of G is geometric,
the subgroup G0 of G acting trivially on the fundamental group is a subgroup
of the T 3-action and hence abelian of rank at most three (see [19] for the
geometries of 3-manifolds and their isometry groups). The factor group G/G0

acts faithfully on the fundamental group Z
3 of the 3-torus and is isomorphic

to a subgroup of GL3(Z). Since, by a well-known result of Minkowski, there
is a bound on the finite subgroups of GLn(Z) for each n, the group G has an
abelian subgroup G0 of bounded index.

If M fibers over T 2 but is not a 3-torus, then it belongs to the nilpotent
geometry Nil given by the Heisenberg group (see again [19]). Now the subgroup
G0 of G acting trivially on the fundamental group (up to inner automorphisms)
is a cyclic subgroup of the S1 action on M , and G/G0 injects into the outer
automorphism group Out(π1M) of the fundamental group. The fundamental
group of M has a presentation

π1M = 〈a, b, t | [a, b] = tk, [a, t] = [b, t] = 1〉,
with k �= 0. Now an easy calculation shows that the subgroup of the outer
automorphism group of π1M inducing the identity of the factor group
π1M/ < t > ∼= Z

2 is finite. Since the orders of finite subgroups of GL2(Z) are
also bounded, G has a finite cyclic subgroup G0 of bounded index.

Finally, if the base-surface is the 2-sphere then either M has finite funda-
mental group and is a spherical manifold, or homeomorphic to S2 × S1 (and
hence non-irreducible). We note that S2×S1 belongs to the (S2×R)-geometry,
one of Thurston’s eight 3-dimensional geometries; this is the easiest of the eight
geometries and can be easily handled directly, see [19] for the isometry group
of this geometry.

Summarizing, we have shown for any closed irreducible 3-manifold M (and
also for S2 × S1) that Diff(M) is a Jordan group.

2.4. Suppose that M is non-irreducible but not S2×S1. If M has a summand
other than lens spaces and S2 × S1 then, by [6, Theorem 4.2], the orders of
finite diffeomorphism groups of M are bounded and we are done.
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Suppose next that M is a connected sum �g(S2 ×S1) of g copies of S2 ×S1,
with g > 1. Such manifolds M admit circle actions with global fixed points (cf.
[18]); by [23], G has a finite cyclic normal subgroup C (the subgroup acting
trivially on the fundamental group) such that the order of the factor group
G/C is bounded by a quadratic polynomial in g, so we are done also in this
case. Alternatively, the factor group G/C is isomorphic to a subgroup of the
outer automorphism group Out(Fg) of a free group Fg of rank g, and by [21]
the maximal order of a finite subgroup of Out(Fg) is (exponential) 2gg!, for
g > 2 (and 12 for g=2).

Finally, if M is a connected sum of lens spaces including S2 × S1, then M
admits again circle actions with global fixed points and has a finite covering
by a 3-manifold of type M̃ = �g(S2 × S1) as considered before. Now Diff(M̃)
is a Jordan group and hence also Diff(M).

We have considered all possibilities for M . This completes the proof of
Theorem 1.
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