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Twisted submersions in nonnegative sectional curvature
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Abstract. In [16], Wilking introduced the dual foliation associated to a
metric foliation in a Riemannian manifold with nonnegative sectional cur-
vature and proved that when the curvature is strictly positive, the dual
foliation contains a single leaf, so that any two points in the ambient
space can be joined by a horizontal curve. We show that the same phe-
nomenon often occurs for Riemannian submersions from nonnegatively
curved spaces even without the strict positive curvature assumption and
irrespective of the particular metric.
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1. Introduction and statements of results. Recall that in a Riemannian man-
ifold M with a metric foliation F , the horizontal curves are those orthogonal
to the leaves of F at every point. Given any point p ∈ M , consider the subset
of M that can be reached by horizontal curves emanating from p. In general,
these subsets have no particularly interesting structure. However, in the pres-
ence of nonnegative sectional curvature (and assuming completeness of leaves),
Wilking showed in [16] that they form a singular metric foliation, called the
dual foliation to F , which we hereafter denote by F#. He also showed that,
when the metric is positively curved, the dual foliation contains a single leaf,
and hence any two points are connected by a horizontal curve.

The simplest metric foliations appear as the collection of fibers of Rie-
mannian submersions; it is therefore natural to study the properties of the
dual foliation in this setting. If the total space of the submersion is compact,
Theorem 3 in [16] guarantees intrinsic completeness of the dual leaves, and
hence F# is a legitimate metric foliation. Moreover, Riemannian submersions
also preserve nonnegative sectional curvature and provide most of the known
examples of such spaces.
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The aim of this note is to show that relatively mild restrictions on a sub-
mersion often results in triviality of the dual foliation. Before describing this
in more detail, it is convenient to introduce some terminology:

Definition 1. A Riemannian submersion π : M → B is said to be twisted if
the foliation dual to the fibers of π contains only one leaf.

The term twisted is meant to contrast with the case of Riemannian products
F ×B → B, where the dual foliations correspond to the submanifolds {p}×B,
p ∈ F . For an arbitrary Riemannian submersion M → B, any closed curve in
B beginning and ending at b ∈ B induces a diffeomorphism of the fiber F =
π−1(b) over b by lifting the curve horizontally to points of F . The collection of
all these diffeomorphisms forms a group called the holonomy group of π at b. In
the case of a Riemannian product F ×B → B, that group is trivial. In general,
the holonomy group is not a Lie group. However, one large class of Riemann-
ian submersions are the so-called homogeneous ones: if M is a Riemannian
manifold and G a compact Lie group acting by isometries on M with principal
orbits, then the space B = G\M of orbits inherits in a natural way a Riemann-
ian metric for which the quotient map π : M → B is a Riemannian submersion.
In this case, π is actually a fiber bundle, the holonomy group at any point is a
Lie group, and is, in fact, the structure group of the bundle (see [8]). Thus, if the
dual foliation consists of a single leaf, then the structure group acts transitively
on the fiber, and the bundle may be thought of as being in essence twisted.

Among the several further reasons why twisted Riemannian submersions
are interesting, two in particular stand out: first of all, as mentioned earlier,
they automatically occur in positive curvature and could help us understand
topological similarities between positive and nonegative sectional curvature;
second, they provide a rich extra structure on the space, such as the subrie-
mannian distance on M obtained by considering the infimum of the length of
horizontal curves between two points.

In this paper, we provide several sources of twisting for Riemannian sub-
mersions. Recall that even non homogenous Riemannian submersions are topo-
logical fibrations, and twisting can already be built into the structure of the
fibration; this is studied here in terms of homotopy, using the boundary opera-
tor of the long exact homotopy sequence of the fibration, and in cohomological
terms through the use of transgressive elements. Both are described in Sec-
tion 2. Next, we consider cases where a submersion is either twisted or else
the metric is rigidly constrained; this is illustrated for submersions of the form
π : M × S2 → M for arbitrary metrics on the product. Section 4 deals with
the special case of principal torus bundles, showing that the corresponding
quotient map will be twisted whenever the total space is simply connected.
Finally, we conclude with some local conditions on the metric that guarantee
that the submersion is twisted.

The authors are indebted to the referee for pointing out a mistake in the first
version of Theorem 3 and to Kris Tapp for pointing out a mistake in Section
2.2 of the first version of this paper and for telling us about reference [10].

All the manifolds appearing in this paper are considered connected.
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2. Twist induced by the topology.

2.1. The boundary operator. Hermann showed in [9] that for complete M ,
Riemannian submersions π : M → B are locally trivial fiber bundles; i.e.,
any point b ∈ B has a neighborhood V such that π−1(V ) is diffeomorphic
with U × F , where F = π−1(b). In particular, they are fibrations. Under a
nonnegative curvature bound, the dual foliation associated to the fibers of
the submersion can be trivial already because the fibration itself is twisted.
One way to detect this is by means of the boundary operator of the fibration:
Specifically, denote by F the fiber of π over some base point b0 ∈ B, and
consider the long exact homotopy sequence

· · · ∂−→ πq(F ) i∗−→ πq(M) π∗−→ πq(B) ∂−→ · · ·
of the fibration F → M → B.

Theorem 1. Let π : M → B denote a Riemannian submersion from a complete
manifold M with nonnegative sectional curvature. If π is not twisted, then for
any q and any [a] ∈ πq(B), the homotopy class ∂[a] can be represented by a
map f : Sq−1 → F that is not surjective.

Proof. Denote by ui : R
q+1 → R the projection that assigns to a point its

ith coordinate. A homotopy class [a] in πq(B, b) is determined by a map
g : (Sq, e1) → (B, b), where

e1 = (1, 0, . . . , 0) ∈ Sq−1 = {p ∈ Sq | uq+1(p) = 0}
lies in the equator Sq−1. For any p �= e1 in this equator, there exists a unique
plane parallel to the uq+1-axis that contains e1 and p. It intersects the sphere
in a circle cp : [0, 1] → Sq, cp(0) = cp(1) = e1. Fix some point m in π−1(b),
and denote by c̃p : [0, 1] → M the horizontal lift starting at m of g ◦ cp. Then
∂[a] is represented by f : (Sq−1, e1) → (F,m), with f(p) = c̃p(1) for p �= e1
and f(e1) = m. Since the image of f consists of points that are reachable from
m by means of horizontal curves, it cannot be onto F (since otherwise every
point of M could be reached in this way). �
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2.1.1. Applications to submersions with spherical fibers. When F is
homotopy-equivalent to a sphere, the conclusion of Theorem 1 can be refined:

Corollary 1. Let π : M → B be a Riemannian submersion with fiber a homo-
topy sphere Sk. If π is not twisted, then for any q ≥ 2 we have short exact
sequences

0 ∂−→ πq(F ) i∗−→ πq(M) π∗−→ πq(B) ∂−→ 0

that split.

The proof is immediate since in the above case the image of [a] ∈ πq(B) by
the boundary map can be nonzero only if every map representing ∂[a] is onto.

As a consequence, it follows that most of the results in [7], Section 2, apply
to this context when suitably rewritten. Specifically, we have the following:

Example 1. The following Riemannian submersions are twisted for any non-
negatively curved metric on the total space:
(1) The Hopf fibrations π1 : S7 → S4 and π2 : S15 → S8;
(2) the unit sphere bundles of TCP

n and THP
n for even n;

(3) the unit sphere bundle of the canonical bundle of the Grassmannian of
oriented k-planes in R

n (when n is large enough).
The submersions in the last two cases are the restrictions of the canonical
bundle projections.

2.2. A twisted submersion with nonspherical fiber. Twisted submersions also
appear naturally in fibrations whose fiber is not a homotopy sphere. We exhibit
one where the fiber is a complex projective space. In order to do this, recall
that S6 admits an almost complex structure J : TS6 → TS6; this allows us to
consider the space M of complex lines in the tangent bundle of S6. It is easy
to see that M is a fiber bundle over S6 with fiber CP

2.1 Next, we construct
a nonnegative curvature metric on M for which the projection π : M → S6

is a Riemannian submersion: if G2 × S5 is endowed with the product of the
standard biinvariant metric on G2 and the round metric on the sphere, then
there is a free diagonal action by isometries of SU(3) on this product given by

g(g1, v) = (g1 · g−1, g(v)), g ∈ SU(3) ⊂ G2, g1 ∈ G2, v ∈ S5.

The quotient P = G2 ×SU(3) S
5 therefore inherits a unique metric for which

the projection G2 × S5 → P is a Riemannian submersion. This metric has
nonnegative curvature by O’Neill’s formula. P is the total space of the unit
tangent bundle of S6, and the almost complex structure on S6 induces an
isometric S1-action on P via

z([g1, v]) = [g1, cos tv + sin tJv], z = eit ∈ S1,

with [g1, v] denoting the image of (g1, v) by the projection G2 ×S5 → P . Since
the S1-orbit of a unit vector v ∈ TpS

6 is the unit circle {cos tv + sin tJv |
0 ≤ t ≤ 2π} through v and Jv, the quotient of this action is M and the

1 M appears in [10], Theorem 1.3, where it has been proved that it admits a quasipositively
curved metric.
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induced metric is again nonnegatively curved by O’Neill’s formula. Denote by
p : P → M the quotient map.

Consider now the boundary maps

∂1 : π6(S6) → π5(S5) (1)

∂2 : π6(S6) → π5(CP
2) (2)

in the long exact homotopy sequences corresponding to the fibrations S5 →
P → S6 and CP

2 → M → S6.

Lemma 1. If h : S5 → S5 is the map representing ∂1[Id], where Id : S6 → S6

is the identity, then p ◦ h is the map representing ∂2[Id].

Proof. Denote by πP : P → S6 the unit tangent bundle projection. Since the
map p : P → M is fiber preserving, it induces a homomorphism between the
two homotopy sequences, such that the diagram

· · ·π6(S5) i∗−−−−→ π6(P ) πP ∗−−−−→ π6(S6) ∂1−−−−→ π5(S5) · · ·
⏐
⏐
�p∗

⏐
⏐
�p∗

⏐
⏐
�id

⏐
⏐
�p∗

· · ·π6(CP
2) −−−−→

i∗
π6(M) −−−−→

π∗
π6(S6) −−−−→

∂2
π5(CP

2) · · ·

commutes, see [13], 17.5. The assertion then follows from he commutativity of
the last square in the diagram. �

Suppose now that M has an arbitrary Riemannian metric with nonnegative
curvature such that π : M → S6 is a Riemannian submersion for this metric
and furthermore that the corresponding dual foliation has more than one leaf.
Then the map p◦h from above would not be onto by Theorem 1. Since CP

2 has
a cell structure of the form e4∪CP

1, the map p◦h deforms in CP
2\{point} to a

map h′ : S5 → CP
1 
 S2. But π5(S2) is of finite order, so that p◦h : S5 → CP

2

represents an element of finite order in π5(CP
2) 
 π5(S5) 
 Z, and hence

vanishes.
This, however, is not the case: it is well known—see for example [[13],

23.4]—that for even-dimensional spheres S2k, the boundary map ∂1 :
π2k(S2k) → π2k−1(S2k−1) in the homotopy sequence of the unit tangent bundle
maps a generator of the first group to two times a generator of the second one.
Since p∗ : π5(S5) → π5(CP

2) is an isomorphism, the composition ∂2 = p∗ ◦ ∂1

also has that property.

2.3. The transgression. The homotopy conditions appearing in Theorem 1 can
be reformulated in cohomological terms using transgressive elements; we begin
by recalling some of the main definitions from [2].

Let π : M → B be a Riemannian submersion with fiber F . An element
ω ∈ Hq(F ) is said to be transgressive if it equals the restriction of a global
q-form ψ on M such that dψ = π∗τ for some (q + 1)-form τ on B. Since π∗

is injective, τ is a closed form. The correspondence that assigns τ to ω is not
well defined as such; its domain consists of ω’s in a certain subgroup of Hq(F ),
and the τ ’s are defined modulo some subgroup of Hq+1(B). When this is done,
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the map obtained is a homomorphism T called the transgression. The reader
interested in further details is invited to consult the above reference and [11].

We will also need the following definition used in [5]:

Definition 2. Let X be a CW-complex and a ∈ Hk(X,Z) a cohomology class.
a is said to be spherical if there is a map f : Sk → X such that f∗a �= 0 ∈
Hk(Sk,Z). Otherwise, a is said to be not spherical.

Notice that a spherical element has infinite order. Moreover, such a coho-
mology class is never a cup product of lower dimensional classes.

Theorem 2. Let ω be a transgressive cohomology class in Hk(F ), where k =
dimF . If π : M → B is a non twisted Riemannian submersion, then any
cohomology class representing T (ω) is not spherical.

Proof. Assume otherwise; then there is a map f : Sk+1 → B such that f∗τ �= 0,
where τ represents T (ω). Consider the cohomology class [a] of B given by
f∗[Sk+1]. [a] can be represented by a smooth map g : Dk+1 → B mapping
∂Dk+1 to a fixed point of B. As in the proof of Theorem 1, lift g horizontally
to a map G : Dk+1 → M , and denote by g : Sk → F its restriction to the
boundary of Dk+1. If the submersion π is not twisted, g cannot be onto. Then

0 �= 〈τ, [a]〉 =
∫

[a]

τ =
∫

G(Dk+1)

π∗τ =
∫

G(Dk+1)

dψ =
∫

g(Sk)

ψ

=
∫

g(Sk)

ω.
(3)

However, since g(Sk) is not the whole fiber F , the last integral vanishes. �
For the applications, it is convenient to recall that the transgression map

T appears in the Leray-Serre exact sequence of the fibration F → M → B as
the differential dn : E0,n−1

n → En,0
n , where E0,n−1

n is contained in Hn−1(F ).

Example 2. Consider the fibration SO(3) → RP
7 → S4. The transgression

map is nontrivial because the differential d4 above does not vanish: if it were
trivial, then the exact sequence would imply that H4(RP

7) �= 0. Since every
nonzero class in H4(S4) is spherical, Theorem 2 implies that π : RP

7 → S4 is
twisted. Once again, this fibration has non-spherical fiber.

3. Twisting in products. If Mi, i = 1, 2 are Riemannian manifolds with non-
negative curvature, then the product metric on M1 ×M2 also has nonnegative
curvature. One interesting question is whether there exist other metrics of
nonnegative curvature on the product. We investigate this here in a specific
context:

Theorem 3. Let M be a compact simply connected manifold. Assume there is a
nonnegatively curved metric on N = M × S2 such that there is a Riemannian
submersion π : N → M with totally geodesic fibers. Then either:
(1) N is isometric to the Riemannian product M×S2 (for some nonnegatively

curved S2), or
(2) π is twisted.



Vol. 101 (2013) Twisted submersions in nonnegative sectional curvature 177

Proof. If there is more than one leaf in the dual foliation, then these leaves
must have codimension one or two in N because of Theorem 3 in [16]. Notice
that not every leaf has codimension one since the intersection of the leaves
with a fiber of π would result in a line field on S2. Thus, there must be some
dual leaf of codimension 2; pick one such, and call it P ; since P is horizontal,
the restriction of π to P is a covering of M , and π maps P isometrically onto
the base M .

The inverse of the restriction π|P of π to P yields a section s : M → N of
the type studied in [1], Section 6. Consider the normal bundle ν(P ) of P in
N , and let ε > 0 be small enough so that the restriction

exp : νε(P ) = {u ∈ ν(P ) | |u| < ε} −→ N

of the exponential map is a diffeomorphism onto its image. Endow νε(P ) with
the connection metric for which exp becomes an isometry. Then the bundle
projection νε(P ) → P is a Riemannian submersion with totally geodesic fibers.
Since the bundle is trivial, the arguments used in the proof of Theorem 1.5
in [14] carry over verbatim to imply that νε(P ) splits locally isometrically
over P . In particular, the horizontal distribution of π is integrable in an open
neighborhood of P . By the definition of dual foliation, each leaf that intersects
such a neighborhood has codimension 2 and is entirely contained in it. Thus,
the set of points where the O’Neill tensor is zero is both open and closed in
N , and A vanishes everywhere. By [15] (see also [4]), N splits metrically as a
product. �

4. Twisting in principal torus bundles. Many of the examples of Riemannian
submersions appear as quotient maps of free isometric actions. In this section,
we investigate twisting for torus actions.

Theorem 4. Consider a free isometric T k action on a Riemannian manifold
M with nonnegative sectional curvature. If M is simply connected, then the
quotient submersion π : M → M/T k is twisted.

Proof. Consider the sequence of homogeneous metric fibrations

M
p1→ M1

p2→ · · ·Mk−1
pk→ Mk = M/T k,

each of which has a circle as fiber. It is enough to show that each pi : Mi−1 →
Mi has only one dual leaf. So, assume to the contrary that some pi has more
than one leaf. Since dual leaves are isometric via the S1 action, they form
a regular codimension 1 metric foliation; thus, the A-tensor of this foliation
vanishes, and since the ambient space has nonnegative curvature, it splits
locally isometrically as a product with one factor tangent to the S1 action.
Since S1 is closed, this splitting is global; i.e., Mi−1 = N × S1 isometrically.
We will get a contradiction once we show that this splitting lifts to a splitting
of M via p1, . . . , pi−1. We may inductively assume that i = 1; i.e., we have a
homogeneous submersion π : S1 → M → N × S1 such that if T is the vertical
Killing field on M generating the fibers of π and X̄ is the Killing field on the
base tangent to the S1 factor, then the basic lift X of X̄ is a Killing field on
M that commutes with T (since the S1 action on N × S1 is induced by an
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isometric torus action on M). The claim will follow once it is shown that X
is a parallel vector field on M . Now if Y is basic, then (∇Y X)h = 0 since
the projected fields on the base have that property, and (∇Y X)v = AY X = 0
since the projected fields span a plane of zero curvature. It remains to prove
that ∇TX = 0. But (∇TX)h = 0 because

〈∇TX,Y 〉 = −〈T,AXY 〉 = 0,

and (∇TX)v = 0 because 〈∇TX,T 〉 = 0 sinceX is Killing (so that the operator
u �→ ∇uX is skew-adjoint). �

This has several simple applications: consider for example M = SU(n),
some (not necessarily maximal) torus T k contained in SU(n), and a Riemann-
ian metric on SU(n) invariant for T k. Theorem 4 then implies that the quotient
map SU(n) → SU(n)/T k is twisted.

5. Twisting due to the O’Neill tensor. The O’Neill A tensor of a Riemann-
ian submersion measures the extent to which the horizontal distribution, as a
subbundle of TM , fails to be integrable. It is often responsible for the twist-
ing of the submersion, as illustrated in the next lemma. We first recall some
terminology:

A Riemannian submersion π : M → B induces an orthogonal splitting
TM = H⊕V of the tangent bundle of M , with H denoting the horizontal and
V = kerπ∗ the vertical distribution. There is a corresponding decomposition

z = zh + zv ∈ H ⊕ V, z ∈ TM

at the vector level. There are two tensor fields that measure the complexity of
π. One is the A tensor of O’Neill, given at each point p ∈ M by a map

A : Hp × Hp → Vp, Axy = [X,Y ]v(p),

where X, Y are horizontal extensions of x, y to a neighbourhood of p. The
antisymmetry of A,Axy = −Ayx, means that we can consider A as a linear
map

Ãp : Λ2(Hp) → Vp, Ãp

(

∑

i

xi ∧ yi

)

=
∑

i

Axi
yi.

The other is the second fundamental tensor of the fibers, given at p ∈ M by

S : Hp × Vp → Vp, Sxu = −∇v
UX,

with X as above and U a vertical field extending u in a neighborhood of p.

Lemma 2. Let π : M → B be a Riemannian submersion with nonnegative
curvature; if for some point p ∈ M, Ãp is onto, then the dual leaf through p is
open.

Proof. Suppose that the leaf Fp through p has dimension less than that of M .
By Proposition 6.1 in [16], the parallel transport of each normal direction to
Fp along a horizontal geodesic of π generates a Jacobi field J . It is immediate
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to see that J is in fact a holonomy Jacobi field for π and hence satisfies the
equation

J ′(t) = −A∗
γ′(t)J + Sγ′J,

where γ denotes an arbitrary horizontal geodesic with γ(0) = p, and A∗ is
the adjoint of the O’Neill tensor (see [3]). Thus, at t = 0, A∗

γ′(0)J(0) = 0, and

therefore J(0) is orthogonal to the image of Ãp, which is impossible. �

The similarity of this result with Theorem C in [6], where a similar theorem
was proved for the Sharafutdinov submersion, is somewhat intriguing.

Corollary 2. Let M be a principal bundle over B with an invariant metric of
nonnegative curvature; if for some point p ∈ M, Ãp is onto, then the submer-
sion is twisted.

Proof. Observe that the isometric action preserves the dual leaves, and hence
they will be all of the same dimension; if π : M → B were not twisted, then
the leaf F through p would have dimension less than that of M and could not
be open. �

Corollary 3. A principal circle bundle M with nonnegative curvature is either
twisted or else it splits locally as the projection of a metric product onto one
of the factors.

Proof. This is immediate from Lemma 2, for if the submersion is not twisted,
then the A tensor must vanish everywhere, and the splitting follows from
results in [15]. �

It has been pointed out to the authors that a result similar to corollary 2
has been obtained in [12], although by different methods.
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