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Existence of traveling waves in the fractional bistable equation

Adam Chmaj

Abstract. We construct traveling waves of the fractional bistable equation
by approximating the fractional Laplacian (D2)α, α ∈ (0, 1), with opera-
tors J ∗ u − (

∫
R

J)u, where J is nonsingular. Since the resulting approx-
imating equations are known to have traveling waves, the solutions are
obtained by passing to the limit. This provides an answer to the statement
(about existence and properties) “This construction will be achieved in
a future work” before Assumption 2 in Imbert and Souganidis [6]. With
a modification of a part of the argument, we also get the existence of
traveling waves for the ignition nonlinearity in the case α ∈ (1/2, 1).

1. Introduction. We study the equation

ut = (∂xx)αu − f(u), (1.1)

where f is bistable, e.g., f(u) = (u2 − 1)(u − a), −1 < a < 1. The frac-
tional power of the Laplacian in one dimension is defined for α ∈ (0, 1] as in
[2, Appendix A]:

(D2)α = − 1
2cos(πα)

(−∞D2α
x + xD2α

∞ ), (1.2)

i.e., a symmetrizing sum of Riemann–Liouville differintegrals. After integration
by parts, we get

(D2)αu(x) = − 1
2Γ(−2α)cos(πα)

p.v.

∫

R

u(y) − u(x)
|x − y|1+2α

dy, (1.3)

where p.v. denotes the Cauchy principal value. For α ∈ (0, 1/2) we can usu-
ally drop this p.v.. However, this is not optimal since there are functions for
which (1.2) and (1.3) are defined but (1.3) without the p.v. is not. (1.3) allows
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the definition of (D2)1/2 since limα→1/2 Γ(−2α)cos(πα) = −π/2. (D2)α is a
pseudo-differential operator of symbol −|ξ|2α:

(D2)αu = F−1(−|ξ|2α(Fu)) ∀u ∈ S,

where S is the Schwartz class.
We seek traveling waves u(x − ct) of (1.1) satisfying u(−∞) = −1 and

u(∞) = 1. We assume f ∈ C3 has only three zeros: f(±1) = f(a) = 0, with
−1 < a < 1 and f ′(±1) > 0. In particular, f does not have to be balanced,
i.e.,

∫ 1

−1
f �= 0. In traveling wave coordinates, (1.1) becomes

cu′ + (D2)αu − f(u) = 0. (1.4)

To our knowledge the existence of traveling waves has been studied only in
the piecewise linear case [9] and in the balanced case

∫ 1

−1
f = 0 [3,8]. To give a

short solution of the general problem, we use the following limiting argument.
Define bα = − 1

2Γ(−2α)cos(πα) ,

Jε(x) =
{ 1

|x|1+2α , |x| ≥ ε,
1

ε1+2α , |x| < ε,
(1.5)

and jε =
∫

R
Jε = ( 1

α +2) 1
ε2α , so that formally bα(Jε ∗u−jεu) → (D2)αu. From

[1,4], there exists a unique pair (uε, cε) with u′
ε > 0 solving the approximate

equation

cu′ + bα(Jε ∗ u − jεu) − f(u) = 0. (1.6)

To be more precise, in [1] there is an additional assumption that
∫

R
|x|J(x)dx <

∞, however, the arguments requiring it can be adapted to (1.5). If ε is small
enough, uε cannot be discontinuous with cε = 0, since g′

ε > 0, where gε(u) =
bαjεu + f(u), therefore it is smooth with

cε =

∫ 1

−1
f

||u′
ε||22

. (1.7)

We expect u0 = limε→0 uε to be the solution of (1.4). This limit of a subse-
quence exists by the Helly Theorem, suggesting passing to the limit in distri-
butions. The problem with this approach is that bootstrapping a weak solution
requires some effort since we know only that u0 is monotonic, so if φ is a test
function, then

∫

R

uεbα(Jε ∗ φ − jεφ) →
∫

R

u0(D2)αφ,

and it is not clear if
∫

R
u0(D2)αφ =

∫
R
[(D2)αu0]φ. In Section 2 we show

Theorem 1.1. Let c �= 0 and α ∈ (0, 1/2). A monotonic weak solution of (1.4)
with u(−∞) = −1 and u(∞) = 1 is also a strong solution.

The proof requires that (D2)α be decomposed into a sum of two operators.
This idea led us to estimates enabling using a strong formulation to get a solu-
tion. Namely, let Jε = Sε + K, with Sε > 0, and let K ∈ W 1,1(R) be chosen
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so that g′
k > 0, where gk(u) = bαku + f(u), k =

∫
R

K. Let sε =
∫

R
Sε. (1.6)

differentiated can be written as

cu′′ + bα(Sε ∗ u′ − sεu
′) + bαK ′ ∗ u = g′

k(u)u′. (1.8)

Let u′
ε(mε) = maxx∈R u′

ε(x). Then since on the left hand side of (1.8) at mε

the first term is 0, the second < 0, and the third uniformly bounded, u′
ε is uni-

formly bounded. Differentiating (1.8) once and twice more and using similar
arguments shows that |u′′

ε | and |u′′′
ε | are also uniformly bounded, which implies

after some work that

bα(Jε ∗ uε − jεuε) → (D2)αu0 (1.9)

pointwise, getting

Theorem 1.2. Let f be of bistable type and α ∈ (0, 1). There exists a solution
of (1.4) with sgn c =sgn

∫
f , u(−∞) = −1, u(∞) = 1, and u′ > 0.

The proofs of Theorems 1.1 and 1.2 are provided in Section 2. In Section 3
we adapt the existence argument to (1.1) with the ignition nonlinearity, i.e.,
f |(−1,ρ) ≡ 0, f |(ρ,1) < 0 and f ′(1) > 0, getting

Theorem 1.3. Let f be of ignition type and α ∈ (1/2, 1). There exists a solution
of (1.4) with c < 0, u(−∞) = −1, u(∞) = 1, and u′ > 0.

This result was also announced in [7].

2. Bistable. We neglect subsequences in the notation.
Proof of Theorem 1.1. u0 satisfies

−c0

∫

R

u0φ
′ +

∫

R

u0(D2)αφ −
∫

R

f(u0)φ = 0.

Let J2 ∈ L1(R) be such that

J1(x)

⎧
⎪⎨

⎪⎩

= 1
|x|1+2α − J2(x), x ∈ R,

= 1
|x|1+2α , |x| ≤ 1,

≤ 1
|x|1+2α , |x| > 1,

is compactly supported. Then dropping p.v.

(D2)αφ = J1 � φ + J2 ∗ φ − j2φ,

where

J1 � φ(x) =
∫

R

J1(x − y)(φ(y) − φ(x))dx

and j2 =
∫

R
J2. Let u1(x) =

∫ x

0
u0. u1 is Lipschitz continuous with u′

1 = u0

a.e., so we can use

u1(x + y) − u1(x) =

1∫

0

yu0(x + ty)dt,
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not

u0(x + y) − u0(x) =

1∫

0

yu′
0(x + ty)dt, (2.1)

since u0 is not absolutely continuous, only monotonic, to get a.e.

c0u
′
0 + (J1 � u1)′ + J2 ∗ u0 − j2u0 − f(u0) = 0, (2.2)

where we used u1(x)J1 � φ(x) = O(x−2α) → 0 as x → ±∞.
Since c0u0 + J1 � u1 ∈ W 1,∞(R), it is Lipschitz continuous, so that

−c0u0(x) = −c0u0(0) + J1 � u1(x) − J1 � u1(0) +

x∫

0

[J2 ∗ u0 − j2u0 − f(u0)].

J1 � u1 is absolutely continuous from

J1 � u1(x) =
∫

R\(−1,1)

J1(y)[u1(x + y) − u1(x)]dy

+

1∫

−1

yβ(
∫ 1

0
u0(x + ty)dt)β(u1(x + y) − u1(x))1−β

|y|1+2α
dy,

with β > 2α, so u0 is also absolutely continuous and (2.1) used in the Leib-
niz criterion yields (J1 � u1)′ = J1 � u0. From the Fundamental Theorem of
Calculus, (2.2) holds everywhere. �
Proof of Theorem 1.2. From a diagonal argument and the Arzelà-Ascoli theo-
rem (AAT), uε → u0 and u′

ε → u′
0 pointwise on R. Using (1.9) and passing to

the limit in (1.6), we get

c0u
′
0 + (D2)αu0 − f(u0) = 0. (2.3)

Let S(ε) = [−1, 1]\(−ε, ε). To show (1.9) we have

Jε ∗ uε − jεuε =
∫

R\(−1,1)

uε(x + y) − uε(x)
|y|1+2α

dy +
∫

S(ε)

u0(x + y) − u0(x)
|y|1+2α

dy

+
∫

S(ε)

uε(x + y) − uε(x) − [u0(x + y) − u0(x)]
|y|1+2α

dy

+

ε∫

−ε

uε(x + y) − uε(x)
ε1+2α

dy = I1(ε) + I2(ε) + I3(ε) + I4(ε).

(2.4)

In I1(ε)
∣
∣uε(x+y)−uε(x)

|y|1+2α

∣
∣ ≤ 2

|y|1+2α , so we pass to the limit using the Lebesgue
dominated convergence theorem (LDCT). Then

lim
ε→0

I2(ε) = p.v.

∫

[−1,1]

u0(x + y) − u0(x)
|y|1+2α

dy.
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In I3(ε) for α ∈ (0, 1/2) we use (2.1), and for α ∈ [1/2, 1) we use the Taylor
formula

u(x + y) − u(x) = u′(x)y +

1∫

0

y2(1 − t)u′′(x + ty)dt,

getting for α ∈ (0, 1/2)

|I2(ε)| ≤
∫

S(ε)

∫ 1

0
|u′

ε(x + ty) − u′
0(x + ty)|dt

|y|2α

≤ sup
s∈Sx

|u′
ε(s) − u′

0(s)|
∫

S(ε)

dy

|y|2α
→ 0

and for α ∈ [1/2, 1)

I2(ε) =
∫

S(ε)

∫ 1

0
(1 − t)[u′′

ε (x + ty) − u′′
0(x + ty)]dt

|y|2α−1
,

so

|I2(ε)| ≤ 1
2

sup
s∈Sx

|u′′
ε (s) − u′′

0(s)|
∫

S(ε)

dy

|y|2α−1
→ 0,

both from AAT, since Sx = x + [−1, 1]. In I4(ε) the same Taylor formu-
las yield: for α ∈ (0, 1/2) |I4(ε)| ≤ C1(ε)ε1−2α → 0 and for α ∈ [1/2, 1)
|I4(ε)| ≤ 2

3C2(ε)ε2−2α → 0, where C1(ε) = sup |u′
ε| and C2(ε) = sup |u′′

ε |.
This proves the Theorem after we rule out degenerate cases and show that

u′
0 > 0.

Let uε(0) = r where −1 < r < a if
∫ 1

−1
f ≤ 0 and a < r < 1 other-

wise. We can have the following: (a) u0 ≡ r, (b) u0(−∞) = −1, u0(∞) = r
(or u0(−∞) = r, u0(∞) = 1), and (c) cε → ±∞.

(a) This is not possible since f(r) �= 0.
(b) Let −1 < r < a. As in (1.9) we get bα(Jε ∗ u0 − jεu0) → (D2)αu0. It is a

standard calculation that
∫

R
bα(Jε ∗ u0 − jεu0)u′

0 = 0, namely
∫

R

(Jε ∗ u0)u′
0 = u0

2(∞) − u0
2(−∞) −

∫

R

(Jε ∗ u′
0)u0,

and since
∫

R
(Jε ∗ u′

0)u0 =
∫

R
(Jε ∗ u0)u′

0, we get
∫

R

(Jε ∗ u0)u′
0 =

1
2
[u2

0(∞) − u2
0(−∞)].

Since bα(Jε ∗ u0 − jεu0) is uniformly bounded by a constant, using
LDCT we get

∫
R
[(D2)αu0]u′

0 = 0. Multiplying (1.4) by u′
0 and integrating

over R yields c0 > 0, a contradiction with cε ≤ 0. We also get
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c0 =

∫ 1

−1
f

||u′
0||22

.

(c) Here the proof is very similar to [1, Lemma 2.6]. Assuming that cε → ∞
let η > 0 and f(uε(ξε)) < −η. Then at ξε

η < cεu
′
ε − f(uε) = −bα(Jε ∗ uε − jεuε)

with a contradiction after showing that |bα(Jε∗uε−jεuε)| → 0 uniformly.
Namely, similarly to (2.4) let

Jε ∗ uε − jεuε = I1(ε) + I2(ε) + I3(ε), (2.5)

where I1(ε) is as in (2.4),

I2(ε) =
∫

S(ε)

uε(x + y) − uε(y)
|y|1+2α

dy, I3(ε) =

ε∫

−ε

uε(x + y) − uε(y)
ε1+2α

dy.

Both ||u′
ε||∞ → 0 and ||u′′

ε ||∞ → 0 since in (1.4) all terms other than cεu
′
ε

are uniformly bounded, and in differentiated (1.4) all terms other than cεu
′′
ε

are uniformly bounded. From this all Ii(ε) → 0 uniformly, e.g., in the case
α ∈ (0, 1/2]:

I1(ε) =
∫

R\(−1,1)

yβ(
∫ 1

0
u′

ε(x + ty)dt)β(uε(x + y) − uε(x))1−β

|y|1+2α
dy,

where β < 2α, giving

|I1(ε)| ≤ 21−β ||u′
ε||β∞

∫

R\(−1,1)

dy

|y|1+2α−β
→ 0

uniformly.
The argument that u′

0 > 0 is standard. We have u′
0 ≥ 0. If u′

0(x0) = 0, then
after we differentiate (1.4), at x0 the middle term is > 0, the other two are 0.

�



Vol. 100 (2013) Fractional Laplacian traveling waves 479

3. Ignition.
Proof of Theorem 1.3. Here we use a couple of calculations from [5], where the
author constructed traveling waves for (1.6) with the ignition nonlinearity.

In the approximating equations, we let bistable fε → f with f ′
ε uniformly

bounded and normalize uε(0) = ρ.
cε �→ 0 since after pairing (1.6) with u′

ε,
∫

R
u′2

ε is uniformly bounded and
∫ 1

−1
fε → ∫ 1

−1
f < 0.

cε �→ −∞ since after integrating (1.6) over (−∞, 0), we get

− cε(ρ + 1) < −cε(ρ + 1) +

0∫

−∞
f(uε) =

0∫

−∞
bα(Jε ∗ uε − jεuε), (3.1)

so that with (2.5) again, since α ∈ (1/2, 1), all
∫ 0

−∞ Ii(ε) are uniformly
bounded, e.g.,

∣
∣
∣
∣
∣
∣

0∫

−∞
I1(ε)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣

0∫

−∞

∫

R\(−1,1)

y
∫ 1

0
u′

ε(x + ty)dt

|y|1+2α
dydx

∣
∣
∣
∣
∣
∣
∣
≤ 2

∫

R\(−1,1)

dy

|y|2α
.

Passing to the limit in (1.6), we get (2.3) with c0 < 0. To show that
u0(−∞) = −1 and u0(∞) = 1, we first pass to the limit in (3.1), getting

− c0(ρ + 1) ≤
0∫

−∞
(D2)αu0, (3.2)

then integrate (2.3) over (−∞, 0), getting

− c0(ρ − u0(−∞)) =

0∫

−∞
(D2)αu0. (3.3)

(3.2) and (3.3) give u0(−∞) ≤ −1. We pair (2.3) with u′
0 to get

∫ u(∞)

−1
f < 0,

thus u(∞) > ρ. Passing to the limit x → ∞ in (2.3), we get f(u(∞)) = 0, thus
u(∞) = 1.

Getting (3.2) from (3.1) is done with a bit of care, e.g.,

0∫

−∞
I1(ε) =

∫

R\(−1,1)

1∫

0

y(uε(ty) + 1)
|y|1+2α

dtdy →
∫

R\(−1,1)

1∫

0

y(u0(ty) + 1)
|y|1+2α

dtdy

=

0∫

−∞

∫

R\(−1,1)

u0(x + y) − u0(y)
|y|1+2α

dydx.

�
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