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The average size of Ramanujan sums over quadratic number
fields
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Abstract. This article is concerned with Ramanujan sums cI1(I), where

I, I1 are integral ideals in an arbitrary quadratic number field Q(
√

d). In
particular, the asymptotic behavior of sums of cI1(I), over both I and
I1, is investigated.
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1. Introduction. Ramanujan sums over the rationals. For positive integers
m,n, the classic Ramanujan sum cm(n) is defined as

cm(n) =
∑

1≤j≤m
gcd(j,m)=1

e
(
j
n

m

)
=

∑

d | gcd(m,n)

dμ
(m
d

)
, (1.1)

where e(z) := e2πiz and μ denotes the Möbius function. See, e.g., the textbook
by Krätzel [8, p. 52 and p. 129]. Only quite recently, Chan and Kumchev dealt
with the question of the average order of cm(n), with respect to both variables
m,n. They proved in [2, Theorem 1.1] that, for large reals X and Y ≥ X,

S1(X,Y ) :=
∑

1≤m≤X

∑

1≤n≤Y

cm(n)

= Y − 3
2π2

X2 +O(XY 1/3 logX) +O(X3Y −1). (1.2)

Here slight refinements are possible in the first O-term by a more sophisticated
application of the method of exponential sums. In fact, (1.2) has a surprising
consequence: If Y � Xλ with some fixed λ, it readily follows that, as Y → ∞,
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S1(X,Y ) ∼
{
Y if λ > 2,
− 3

2π2 X
2 if 1 < λ < 2.

(1.3)

The change in the asymptotic behavior when Y � X2 has been worked out
more precisely by Chan and Kumchev [2, Theorem 1.2] by evaluating the sec-
ond moment

S2(X,Y ) :=
∑

1≤n≤Y

⎛

⎝
∑

1≤m≤X

cm(n)

⎞

⎠
2

. (1.4)

This requires a completely different and very deep method using complex inte-
gration. The asymptotics obtained is very interesting, but too involved to be
cited here in detail.

2. Ramanujan sums in quadratic fields. We consider a quadratic field F =
Q(

√
d), with d /∈ {0, 1} a square-free integer, and its ring of algebraic integers

OF. For nonzero integral ideals I in OF, the Möbius function is classically
defined as follows (cf., e.g., Hecke [4, p. 100]): If there exists a prime ideal P
in OF such that P2 divides I, then μ(I) = 0. If I is the product of r distinct
prime ideals, then μ(I) = (−1)r.

Accordingly, for nonzero integral ideals I1, I in OF, whose norm will be
denoted by N(·) throughout, the Ramanujan sum is defined by

cI1(I) :=
∑

I2: I2 | I1, I2 | I
N(I2)μ

(I1

I2

)
, (2.1)

motivated by the second representation in (1.1). In fact, on the basis of this
definition, the concept of Ramanujan sums can be considered in the much
more general context of arbitrary arithmetical semigroups: See, e.g., Grytczuk
[3] and the monograph by Knopfmacher [7, p. 185]. Returning to F = Q(

√
d),

the aim of this paper will be to seek for an asymptotics for the sum

SF(X,Y ) :=
∑

1≤N(I1)≤X

∑

1≤N(I)≤Y

cI1(I), (2.2)

in particular, to determine a sufficient condition on the relative size ofX and Y
(as less stringent as possible) which ensures that the exact asymptotic behavior
of SF(X,Y ) can be determined. By an obvious device,

SF(X,Y ) =
∑

1≤N(I)≤Y

⎛

⎝
∑

I1,I2: 1≤N(I1I2)≤X, I1 | I
N(I1)μ(I2)

⎞

⎠

=
∑

I1,I2: 1≤N(I1I2)≤X

N(I1)μ(I2)
(
ρ

Y

N(I1)
+ PF

(
Y

N(I1)

))

= ρY +
∑

I1,I2: 1≤N(I1I2)≤X

N(I1)μ(I2)PF

(
Y

N(I1)

)
. (2.3)
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Here the well known fact1 has been used that the number of nonzero integral
ideals in OF of norm ≤ a large real parameter t, is approximated in first order
by ρd t, with a remainder term PF(t), where ρd is the residue of the Dedekind
zeta-function ζF(s) at s = 1. Explicitly,

ρd =

⎧
⎨

⎩

h(D)
wD

2π√
|D| if d < 0,

h(D)√
D

log(ε0) if d > 0.

h(D) denotes the class number (in the narrow sense), the discriminant D
equals d if d ≡ 1 mod 4, and D = 4d for d �≡ 1 mod 4, ε0 is a fundamental
unit, and wD is the number of roots of unity in OF, i.e.,

wD =

⎧
⎪⎨

⎪⎩

6 for D = −3,
4 for D = −4,
2 for D < −4.

Let R = RF(X,Y ) denote the last sum in (2.3), then readily

R �
∑

1≤N(I2)≤X

∣∣∣∣∣∣

∑

1≤N(I1)≤X/N(I2)

N(I1)PF

(
Y

N(I1)

)∣∣∣∣∣∣
. (2.4)

In fact, PF(t) can be estimated according to the classic examples of the circle
and divisor problems: See Huxley [5] whose nowadays sharpest bound readily
gives PF(t) � t131/416+ε. Using this in (2.4), we immediately infer that

R � X701/416 Y 131/416+ε. (2.5)

This implies that, as Y → ∞,

SF(X,Y ) ∼ ρY, (2.6)

provided that Y  Xλ for some

λ >
701
285

= 2.4596 . . . .

In a previous paper [13], the author has established the asymptotics (2.6) in
the slightly wider range

λ >
29
12

= 2.416̇,

for the special case of the Gaussian field F = Q(i). The objective of the present
paper is to prove a stronger result, for any quadratic field F.

Theorem 1. For each fixed quadratic field F = Q(
√
d), the asymptotic formula

(2.6) is true provided that Y  Xλ for some

λ >
1973
820

= 2.40609 . . . .

1 For this and other basics in the theory of quadratic fields, the reader is referred to the
monograph by Zagier [15].
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More precisely, for Y > X and arbitrary fixed ε > 0,

SF(X,Y ) = ρ Y +O(X
1973
1358Y

269
679+ε) +O(X

1234823
737394 Y

205
679+ε)

+O(X
23917
21728Y

8675
16296+ε) +O(X2Y ε).

Remark. Of course, the result obtained is not completely analogous to (1.3): it
fails to contain a second case, corresponding to smaller values of λ. To under-
stand the reason, observe that the deduction of (1.2) ultimately rests on the
approximation of the Gauss bracket [t] in the form

[t] = t − 1
2

− ψ (t) , where
∫

I

ψ (t) dt = 0 (2.7)

for every interval I of unit length. In the case of a quadratic field F = Q(
√
d),

a weak analogue is known as

∑

0<N(I)≤t

1 = ρd t+ ζF(0) + P ∗
F (t), where

T∫

0

P ∗
F (t)dt � T 3/4 (2.8)

(see Chandrasekharan and Narasimhan [1]). However, ζF(0) �= 0 only if d < 0,
and even in this case there is little hope to estimate the contribution coming
from P ∗

F (t) so well that ζF(0) can give a second main term.

3. Preliminaries and classical auxiliary results. It will be important to have
at our disposal a tight approximation to the remainder term

PF(t) := #{integral ideals I in OF : 0 < N(I) ≤ t } − ρd t.

Lemma 1. For any fixed quadratic field F = Q(
√
d), large real parameters t, y,

and any ε > 0, it follows that

PF(t) = CD t1/4
∑

0<N(I)≤y

N(I)−3/4 sin

(
4π√|D|

√
t
√
N(I) +

π

4
sgn(d)

)

+O(t1/2+ε y−1/2) +O(yε).

Proof. For ζF(s) replaced by ζ2(s), an analogue is quite classic and can be
found, e.g., in the book of Titchmarsh [14, p. 319], in the context of the
Dirichlet divisor problem. The special case of the assertion for F = Q(i) has
been stated and applied by several authors to deal with the lattice discrep-
ancy of the circular disc. An explicit proof of the present statement is con-
tained in a still more general result by Müller [11, Lemma 3]. By the way,
CD = ±|D|1/4(π

√
2)−1. �

Lemma 2. There exists a one-one correspondence which maps to every ideal
class Cj in O

Q(
√

d) a primitive binary quadratic form fj(u, v) = aju
2 + bjuv+

cjv
2 of discriminant D (positive definite if d < 0), such that, for every positive

integer n,

#{I ∈ Cj : N(I) = n} = ηd #(βj(n)),
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where the following definitions hold:

ηd :=

{
1

wD
if d < 0,

1 if d > 0,
β∗

j (n) := {(u, v) ∈ Z
2 : fj(u, v) = n},

βj(n) :=

{
β∗

j (n) if d < 0,
{(u, v) ∈ β∗

j (n) : u− θv > 0, 1 < u−θ′v
u−θv ≤ ε20} if d > 0,

θ :=
−bj +

√
D

2aj
, θ′ :=

−bj − √
D

2aj
.

Proof. See Zagier [15, pp. 98–99 and 69–71]. �

Combining the results of both of these lemmas and defining, for large real y,

Bj(y) :=
⋃

0<n≤y

βj(n), (3.1)

we obtain the following useful formula:

PF(t)=CDηdt
1/4

h(D)∑

j=1

∑

(u,v)∈Bj(y)

fj(u, v)−3/4 sin

(
4π√|D|

√
tfj(u, v)+

π

4
sgn(d)

)

+O(t1/2+ε y−1/2)+O(yε). (3.2)

This very last result will make it necessary to have at hand a sharp bound for
exponential sums.

Lemma 3. For positive real parameters M ≥ 1 and T, suppose that F is a real
function on some compact interval I∗ of length M, with at least 5 continuous
derivatives satisfying throughout

F (j) � T

M j
for j = 2, 3, 4. (3.3)

Then, with e(z) := e2πiz, for every interval I ⊆ I∗, and each ε > 0,
∑

m∈I

e(F (m)) � M1/2T 32/205+ε + T 751/1968+ε +M871/1086 +MT−1/2.

Proof. The deep part of this result is due to Huxley [6, Prop. 1, formulae
(1.10)–(1.13), and Theorem 1]. Using classic Van der Corput bounds on the
ranges where Huxley’s conditions are not satisfied, the author established the
present statement as a special case of [12, Theorem 1]. �

The next result will help to satisfy the conditions (3.3) in a fairly general
situation.

Lemma 4. For f a real binary quadratic form, let M+
f := {u ∈ R

2 : f(u) > 0 },
and G := f−1/2 on M+

f . For r ∈ Z+, a = (a1, a2) ∈ M+
f , and (0, 0) �= v ∈ R

2,

denote by G(r)(a;v) the directional derivative of order r.2 Then,

2 Explicitly, G(r)(a;v) = drG
dvr (a) = dr

dtr (G(a + tv))
∣∣∣
t=0

.
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(i) for each integer r ≥ 0, there exists no point a ∈ M+
f so that all partial

derivatives of G of order r vanish at a.
(ii) For every set of positive integers r1, . . . , rK and every a ∈ M+

f , there
exists a vector (0, 0) �= v ∈ R

2 for which

min
r=r1,...,rK

∣∣∣G(r)(a;v)
∣∣∣ > 0.

Proof. The conclusion from (i) to (ii) is easy, in view of the identity

G(r)(a;v) =
r∑

k=0

r!
k!(r − k)!

∂rG

∂uk
1∂u

r−k
2

(a) vk
1v

r−k
2 . (3.4)

By (i), for every fixed r ∈ Z+ and a ∈ M+
f , the set of vectors v for which the

right hand side of (3.4) vanishes is a set of measure zero in R
2, and so is the

union over r = r1, . . . , rK .
To establish (i), we proceed by induction and assume that r is minimal, so

that there exists some a ∈ M+
f for which all partial derivatives of G of order

r + 1 vanish at a. By homogeneity, they vanish at any point ξa, with ξ > 0
arbitrary. Denote by g any partial derivative of order r of G. By an appropriate
version of (3.4), d

dξ g(ξa) = g′(ξa;a) = 0 identically in ξ > 0, hence g(ξa) is a
constant for ξ > 0. But g is homogeneous of degree −1 − r, hence g(a) = 0.
Thus all partial derivatives of G of order r vanish at a, which contradicts the
minimality of r. �

4. Proof of the Theorem. We start from (2.4) and split up the inner sum
by a dyadic sequence: Keeping I2 fixed for the moment, let W run through
(2−rX/N(I2)), where r ranges from 1 to [log(X/N(I2))/ log 2] . Then, by
Lemma 1, with a certain parameter U > 0 at our disposal,

∑

W<N≤2W

N(I1) PF(Y/N(I1))

�
∣∣∣∣∣∣
Y 1/4

∑

W<N≤2W

N(I1)
3/4

∑

1≤N(I3)≤U

N(I3)
−3/4 e

(
2√|D|

√
Y N(I3)/N(I1)

)∣∣∣∣∣∣

+Y 1/2+εU−1/2
∑

W<N≤2W

N(I1)
1/2+U ε W 2. (4.1)

Interchanging the order of summation, this is (cf. also 4.9 below)

� Y 1/4
∑

1≤N(I3)≤U

N(I3)−3/4 |E(W, I3)| + Y 1/2+εU−1/2W 3/2 + U εW 2,

(4.2)

where

E(W, I3) :=
∑

W<N≤2W

N(I1)3/4e
(
Z/
√
N(I1)

)
, Z :=

2√|D|
√
Y N(I3).

(4.3)
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Clearly it suffices to restrict this sum to I1 from a single ideal class Cj : call
this subsum Ej(W, I3). Using Lemma 2 and (3.1), we may write this as

Ej(W, I3) = ηd

∑

(u,v)∈Bj(2W )\Bj(W )

fj(u, v)3/4e

(
Z/
√
fj(u, v)

)
. (4.4)

To deal with this exponential sum, we define3

D0 :=
{

(ξ1, ξ2) ∈ R
2 : 1 < fj(ξ1, ξ2) ≤ 2,

and ξ1 − θξ2 > 0, 1 <
ξ1 − θ′ξ2
ξ1 − θξ2

≤ ε20 if d > 0
}
, (4.5)

with θ, θ′ as in Lemma 2. By homogeneity,

Bj(2W )\Bj(W ) = Z
2 ∩ (

√
W D0). (4.6)

We now apply Lemma 4, along with an obvious continuity argument:4 For
every point (ξ1, ξ2) ∈ D0 (the bar denoting the topological closure), there
exist a rational vector v∗ = v∗(ξ1, ξ2) �= (0, 0) and a positive number δ(ξ1, ξ2)
such that (with G = f

−1/2
j as in Lemma 4)

min
r=2,3,4

∣∣∣G(r)((ξ′
1, ξ

′
2);v

∗(ξ1, ξ2))
∣∣∣ > 0

for all (ξ′
1, ξ

′
2) ∈ R

2 with ‖(ξ′
1, ξ

′
2) − (ξ1, ξ2)‖2 < 2δ(ξ1, ξ2). Let

D∗(ξ1, ξ2) := {(ξ′
1, ξ

′
2) ∈ R

2 : ‖(ξ′
1, ξ

′
2) − (ξ1, ξ2)‖2 < δ(ξ1, ξ2)},

then D0 is covered by the union of all open discs D∗(ξ1, ξ2) with (ξ1, ξ2) ∈ D0,
and, by compactness, also by finitely many of them, say

D0 ⊆
K⋃

k=1

D∗(ξ(k)
1 , ξ

(k)
2 ).

We thus define sets Dk ⊆ D∗(ξ(k)
1 , ξ

(k)
2 ), k = 1, . . . ,K, by the recursion formula

Dk := D0 ∩
⎛

⎝D∗(ξ(k)
1 , ξ

(k)
2 ) \

⋃

1≤κ<k

D∗(ξ(κ)
1 , ξ

(κ)
2 )

⎞

⎠ .

These sets are pairwise disjoint, their union is D0, and any straight line inter-
sects every Dk in at most O(1) line segments. Further, for each k = 1, . . . ,K,
we find a vector v(k) ∈ Z

2, with coprime coordinates, which is collinear to
v∗(ξ(k)

1 , ξ
(k)
2 ). By construction, it is immediate that

min
k=1,...,K

min
r=2,3,4

inf
(ξ1,ξ2)∈Dk

∣∣∣G(r)((ξ1, ξ2);v(k))
∣∣∣ > 0. (4.7)

3 To visualize the domain D0 for d > 0, the figure in Zagier [15, p. 71] is helpful.
4 This part of the proof uses ideas which can be traced back to the author’s earlier work,
jointly with Krätzel [10].
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Moreover, for each v(k) there exists a vector v(k,2) ∈ Z
2 so that {v(k),v(k,2)}

forms a basis of Z
2. Hence every lattice point (u, v) ∈ Z

2 ∩ (
√
W Dk) has a

unique representation

(u, v) = m1v(k) +m2v(k,2), (m1,m2) ∈ Z
2,

and it is clear that m1,m2 � √
W. We keep m2 fixed and denote by U any of

the O(1) intervals which form the range for m1, such that

m1v(k) +m2v(k,2) ∈ Z
2 ∩ (

√
W Dk).

With (4.4) and Lemma 3 in the back of mind, we write

F (t) := Z G(tv(k) +m2v(k,2)),

then it is immediate by (4.7) and the homogeneity of G and its partial deriv-
atives that

F (r)(t) � ZW−(r+1)/2, r = 2, 3, 4,

as long as tv(k) + m2v(k,2) ∈ √
W Dk. For every subinterval U ′ of U we may

thus apply Lemma 3, with M � √
W,T � Z/

√
W, to deduce that5

∑

m1∈U ′
e(F (m1)) �[ε] W

141/820Z32/205 +
Z751/1968

W 751/3936
+W 871/2172 +

W 3/4

√
Z
.

In view of (4.4), we have to take into account the factors

fj(u, v)3/4 = fj(m1v(k) +m2v(k,2))3/4.

Since the first partial derivatives of f3/4
j are homogeneous of order 1

2 , it follows
that

fj(ξv(k) +m2v(k,2))3/4 � W 3/4,
d
dξ

(fj(ξv(k) +m2v(k,2))3/4) � W 1/4,

uniformly in ξ ∈ U . Therefore, summation by parts gives
∑

m1∈U
fj(m1v(k) +m2v(k,2))3/4e(F (m1))

�[ε] W
189/205Z32/205 +W 2201/3936Z751/1968 +W 625/543 +

W 3/2

√
Z
.

Trivial summation overm2 gives a factor
√
W, while summing over all domains

Dk and all ideal classes Cj just multiplies the bound by O(1). Hence, returning
to (4.3), we arrive at

E(W, I3) �[ε] W
583/410Z32/205+W 4169/3936Z751/1968+W 1793/1086+

W 2

√
Z
.

(4.8)

5 In what follows, we will use the notation A1 �[ε] A2 to mean that certain expressions A1

and A2 > 0, which may be ultimately bounded in terms of the large parameter Y, satisfy
A1 � A2Y ε, for every ε > 0.
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We recall the well-known fact that, for U large,

∑

1≤N(I)≤U

N(I)τ �

⎧
⎪⎨

⎪⎩

Uτ+1 for each fixed τ > −1,
logU for τ = −1,
1 for each fixed τ < −1.

(4.9)

Using this along with (4.8) and the fact that Z � √
Y N(I3) in (4.2), we

compute that
∑

W<N≤2W

N(I1)PF(Y/N(I1))

�[ε] W 2 + (UY )1/4W 1793/1086 + (UY )269/820W 583/410

+(UY )1735/3936W 4169/3936 + U−1/2W 3/2Y 1/2.

To optimize the estimate, we balance the third term at the right hand side
against the last one, to get U � W 64/679Y 141/679, and thus

∑

W<N≤2W

N(I1)PF(Y/N(I1))

�[ε] W
1973
1358Y

269
679 +W

1234823
737394 Y

205
679 +W

23917
21728Y

8675
16296 +W 2.

Summation over W = 2−rX/N(I2), r = 1, . . . , [log(X/N(I2))/ log 2] , replaces
just W by X/N(I2) at the right hand side. Finally, going back to (2.4) and
summing over I2, we arrive at

R �[ε] X
1973
1358Y

269
679 +X

1234823
737394 Y

205
679 +X

23917
21728Y

8675
16296 +X2.

In view of (2.3), this completes the proof of our Theorem.
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