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On the uniqueness of (p, h)-gonal automorphisms of Riemann
surfaces
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Abstract. Let X be a compact Riemann surface of genus g ≥ 2. A cyclic
subgroup of prime order p of Aut(X) is called properly (p, h)-gonal if it
has a fixed point and the quotient surface has genus h. We show that if
p > 6h + 6, then a properly (p, h)-gonal subgroup of Aut(X) is unique.
We also discuss some related results.
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1. Introduction. Throughout this paper X will be a compact Riemann sur-
face of genus g ≥ 2, and A = Aut(X) will denote the full group of (conformal)
automorphisms of X. It is a classical result that then A is a finite group whose
order is bounded by 84(g − 1).

Everywhere in the paper the letters p and q will, without exception, denote
prime numbers.

Definition 1.1. A subgroup H of Aut(X) is called (p, h)-gonal if H is cyclic of
order p and the quotient surface X/H has genus h. An automorphism σ of X
is called (p, h)-gonal if 〈σ〉 (the cyclic group generated by σ) is (p, h)-gonal.

The Riemann surface X is called cyclic (p, h)-gonal if it has a (p, h)-gonal
automorphism.

A (p, h)-gonal automorphism of Aut(X) is called properly (p, h)-gonal if it
has at least one fixed point on X. This is automatic for h ≤ 1.

The terminology generalizes the classical notion of p-gonal, which means
(p, 0)-gonal. Sometimes the word elliptic-p-gonal is used for (p, 1)-gonal.
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By the classical Castelnuovo inequality (see Theorem 2.1 below) a (p, h)-
gonal subgroup is unique if g > 2ph + (p − 1)2. Controlling the (p, h)-gonal
automorphisms when the genus is smaller is a subject of recent interest. We
concentrate on elliptic-p-gonal subgroups and omit the case p = 3 that requires
more case distinctions.

Theorem 1.2. Fix p > 3. Then

(a) All (p, 1)-gonal subgroups are conjugate in Aut(X).
(b) The number of (p, 1)-gonal subgroups in Aut(X) is bounded by 6p−1

p−6 if
p ≥ 7, and by 16 if p = 5.

Proof. (a) [11, Theorem 4.2] or as a special case of [12, Theorem 4.5].
(b) [11, Theorem 5.1] or as a special case of [12, Theorem 5.2].

�

Concerning the (earlier) analogous results on (p, 0)-gonal subgroups, see
[8, Theorem 1], [9, Theorem 2.1], and [13, Theorem 1] for successively simpler
proofs of the conjugacy. Their number is bounded in [10, Theorem 3.1 and
Corollary 3.2].

However, it seems to have escaped notice that one can actually obtain a
much stronger result than Theorem 1.2, namely uniqueness of the (p, h)-gonal
subgroup, provided p is sufficiently big compared to h. See Theorem 2.5 below
for elliptic-p-gonal automorphisms, Theorem 4.2 for proper (p, h)-gonal auto-
morphisms, and Theorems 4.3 and 4.4 for even more general results.

Our proofs are very short and use only elementary tools. But this is mainly
due to the fact that they heavily rely on Theorem 1.2, respectively its gener-
alization in [12], where the main work has been done.

2. On (p, 1)-gonal automorphisms. First, as promised, a special case of the
Castelnuovo inequality. See [1, Theorem 3.5] for the general version.

Theorem 2.1. Let C1 and C2 be distinct cyclic subgroups of A of (not nec-
essarily distinct) prime orders p1 and p2. If gi denotes the genus of X/Ci,
then

g ≤ p1g1 + p2g2 + (p1 − 1)(p2 − 1).

We recall two more fundamental facts, which we will use frequently.

Theorem 2.2. (a) If x ∈ X, then its stabilizer Ax := {σ ∈ A : σ(x) = x} is
a cyclic group.

(b) An automorphism σ ∈ A of prime order cannot have exactly one fixed
point on X.

Proof. (a) [7, Corollary III.7.7, p. 100].
(b) [7, Theorem V.2.11, p. 266].

�

The following is the key lemma for most of the paper.
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Lemma 2.3. Let H be a subgroup of A such that X/H has genus 1. Let σ be an
automorphism of X that has a fixed point on X. Assume that H ∩ 〈σ〉 = {id}
and that σ normalizes H. Then the order of σ is 1, 2, 3, 4 or 6.

Proof. Under those conditions σ induces an automorphism σ̃ of the same order
on X/H. Obviously, σ̃ inherits the fixed point from σ. It is well known that
an automorphism of a torus that fixes a point can only have one of the listed
orders. �

We state the next result in more generality than we need, as it might also
be useful when investigating certain p-Sylow subgroups of A.

Proposition 2.4. Let σ ∈ A be a (p, 1)-gonal automorphism with p > 3, and
let C ⊆ A be a cyclic group of order pe with σ ∈ C. Then the number
of (p, 1)-gonal subgroups of A is congruent to 1 modulo pe.

In particular, for p > 3 the number of (p, 1)-gonal subgroups of A (if there
are any) is congruent to 1 modulo p.

Proof. Consider the action of C by conjugation on the set of all (p, 1)-gonal
subgroups of A. Obviously, 〈σ〉 is fixed. We claim that all other orbits have
length pe. If not, then 〈σ〉 normalizes another (p, 1)-gonal subgroup H. But
then Lemma 2.3 contradicts the condition that σ has order p > 3. �

Now we are ready to state the first main result of this paper.

Theorem 2.5. Let X be cyclic (p, 1)-gonal.
(a) If p > 11, then the (p, 1)-gonal subgroup is unique (and hence normal) in

Aut(X).
(b) For p = 11 the possible numbers of (p, 1)-gonal subgroups are 1 and 12;

for p = 7 they are 1, 8, 15, 22, 29 and 36; and for p = 5 they are 1, 6,
11 or 16.

Proof. This follows from combining Theorem 1.2 and Proposition 2.4. �
What happens if we allow different primes at the same time?

Proposition 2.6. Suppose that Aut(X) has (p, 1)-gonal and (q, 1)-gonal auto-
morphisms for primes p < q. Then p ≤ 3, q ≤ 7 and g ≤ 10.

Proof. First let’s assume p > 3. Then the (q, 1)-gonal subgroup cannot be
unique, as this would contradict Lemma 2.3. Thus q ≤ 11 by Theorem 2.5.
Moreover, again by Lemma 2.3, the number of (q, 1)-gonal subgroups must be
divisible by p, and the number of (p, 1)-gonal subgroups must be divisible by
q. By Theorem 2.5 this excludes the remaining possibilities.

So we have shown p ≤ 3. If p = 2 and q = 3, the Castelnuovo inequality
shows g ≤ 7. If q ≥ 5, once again by Lemma 2.3, the (p, 1)-gonal subgroup
cannot be unique, and hence the Castelnuovo inequality implies g ≤ 10. This
in term implies q ≤ 7 by the Hurwitz formula. �

One of the results in [5], namely Theorem 7, says that if a genus 3 surface
is cyclic (3, 0)-gonal, then the (3, 0)-gonal subgroup is unique. The following
proposition might be considered as a generalization to other primes.
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Proposition 2.7. If the genus of X is a prime p > 7 and Aut(X) has a subgroup
of order p, then this subgroup is unique.

Proof. Let P be such a subgroup. From the Hurwitz formula it is clear that
P has exactly 2 fixed points and is (p, 1)-gonal. So for p > 11 everything is
already proved by Theorem 2.5.

Now let p = 11. If P is not unique, then by Theorem 2.5 there are exactly
12 such subgroups. Since by Theorem 1.2 they are all conjugate, we have |A :
NA(P )| = 12 where NA(P ) denotes the normalizer of P in A. So 11×12 = 132
divides the order of A. Actually, 132 is the order by the bound #A ≤ 240 for
g = 11 from [3, Table 13, p. 91].

Thus NA(P ) = P . On the other hand it is known (see [4, p. 575] or
[6, Corollary 3.2]) that in such a situation NA(P ) contains a dihedral group
D11 of order 22, which finishes the proof by contradiction.

Alternatively, by a simple group theoretic argument we can avoid using the
last fact. Counting shows that A has exactly 12 elements whose orders are
different from 11. So if the 3-Sylow subgroup is not normal, then the 2-Sylow
subgroup must be normal. Together they generate a subgroup B of order 12,
which for lack of other elements is normal in A. But B cannot contain 11
elements of the same order. So the action of P on B by conjugation is trivial,
which implies that P is normal in A. �

Remark 2.8. The uniqueness in Theorem 2.5 and Proposition 2.7 does not
hold for p = 7, as there exist Riemann surfaces of genus 7 whose automor-
phism group is the simple group PSL2(F8) (of order 504).

3. Interaction with (p, 0)-gonal automorphisms. In this section we show that
a Riemann surface X with g(X) ≥ 2 cannot be cyclic (p, 1)-gonal and cyclic
(q, 0)-gonal when both primes are bigger than 3.

Proposition 3.1. If X has a (p, 1)-gonal automorphism and a (p, 0)-gonal auto-
morphism, then p ≤ 3 and g(X) ≤ 7.

Proof. We could argue as in Section 2. Fix a (p, 0)-gonal automorphism σ, and
let 〈σ〉 act by conjugation on the set of all (p, 1)-gonal subgroups of A. Assum-
ing p > 3, Lemma 2.3 implies that all orbits have length p, in contradiction to
Proposition 2.4.

But a completely elementary argument also works. From the Hurwitz
formula we see that p − 1 divides 2g − 2 and 2g − 2 + 2p, so (p − 1)|2p.

Then g ≤ 7 follows from p ≤ 3 by Theorem 2.1. �

Proposition 3.2. If X has a (p, 1)-gonal subgroup and a (q, 0)-gonal subgroup
with p < q, then p ≤ 3 and g ≤ 10 and q ≤ 19.

Proof. Assume p > 3. Then q ≥ 7 and by Lemma 2.3 the number r of (p, 1)-
gonal subgroups must be divisible by q. By Theorem 2.5 the only possibilities
are (p, q, r) = (7, 11, 22), (7, 29, 29) and (5, 11, 11). By [14, Theorem 8.1] in
these cases the (q, 0)-gonal subgroup 〈σ〉 must be normal. (Here we are using
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that by [8, Theorem 1] or [9, Theorem 2.1] all (q, 0)-gonal subgroups are conju-
gate; so a cyclic (q, 0)-gonal surface is either normal (q, 0)-gonal or non-normal
(q, 0)-gonal, but not both.)

Fix a (p, 1)-gonal subgroup H = 〈τ〉. Then στ = τσn for some n < q, which
shows that τ acts on the fixed points of σ.

If (p, q) = (7, 11), necessarily n = 1, contradicting Lemma 2.3.
If (p, q) = (7, 29), we have g ≤ 50 since H is not unique. Thus by the

Hurwitz formula σ has at most 5 fixed points. So H and σ have a common
fixed point, and hence by Theorem 2.2 (a) they commute, contradicting Lemma
2.3.

We are left with the case (p, q) = (5, 11). Then g ≤ 26, and actually g = 15
since the number of fixed points of σ must be divisible by 5. Since τ induces
a nontrivial automorphism of the genus 0 surface X/〈σ〉, some of the 7 fixed
points of τ on X must fall together on X/〈σ〉. So assume that τ(x) = x and
that σ(x) is also a fixed point of τ . Then τσn(x) = στ(x) = σ(x) = τσ(x).
So n = 1 or x is also a fixed point of σ, either one a contradiction. Finally we
have proved p ≤ 3.

If p = 2 and q = 3, then g ≤ 4 by Theorem 2.1. In all other cases q is bigger
than 3; then the (p, 1)-gonal subgroup cannot be unique, which by Theorem
2.1 implies g ≤ 10. This forces q ≤ 19 by the Hurwitz formula. �

Proposition 3.3. If X has a (p, 1)-gonal subgroup and a (q, 0)-gonal subgroup
with p > q, then q ≤ 3. Moreover, if X is not hyperelliptic, then the (3, 0)-gonal
subgroup is unique.

Proof. Assume q > 3. Then, as several times before, the number of (p, 1)-gonal
subgroups must be divisible by q. This leaves only the possibility p = 7, q = 5.

Now fix a (7, 1)-gonal subgroup H. If the (5, 0)-gonal subgroup 〈σ〉 were
normal, H would act trivially on it, so they would commute element-wise.
Hence σ would normalize H, in contradiction to Lemma 2.3. Thus A has a
non-normal (5, 0)-gonal subgroup and 35 divides the order of A. But by [14,
Theorem 8.1] no such A exists. So we have shown q ≤ 3.

Now assume that A has more than one (3, 0)-gonal subgroup. Then g ≤ 4
and hence p ≤ 3, so q ≤ 2, which means that X is hyperelliptic. �

Remark 3.4. In Proposition 3.3 we can neither bound p nor the genus of X.
In fact, for every prime p > 7 there exist uncountably many hyperelliptic

surfaces of genus p with a (p, 1)-gonal automorphism, for example

Y 2 = X(Xp − 1)(Xp − λ)

with λ ∈ C different from 0 and 1. The obvious automorphism group of order
p is unique by Proposition 2.7. Its quotient is the genus 1 surface

U2 = W (W − 1)(W − λ)

with W = Xp and U = X
p−1
2 Y . So if two surfaces of genus p as above are

isomorphic, the corresponding genus 1 surfaces must also be isomorphic. But
for any given λ0 there are at most 5 further values λ for which this happens.
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Also, for every prime p ≥ 5 there exist cyclic trigonal surfaces of genus p
with a (p, 1)-gonal automorphism, for example

Y 3 = X(Xp − 1) if p ≡ 1 mod 3,

Y 3 = X2(Xp − 1) if p ≡ 2 mod 3.

We finish this section with another result in the spirit of the previous proofs.

Lemma 3.5. Let p > 7 and let A have a non-normal (p, 0)-gonal subgroup.
Then p2 divides the order of A.

Proof. Let P be such a non-normal (p, 0)-gonal subgroup. Then there exists a
conjugate Pα of P in A with Pα 
= P . By [10, Corollary 3.2] the orbit of Pα

under conjugation with elements from P is bounded by 6p−2
p−6 < p for p ≥ 11.

Hence P normalizes Pα. Consequently, P and Pα commute element-wise and
generate a group of order p2. �

This lemma might seem a bit aimless, but actually it offers an alterna-
tive proof to the arguments in Section 7 of [14] that for non-normal cyclic
(p, 0)-gonal X with p > 7 the case p2 
 | #A does not occur.

4. Properly (p, h)-gonal automorphisms with h ≥ 2. Theorem 1.2 has been
generalized to properly (p, h)-gonal subgroups in [12] (Theorems 4.5 and 5.2).
We reproduce only the part that we need, in slightly modified form.

Lemma 4.1. Let h ≥ 2 and p > 2h + 1. Then the size of a conjugacy class of
properly (p, h)-gonal subgroups in A is bounded by 6(h + 6h−1

p−6 ).

Proof. Under these conditions the size was bounded in [12, Theorem 5.2] by
6 (p−1)(g−1)

(p−6)(g−1−p(h−1)) . We rewrite this as 6p−1
p−6 (1 + p(h−1)

g−1−p(h−1) ). Since the sub-
group acts properly, by the Hurwitz formula and Theorem 2.2 (b) we have
g − 1 − p(h − 1) ≥ p − 1. So we can bound the size of the conjugacy class by
6p−1

p−6 (1 + p(h−1)
p−1 ) = 6ph−1

p−6 = 6(h + 6h−1
p−6 ). �

Theorem 4.2. Fix h ≥ 1 and p > 6h+6. Then for every properly cyclic (p, h)-
gonal Riemann surface X the properly (p, h)-gonal subgroup is unique (and
hence normal) in Aut(X).

Proof. For h = 1 this is part of Theorem 2.5.
So let h ≥ 2. Assume that there are two distinct properly (p, h)-gonal

subgroups P1 and P2. By Lemma 4.1 the length of the orbit of P1 under con-
jugation with elements from P2 is bounded by 6(h+ 6h−1

p−6 ), which for p > 6h+6
is smaller than 6(h + 6h−1

6h ) ≤ p − 1
h < p. Hence P2 normalizes P1 and induces

an automorphism of order p on the genus h surface X/P1. But this is not
possible for p > 2h + 1. �

We can even go one step further.
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Theorem 4.3. Suppose that Aut(X) has a proper (p, h)-gonal subgroup P with
h ≥ 2 and p > 6h + 6. Then Aut(X) has no other subgroups at all of prime
order q with q ≥ p. Actually, p is the biggest prime divisor of #Aut(X), every
other prime divisor is smaller than p

3 , and p2 does not divide the order of
Aut(X). Moreover, #Aut(X) is smaller than 14p(p−12), and P is the unique
p-Sylow subgroup of Aut(X) and hence normal.

Proof. Let Q be any subgroup of prime order q ≥ p of Aut(X). Note that we
do not make any assumptions on the genus of X/Q; and we also do not require
that Q is proper.

Then Q normalizes P , because as in the proof of Theorem 4.2 the length
of the orbit of P under conjugation with Q is smaller than p ≤ q.

If Q is different from P , then it induces an automorphism of order q on the
genus h surface X/P . But this is not possible since q ≥ p > 2h + 1.

Similarly, P cannot be contained in a cyclic group of order p2, because that
would also induce an automorphism of order p on X/P . As there also are no
other subgroups of order p, we see that P is a p-Sylow subgroup of Aut(X),
unique, and hence normal.

Thus Aut(X)/P is a subgroup of Aut(X/P ). But the order of Aut(X/P )
is bounded by 84(h − 1) < 14(p − 12), and its prime divisors are bounded by
2h + 1 < p

3 . �

One implication is that Riemann surfaces satisfying the condition of
Theorem 4.3 are presumably rare.

On the other hand, starting with a Riemann surface R of genus h ≥ 2, one
can, for every prime p > 6h + 6, easily construct cyclic coverings X → R of
degree p of arbitrarily large genus. Theorem 4.3 says that the automorphism
groups of such coverings are subject to severe restrictions.

It was already proved in [12, Corollary 4.6] that p2 does not divide #Aut(X)
for (p, h)-gonal X with p > 2h+1 and h ≥ 2. By the Sylow theorems, then all
(p, h)-gonal P are conjugate [12, Theorem 4.5]. But the bound on the size of
the conjugacy class in [12, Theorem 5.2] only makes sense for properly (p, h)-
gonal P . However, at the price of making p much bigger than h we can get a
version of Theorem 4.3 without this condition.

Theorem 4.4. Suppose that P ⊆ Aut(X) is (p, h)-gonal with p > 84(h−1) and
h ≥ 2. Then all the conclusions of Theorem 4.3 hold. Moreover, q < p

42 + 3
for all prime divisors q 
= p of #Aut(X).

Proof. By Theorem 4.3 we can suppose that P has no fixed points. Then
g = p(h − 1) + 1 and #Aut(X) ≤ 84(g − 1) < p2. So the uniqueness of P
is a consequence of the Sylow theorems. The rest follows as in the proof of
Theorem 4.3. �

For (p, 2)-gonal automorphisms without fixed points Theorem 4.3 remains
true, and actually much more precise results can be read off from [2, Theorem
1] in combination with [2, Section 6].
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