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Top local cohomology modules and Gorenstein injectivity
with respect to a semidualizing module
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Abstract. Let (R, m) be a commutative Noetherian local ring of Krull
dimension d, and let C be a semidualizing R-module. In this paper, it is
shown that if R is complete, then C is a dualizing module if and only
if the top local cohomology module of R, Hd

m(R), has finite GC-injective
dimension. This generalizes a recent result due to Yoshizawa, where the
ring is assumed to be complete Cohen-Macaulay.
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1. Introduction. Throughout this paper, R is a commutative Noetherian ring
and all modules are unital. In [3, Corollary 9.5.13] it is shown that a local
ring (R,m) is Gorenstein if and only if R is a Cohen-Macaulay ring and the
top local cohomology module of R,Hdim R

m (R), is isomorphic to E(R/m). In
[9] Sazeedeh showed that over a Gorenstein local ring of Krull dimension at
most two the top local cohomology module Hdim R

J (R) is a Gorenstein injec-
tive R-module for any ideal J of R. Later, in [10] it is shown that over a
complete Cohen-Macaulay local ring (R,m) of Krull dimension d the top local
cohomology module Hd

m(R) is a strongly cotorsion module. Recently, in [15]
Yoshizawa generalized Sazeedeh’s results, using the fact that over a Gorenstein
ring with finite Krull dimension strongly cotorsion modules are precisely Go-
renstein injective modules. Recall that the class of strongly cotorsion modules,
which contains the class of injective modules, has been introduced by Xu in
[14]. Indeed, Yoshizawa showed that over a complete Cohen-Macaulay local
ring (R,m) of Krull dimension d the following conditions are equivalent:
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(i) R is Gorenstein.
(ii) Hd

m(R) is an injective R-module.
(iii) Hd

m(R) is a Gorenstein injective R-module.
Over a commutative local ring, semidualizing modules provide a common gen-
eralization of a dualizing (canonical) module and a free module of rank one.
In this paper, we extend the recent result of Yoshizawa in the relative setting
with respect to a semidualizing module C. Indeed, we give a characterization
of a dualizing module C in term of GC-injectivity of local cohomology mod-
ules. More precisely in Theorem 3.1, we show that:
Let (R,m) be a complete local ring of Krull dimension d and let C be a semid-
ualizing R-module. Then the following statements are equivalent.
(i) C is a dualizing R-module.
(ii) Hd

m(R) is a C-injective R-module.
(iii) Hd

m(R) is a GC-injective R-module.
(iv) Hd

m(R) has finite GC-injective dimension.

2. Preliminaries. Throughout this paper R is a commutative Noetherian ring
and M(R) denotes the category of R-modules. We use the term “subcategory”
to mean a “full, additive subcategory X ⊆ M(R) such that, for all R-mod-
ules M and N, if M ∼= N and M ∈ X , then N ∈ X”. Write P(R),F(R)
and I(R) for the subcategories of all projective, flat and injective R-modules,
respectively.

An R-complex is a sequence

X = · · · ∂X
n+1−→ Xn

∂X
n−→ Xn−1

∂X
n−1−→ · · ·

of R-modules and R-homomorphisms such that ∂X
n−1∂

X
n = 0 for each integer

n.

Definition 2.1. Let X be a class of R-modules and let M be an R-module. An
X -resolution of M is a complex of R-modules in X of the form

X = · · · ∂X
2−→ X1

∂X
1−→ X0 −→ 0

such that H0(X) ∼= M and Hn(X) = 0 for n � 1. The X -projective dimension
of M is the quantity

X - pdR(M) = inf{sup{n|Xn �= 0}|X is an X -resolution of M}.

In particular, X - pdR(0) = −∞. The modules of X -projective dimension
zero are the non-zero modules in X .
Dually, an X -coresolution of M is a complex of R-modules in X of the form

X = 0 −→ X0
∂X
0−→ X−1

∂X
−1−→ · · ·

such that H0(X) ∼= M and Hn(X) = 0 for n � −1. The X -injective dimension
of M is the quantity

X - idR(M) = inf{sup{n|Xn �= 0}|X is an X -coresolution of M}.
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In particular, X - idR(0) = −∞. The modules of X -injective dimension zero
are the non-zero modules in X .
When X is the class of projective R-module we write pdR(M) for the associated
homological dimension and call it the projective dimension of M. Similarly, the
flat and injective dimensions of M are denoted fdR(M) and idR(M).

The notion of semidualizing modules, defined next, goes back at least to
Vasconcelos [12], but was rediscovered by others. For more details about semid-
ualizing module the reader may consult [1] and [6–8].

Definition 2.2. A finitely generated R-module C is called semidualizing if
the natural homothety morphism R → HomR(C,C) is an isomorphism and
Ext�1

R (C,C) = 0. An R-module D is called dualizing if it is semidualizing and
has finite injective dimension.

For a semidualizing R-module C, we set

PC(R) = {P ⊗R C| P is a projective R-module},

FC(R) = {F ⊗R C| F is a flat R-module},

IC(R) = {HomR(C , I )| I is an injective R-module},

The R-modules in PC(R),FC(R) and IC(R) are called C-projective, C-flat
and C-injective, respectively.

The next definition is due to Holm and Jørgensen [4].

Definition 2.3. Let C be a semidualizing R-module. A complete ICI-resolution
is a complex Y of R-modules satisfying the following:
(i) Y is exact and HomR(I, Y ) is exact for each I ∈ IC(R), and
(ii) Yi ∈ IC(R) for all i � 0 and Yi is injective for all i < 0.

An R-module M is GC-injective if there exists a complete ICI-resolution Y
such that M ∼= Coker(∂Y

1 ); in this case Y is a complete ICI-resolution of M.

A complete PPC-resolution is a complex X of R-modules such that:
(i) X is exact and HomR(X,P ) is exact for each P ∈ PC(R), and
(ii) Xi is projective for all i � 0 and Xi ∈ PC(R) for all i < 0.

An R-module M is GC-projective if there exists a complete PPC-resolution X
such that M ∼= Coker(∂X

1 ); in this case X is a complete PPC-resolution of M.

A complete FFC-resolution is a complex Z of R-modules such that:
(i) Z is exact and Z ⊗R I is exact for each I ∈ IC(R), and
(ii) Zi is flat for all i � 0 and Zi ∈ FC(R) for all i < 0.

An R-module M is GC-flat if there exists a complete FFC-resolution Z such
that M ∼= Coker(∂Z

1 ); in this case Z is a complete FFC-resolution of M.

Definition 2.4. Let (R,m) be a local ring. A finitely generated R-module K is
said to be a canonical module of R if HomR(Hd

m,E(R/m)) ∼= ̂K, where E(R/m)
is the injective hull of R/m.
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Note that if R is a complete local ring, then HomR(Hd
m,E(R/m)) is a canon-

ical module of R. If R is a Cohen-Macaulay ring, then K is a canonical module
of R if and only if K is a dualizing module of R (see [6, Corollary 2.2.13]).

Definition 2.5. Let (R,m) be a local ring and let M be an R-module. Then
the R-module M∨ = HomR(M,E(R/m)) is called the Matlis dual of M.

3. Main result. The purpose of this section is to extend the recent result of
Yoshizawa [15, Theorem 2.6] in the relative setting with respect to the semid-
ualizing module C. Indeed, we give a characterization of the dualizing module
C by GC-injectivity of top local cohomology modules.

First we recall the notion of trivial extension of the ring R by an R-module.
If C is an R-module, then the direct sum R ⊕ C can be equipped with the
product:

(a, c)(a′, c′) = (aa′, ac′ + a′c),

where a, a′ ∈ R and c, c′ ∈ C. This turns R ⊕ C into a ring which is called the
trivial extension of R by C and denoted R�C. There are canonical ring homo-
morphism R � R�C, which enable us to view R-modules as (R�C)-modules
and vice versa.

Theorem 3.1. Let (R,m) be a complete local ring of Krull dimension d and let
C be a semidualizing R-module. Then the following statements are equivalent.
(i) C is a dualizing R-module.
(ii) Hd

m(R) is a C-injective R-module.
(iii) Hd

m(R) is a GC-injective R-module.
(iv) Hd

m(R) has finite GC-injective dimension.

Proof. (i) ⇒ (ii) Let C be a dualizing R-module. Since C is a non-zero finitely
generated R-module of finite injective dimension, a corollary of the new inter-
section theorem implies that R is Cohen-Macaulay. By [3, Remark 9.5.18] we
have

HomR(Hd
m(R),E(R/m)) ∼= ̂C.

Therefore C is a canonical module of R. Using the Local Duality Theorem (see
[3, Theorem 9.5.17]) we have

Hd
m(R) ∼= HomR(HomR(R,C),E(R/m)) ∼= HomR(C, E(R/m)).

Thus Hd
m(R) is a C-injective R-module.

(ii) ⇒ (iii) In [13, Proposition 2.6] White showed that projective R-modules
and C-projective R-modules are GC-projective. Similarly, one can show that
injective R-modules and C-injective R-modules are GC-injective.

(iii) ⇒ (iv) It is trivial.
(iv) ⇒ (i) Suppose that Hd

m(R) has finite GC-injective dimension. Since
Hd

m(R) is an Artinian R-module we have Hd
m(R)∨ is a finitely generated

R-module (see [3, Theorem 3.4.7]). By [4, Theorem 2.16], Gid R�C(Hd
m(R)) <

∞. Since R is complete, Gfd R�C(Hd
m(R)∨) < ∞ by [2, Theorem 4.25]. So
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Gpd R�C(Hd
m(R)∨)<∞, by [2, Theorem 4.23]. In addition, GPC- pdR(Hd

m(R)∨)
= Gpd R�C(Hd

m(R)∨) < ∞, by [4, Theorem 2.16]. The Local Duality Theorem
implies that Hd

m(R)∨ ∼= Ω, where Ω is a canonical module of R. By definition,
this module is non-zero and finitely generated, so it has finite depth, and it
has finite injective dimension. Since it has finite GC-projective dimension, the
fact that C is dualizing follows from [8, Corollary 2.9]. �

Remark 3.2. Let C be a semidualizing R-module. The Auslander class with
respect to C is the class AC(R) of R-modules M such that:

(i) TorR
i (C,M) = 0 = Exti

R(C,C ⊗R M) for all i � 1, and
(ii) the natural map M → HomR(C,C ⊗R M) is an isomorphism.

The Bass class with respect to C is the class BC(R) of R-modules M such
that:

(i) Exti
R(C,M) = 0 = TorR

i (C,HomR(C,M)) for all i � 1, and
(ii) the natural evaluation map C ⊗R HomR(C,M) → M is an isomorphism.

The class AC(R) contains all R-modules of finite flat dimension and the class
BC(R) contains all R-modules of finite injective dimension (see [11, 1.9]). Also,
Takahashi and White in [11, Corollary 2.9] showed that if PC − pdR(M) < ∞
(resp. IC − idR(M) < ∞), then M ∈ BC(R) (resp. M ∈ AC(R)).

Now it is natural to ask what can we say about C when the top local coho-
mology module of local ring R is in AC(R) or BC(R)? What happens if the
top local cohomology module of C is C-injective?

These authors do not know the general answer yet. But we have the fol-
lowing partial answer.

Proposition 3.3. Let (R,m) be a complete local ring of Krull dimension d, and
let C be a semidualizing R-module. Assume that R has a dualizing module D,
and set C ′ = HomR(C,D). Then C ′ ∼= R if and only if Hd

m(R) ∈ BC′(R).

Proof. The forward implication is clear, because BR(R) = M(R). For the
reverse implication, assume that Hd

m(R) ∈ BC′(R). Then Hd
m(R) has finite

GC-injective dimension by [4, Theorem 4.6]. By Theorem 3.1, C is dualizing.
So we conclude that C ′ ∼= R. �
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