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Martingale inequalities in noncommutative symmetric spaces
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Abstract. We investigate the Burkholder–Gundy inequalities in a noncom-
mutative symmetric space E(M) associated with a von Neumann algebra
M equipped with a faithful normal state. The results extend the Pisier–
Xu noncommutative martingale inequalities, and generalize the classical
inequalities in the commutative case.
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1. Introduction. In classical martingale theory, the famous Burkholder–
Gundy inequalities can be stated as follows: given a probability space (Ω,F , P ),
let {Fn}n≥1 be a nondecreasing sequence of σ-fields of F such that F = ∨Fn.
Given 1 < p < ∞ and an Lp-bounded martingale f = (fn)n≥1, we have

‖f‖Lp
≈
∥
∥
∥
∥
∥
∥

( ∞∑

k=1

|dfk|2
)1/2

∥
∥
∥
∥
∥
∥

Lp

. (1.1)

Note however that in strong contrast with the classical case, the square func-
tion S(f) = (

∑∞
k=1 |dfk|2)1/2 in the noncommutative (quantum) case can take

two different forms so it is very important to formulate the ‘right’ square func-
tions. This surprising phenomenon was already discovered by Lust-Piquard in
[14] while establishing a noncommutative version of the Khintchine inequal-
ities. The square function is defined differently (and it must be changed!)
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according to p < 2 or p ≥ 2. Within this spirit, the noncommutative ana-
logues of the inequalities (1.1) were successfully obtained by Pisier and Xu in
[15]. More precisely, for 2 ≤ p < ∞, and any finite noncommutative Lp(M)-
martingale x = (xn)n≥1, (1.1) has the following noncommutative version,

‖x‖Lp(M) ≈ max{‖Sc(x)‖Lp(M), ‖Sr(x)‖Lp(M)}, (1.2)

where Sc(x) and Sr(x) denote column and row versions of square function,
see Section 2 for the definitions. Moreover, they obtained a similar inequality
for 1 < p < 2 by duality. Recently, Randrianantoanina [16] proved a weak-
type inequality for square functions, which implies Pisier–Xu’s noncommuta-
tive martingale inequalities by interpolation.

In this paper we consider the Burkholder–Gundy inequalities for noncom-
mutative symmetric space E(M), 1 < pE ≤ qE < ∞, where pE and qE denote
the low Boyd index and the upper Boyd index, respectively. We refer to [13]
for the detailed discussions. One of our main results can be stated as follows
(see Theorem 3.1 for the detailed statement): for 2 < pE ≤ qE < ∞, and any
bounded E(M)-martingale x = (xn)n≥1, we have

‖x‖E(M) ≈ max{‖Sc(x)‖E(M), ‖Sr(x)‖E(M)}. (1.3)

Note that if E = Lp, 2 < p < ∞, we come back to the inequalities (1.2). We
also extend these inequalities to the case 1 < pE ≤ qE < 2. Our proof uses a
very recent result of Le Merdy–Sukochev in [12] on the Khintchine inequalities
in noncommutative symmetric spaces. We should point out that in [1], the
inequality (1.3) also be obtained, however, the rearrangement invariant space
E is required to be p-convex with p > 2 and q-concave with q < ∞. Obviously,
our conditions are much weaker.

2. Preliminaries. Now we introduce the noncommutative symmetric spaces.
Let (M, τ) be a tracial noncommutative probability space. Let L0(M) denote
the topological ∗-algebra of all measurable operators with respect to (M, τ).
For x ∈ L0(M), define its generalized singular number by

μt(x) = inf{λ > 0 : τ(χ(λ,∞)(|x|)) ≤ t}, t > 0.

The function t → μt(x) from (0, 1) to [0,∞) is right continuous, nonin-
creasing and is the inverse of the distribution function λ(x), where λs(x) =
τ(χ(λ,∞)(|x|)), for s ≥ 0. For a complete study of μ(·) and λ(·), we refer to [8].
For the definition below, we refer to [3] and [13] for the theory of rearrangement
invariant function spaces.

Definition 2.1. Let E be a rearrangement invariant Banach function space
on [0, 1]. We define the symmetric space E(M, τ) of measurable operators by
setting

E(M, τ) = {x ∈ L0(M) : μ(x) ∈ E}
and

‖x‖E(M,τ) = ‖μ(x)‖E , x ∈ E(M, τ).
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It is well known that E(M, τ) is a Banach space if E is Banach space.
The space E(M, τ) is often referred to as the noncommutative analogue of the
function space E and if E = Lp[0, 1] for 1 ≤ p ≤ ∞, then E(M, τ) coincides
with the usual noncommutative Lp-space associated with (M, τ). We refer to
[4–6,11] and [17] for more detailed discussions about these spaces. For a finite
sequence a = (an)n≥1 in E(M), we define

‖a‖E(M;�2c) =
∥
∥
∥

(∑

n

|an|2
)1/2∥

∥
∥

E(M)
, ‖a‖E(M;�2r) =

∥
∥
∥

(∑

n

|a∗
n|2
)1/2∥

∥
∥

E(M)
.

Now, any finite sequence a = (an) in E(M) can be regarded as an element
in E(M⊗B(�2)). Therefore, ‖ · ‖E(M,�2c) defines a norm on the family of all
finite sequences in E(M). The corresponding completion is a Banach space,
denoted by E(M, �2c). There are the same arguments for E(M, �2r).

We now recall the general setup for noncommutative martingales. Let
(Mn)n≥1 be an increasing sequence of von Neumann subalgebras of M such
that the union of M′

ns is weak∗-dense in M. For each n ≥ 1, it is well known
that there is a unique normal faithful conditional expectation En from M onto
Mn. Since En is trace preserving, it extends to a contractive projection from
Lp(M, τ) onto Lp(Mn, τn) for all 1 ≤ p ≤ ∞ where τn is the restriction of τ
on Mn. More generally, a simple interpolation argument would prove that if
E is a rearrangement invariant Banach function space on [0, 1], then En is a
contraction from E(M, τ) onto E(Mn, τn).

Recall that a noncommutative martingale with respect to the filtration
(Mn)n≥1 is a sequence x = (xn)n≥1 in L1(M, τ) such that

En(xn+1) = xn, ∀n ≥ 1.

If additionally, xn ∈ E(M) for n ≥ 1, then x is called an E(M)-martingale.
In this case, we set

‖x‖E(M) = sup
n≥1

‖xn‖E(M).

If ‖x‖E(M) < ∞, then x is called a bounded E(M)-martingale. The differ-
ence sequence dx = (dxn)n≥1 is defined by dxn = xn − xn−1 with the usual
convention that x0 = 0. We describe the square functions of noncommutative
martingales. Following [15], we will consider the following column and row
versions of the square function: for a finite martingale x = (xn), set

Sc(x) =
(∑

n

|dxn|2
)1/2

, Sr(x) =
(∑

n

|dx∗
n|2
)1/2

.

Define Hc
E(M), respectively Hr

E(M), to be the space of all E(M)-martingales
such that dx ∈ E(M; �2c), respectively dx ∈ E(M; �2r), and set

‖x‖Hc
E(M) = ‖dx‖E(M;�2c), ‖x‖Hr

E(M) = ‖dx‖E(M;�2r).

Equipped respectively with the previous norms, Hc
E(M) and Hr

E(M) are
Banach spaces. We then define the Hardy spaces HE(M). For 1 < pE ≤
qE < 2,

HE(M) = Hc
E(M) + Hr

E(M),
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with the norm

‖x‖HE
= inf{‖y‖Hc

E
+ ‖z‖Hr

E
: x = y + z, y ∈ Hc

E(M), z ∈ Hr
E(M)}

For 2 < pE ≤ qE < ∞,

HE(M) = Hc
E(M) ∩ Hr

E(M),

with the norm

‖x‖HE
= max{‖x‖Hc

E
, ‖x‖Hr

E
}.

Throughout the paper the letter C will denote a positive constant, which
only depend on E but never on the martingales in consideration, and which
may change from line to line. The notation “≈” means norm equivalence.

3. The Burkholder–Gundy inequalities. We now investigate the Burkholder–
Gundy inequalities for the noncommutative symmetric space E(M). The prin-
cipal result of this section is the following

Theorem 3.1. Let 1 < pE ≤ qE < ∞, and let x = (xn)n≥1 be a bounded
E(M)-martingale. Then

(1) for 2 < pE ≤ qE < ∞
‖x‖E(M) ≈ max{‖Sc(x)‖E(M), ‖Sr(x)‖E(M)} ; (3.1)

(2) for 1 < pE ≤ qE < 2

‖x‖E(M) ≈ inf
x=y+z

{‖Sc(y)‖E(M) + ‖Sr(z)‖E(M)}, (3.2)

where the infimum runs over all decompositions dxn = dyn +dzn with dyn, dzn

being martingale difference sequences.

The following proposition is the key ingredient of our proof.

Proposition 3.2. Let 1 < pE ≤ qE < ∞ and let (εn) be a Rademacher sequence.
Then for any bounded E(M)-martingale,

∥
∥
∥

∑

n

dxn ⊗ εn

∥
∥
∥

E(M⊗̄L∞(Ω))
≈ ‖x‖E(M).

Proof. Consider the operator

T : Lp(M) −→ Lp(M⊗̄L∞(Ω))

by

Tx =
∑

n

dxn ⊗ εn, ∀x ∈ Lp(M) and xn = En(x).

By Theorem 2.1 in [15],

‖x‖Lp(M) =
∥
∥
∥

∑

n

dxn

∥
∥
∥

Lp(M)
≈
∥
∥
∥

∑

n

dxn ⊗ εn

∥
∥
∥

Lp(M⊗̄L∞(Ω))
. (3.3)
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Then T is bounded in Lp(M) for all 1 < p < ∞. Choosing r, s to satisfy
1 < r < pE ≤ qE < s < ∞. Theorem 2.b.11 in [13] gives that E is an inter-
polation space for the couple (Lr, Ls). Then by interpolation (see Proposition
2.1 in [12] or Theorem 3.4 in [7]), we obtain

∥
∥
∥

∑

n

dxn ⊗ εn

∥
∥
∥

E(M⊗̄L∞(Ω))
≤ C‖x‖E(M).

In order to prove the inverse inequality, recall that for any 1 < p < ∞,
P ⊗ ILp(M) extends to a bounded projection Lp(Ω;Lp(M)) → Lp(Ω;Lp(M)),
where P : L2(Ω) → L2(Ω) is the orthogonal projection onto the closed sub-
space generated by the εk and ILp(M) denotes the identity map on Lp(M).
Considering T : Lp(M⊗̄L∞(Ω)) −→ Lp(M),

T
(∑

n

an ⊗ εn

)

=
∑

n

En(an) − En−1(an), ∀(an) ⊂ Lp(M).

Noting that (En(an)−En−1(an)) is a martingale difference sequence, it follows
from (3.3) that

∥
∥
∥

∑

n

(

En(an) − En−1(an)
)∥
∥
∥

Lp(M)

≤ C
∥
∥
∥

∑

n

(

En(an) − En−1(an)
)

⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
)

≤ C
∥
∥
∥

∑

n

En(an) ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
)

+C
∥
∥
∥

∑

n

En−1(an) ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
)

Now we use the noncommutative Khintchine inequality and the noncommuta-
tive Stein inequality to estimate the inequality above. For p ≥ 2,

∥
∥
∥

∑

n

En(an) ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
)

≤ C max

{
∥
∥
∥

(∑

n

∣
∣En(an)

∣
∣
2
) 1

2
∥
∥
∥

Lp(M)
,
∥
∥
∥

(∑

n

∣
∣En(an)∗∣∣2

) 1
2
∥
∥
∥

Lp(M)

}

≤ C max

{
∥
∥
∥

(∑

n

∣
∣an

∣
∣
2
) 1

2
∥
∥
∥

Lp(M)
,
∥
∥
∥

(∑

n

∣
∣a∗

n

∣
∣
2
) 1

2
∥
∥
∥

Lp(M)

}

≤ C
∥
∥
∥

∑

n

an ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
)

For 1 < p < 2, let an = bn + cn be any decomposition with bn and cn in
Lp(M), then En(an) = En(bn) + En(cn). Hence
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∥
∥
∥

∑

n

En(an) ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
)

≤ C

(
∥
∥
∥

(∑

n

∣
∣En(bn)

∣
∣
2
) 1

2
∥
∥
∥

Lp(M)
+
∥
∥
∥

(∑

n

∣
∣En(cn)∗∣∣2

) 1
2
∥
∥
∥

Lp(M)

)

≤ C

(
∥
∥
∥

(∑

n

∣
∣bn

∣
∣
2
) 1

2
∥
∥
∥

Lp(M)
+
∥
∥
∥

(∑

n

∣
∣c∗

n

∣
∣
2
) 1

2
∥
∥
∥

Lp(M)

)

Now taking infimum over all the decompositions above, we get
∥
∥
∥

∑

n

En(an) ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
) ≤

∥
∥
∥

∑

n

an ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
).

Similarly,
∥
∥
∥

∑

n

En−1(an) ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
) ≤

∥
∥
∥

∑

n

an ⊗ εn

∥
∥
∥

Lp

(

M⊗̄L∞(Ω)
).

Therefore, for all 1 < p < ∞, T : Lp(M⊗̄L∞(Ω)) → Lp(M) is bounded.
Noting that P ⊗ ILp(M) extends to a bounded projection Lp(M⊗̄L∞(Ω)) →
Lp(M⊗̄L∞(Ω)), by interpolation again, we have
∥
∥
∥

∑

n

(

En(an) − En−1(an)
)∥
∥
∥

E(M)
≤ C

∥
∥
∥

∑

n

an ⊗ εn

∥
∥
∥

E(M)
, ∀(an) ⊂ Lp(M).

We get the desired inequality by taking (an) = (dxn). The proof is com-
plete. �

It is easy to recognize that the following lemma is the Stein inequality for
noncommutative symmetric spaces.

Lemma 3.3. Let 1 < pE ≤ qE < ∞ and let a = (an)n≥1 be a finite sequence in
E(M). Then there exists a constant C such that

∥
∥
∥

(∑

n

|En(an)|2
) 1

2
∥
∥
∥

E(M)
≤ C

∥
∥
∥

(∑

n

|an|2
) 1

2
∥
∥
∥

E(M)
.

Proof. Let us consider the von Neumann algebra tensor product M⊗̄B(�2)
with the product trace τ ⊗ tr. Then τ ⊗ tr is a semi-finite normal faith-
ful trace. Let E(M⊗̄B(�2)) be the associated noncommutative symmet-
ric space. Then E(M⊗̄B(�2)) is an interpolation space for the couple
(Lp(M⊗̄B(�2)), Lq(M⊗̄B(�2))), where 1 < p < pΦ ≤ qΦ < q < ∞. Recall-
ing that the column subspace of Lp(M⊗̄B(�2)) is a 1-complemented subspace,
we define

T : Lp(M⊗̄B(�2)) + Lq(M⊗̄B(�2)) → Lp(M⊗̄B(�2)) + Lq(M⊗̄B(�2)),

by

T

⎛

⎜
⎜
⎜
⎝

a1 0 . . . 0
a2 0 . . . 0
...

...
...

an 0 . . . 0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

E1(a1) 0 . . . 0
E2(a2) 0 . . . 0

...
...

...
En(an) 0 . . . 0

⎞

⎟
⎟
⎟
⎠

.
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It follows from Theorem 2.3 in [15] that T is a bounded linear operator on
both Lp(M⊗̄B(�2)) and Lq(M⊗̄B(�2)). By interpolation again, we obtain the
desired result. �

Proof of Theorem. 3.1. Recall that if 1 < pE ≤ qE < 2, then E(M) is an
interpolation space for the couple (L1(M), L2(M)), and if 2 < pE ≤ qE < ∞,
then E(M) is an interpolation space for the couple (L2(M), Lq(M)) for some
finite q. Thus by Corollary (4.1) or Corollary (4.2) in [12], we have for 2 <
pE ≤ qE < ∞,

∥
∥
∥

∑

n

dxn ⊗ εn

∥
∥
∥

E(M⊗̄L∞(Ω))
≈ max

{

‖Sc(x)‖E(M), ‖Sr(x)‖E(M)

}

;

and for 1 < pE ≤ qE < 2,

∥
∥
∥

∑

n

dxn ⊗ εn

∥
∥
∥

E(M⊗̄L∞(Ω))
≈ inf

{
∥
∥
∥

(∑

n

|an|2
)1/2∥

∥
∥

E(M)

+
∥
∥
∥

(∑

n

|bn|2
)1/2∥

∥
∥

E(M)

}

,

where dxn = an + bn and an, bn belong to E(Mn). Then by Proposition 3.2,
we immediately obtain the desired equivalence (3.1). To complete the proof,
it is enough to set, for n ≥ 1,

dyn = an − En−1(an), dzn = bn − En−1(bn).

Then (dyn)n≥1 and (dzn)n≥1 are martingale difference sequences with dxn =
dyn + dzn. We will write eij for the usual matrix units of Mn(C). According
to Lemma 3.3,
∥
∥
∥
∥
∥
∥

(
n∑

k=1

|dyk|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

=

∥
∥
∥
∥
∥

n∑

k=1

dyk ⊗ ek1

∥
∥
∥
∥
∥

E(M⊗̄B(�2))

=

∥
∥
∥
∥
∥

n∑

k=1

(

ak − Ek−1(ak)
)⊗ ek1

∥
∥
∥
∥
∥

E(M⊗̄B(�2))

≤
∥
∥
∥
∥
∥

n∑

k=1

ak ⊗ ek1

∥
∥
∥
∥
∥

E(M⊗̄B(�2))

+

∥
∥
∥
∥
∥

n∑

k=1

Ek−1(ak) ⊗ ek1

∥
∥
∥
∥
∥

E(M⊗̄B(�2))

=

∥
∥
∥
∥
∥
∥

(
n∑

k=1

|ak|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

+

∥
∥
∥
∥
∥
∥

(
n∑

k=1

|Ek−1(ak)|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

≤ C

∥
∥
∥
∥
∥
∥

(
n∑

k=1

|ak|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

.
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The same arguments are applied to ‖(
∑n

k=1 |dzk|2)1/2‖E(M), we then deduce
∥
∥
∥
∥
∥
∥

(
n∑

k=1

|dyk|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

+

∥
∥
∥
∥
∥
∥

(
n∑

k=1

|dzk|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

≤ C

∥
∥
∥
∥
∥
∥

(
n∑

k=1

|ak|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

+ C

∥
∥
∥
∥
∥
∥

(
n∑

k=1

|bk|2
)1/2

∥
∥
∥
∥
∥
∥

E(M)

≤ C

∥
∥
∥
∥
∥

∑

n

dxn ⊗ εn

∥
∥
∥
∥
∥

E(M⊗̄L∞(Ω))

≤ C‖x‖E(M).

We get the desired inequalities (3.2). The proof is complete. �

We now can restate Theorem 3.1 as follows.

Theorem 3.4. Let x = (xn)n≥1 be any finite E(M)-martingale, 1 < pE ≤
qE < 2 or 2 < pE ≤ qE < ∞. Then x is bounded in E(M) iff x belongs to
HE(M). Moreover, if this is the case,

‖x‖E(M) ≈ ‖x‖HE(M).

Consequently, E(M) = HE(M) with equivalent norm.

We end this section with one open problem, which is related to the noncom-
mutative Burkholder inequality proved by Junge and Xu in [10], and extended
to the frame of Lorentz spaces in [9]. At the time of this writing, it is still
unknown if the conditional version of Theorem 3.1 is true.

Problem 3.5. Let x = (xn)n≥1 be a bounded E(M)-martingale.

(1) If 1 < pE ≤ qE < 2, then

∥
∥x
∥
∥

E(M)
≈ inf

{∥
∥
∥

(∑

k

Ek−1|dyk|2
) 1

2
∥
∥
∥

E(M)

+
∥
∥
∥

(∑

k

Ek−1|dz∗
k|2
) 1

2
∥
∥
∥

E(M)
+
∥
∥
∥

∑

k

dwk⊗en

∥
∥
∥

E(M⊗̄�∞)

}

where the infimum runs over all decompositions dxk = dyk + dzk + dwk

where (dyk), (dzk) and (dwk) are all martingale difference sequences, and
(en) denotes the canonical unit of �∞.

(2) If 2 < pE ≤ qE < ∞, then

∥
∥x
∥
∥

E(M)
≈ max

{∥
∥
∥

(∑

k

Ek−1|dxk|2
) 1

2
∥
∥
∥

E(M)
,

∥
∥
∥

(∑

k

Ek−1|dx∗
k|2
) 1

2
∥
∥
∥

E(M)
,
∥
∥
∥

∑

k

dxk⊗en

∥
∥
∥

E(M⊗̄�∞)

}

.
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4. Examples. In this section we apply the main result to some concrete exam-
ples.

First consider the noncommutative weak Lp space wLp(M), 0 < p < ∞,
which is defined as the space of all measurable operator x such that

‖x‖wLp(M) := t
1
p μt(x) < ∞.

Equipped with ‖x‖wLp(M), wLp(M) is a quasi-Banach space. However, for
p > 1, wLp(M) can be renormed as a Banach space. Now take E = wLr(M)
with 1 < r < ∞. Then pE = qE = r but E is q-concave for no finite q. Conse-
quently, we can not obtain the Burkholder–Gundy inequality by the result in
[1]. But by Theorem 3.1 in this paper, it is easy to deduce the following

Corollary 4.1. Let 1 < r < ∞, and x = (xn)n≥1 be a bounded wLr(M)-mar-
tingale. Then
(1) for 2 < r < ∞

‖x‖wLr(M) ≈ max{‖Sc(x)‖wLr(M), ‖Sr(x)‖wLr(M)} ; (4.1)

(2) for 1 < r < 2

‖x‖wLr(M) ≈ inf
x=y+z

{‖Sc(y)‖wLr(M) + ‖Sr(z)‖wLr(M)}, (4.2)

where the infimum runs over all decompositions dxn = dyn +dzn with dyn, dzn

being martingale difference sequences.

More generally, we consider the noncommutative weak Orlicz space
wLΦ(M). Let Φ be an Orlicz function on [0,∞), i.e., a continuous increas-
ing and convex function on with Φ(0) = 0 and limt→∞ Φ(t) = ∞. Since Φ
is convex, Φ′(t) is defined as the right derivative for each t > 0 except for
a countable set. Two standard indices associated to an Orlicz function Φ are
defined as follows,

aΦ =: inf
t>0

tΦ′(t)
Φ(t)

, bΦ =: sup
t>0

tΦ′(t)
Φ(t)

.

It is known that 1 ≤ aΦ ≤ bΦ ≤ ∞. For an Orlicz function Φ, define wLΦ(M)
as the set of all measurable operators x such that supt>0 tΦ(μt(x)

c ) < ∞ for
some c > 0. Equipped with

‖x‖wLΦ(M) := inf
{

c > 0 : sup
t>0

tΦ
(μt(x)

c

)

< 1
}

,

wLΦ(M) is called a noncommutative weak Orlicz space. Taking Φ(t) = tp,
wLΦ(M) = wLp(M). If Φ is an Orlicz function with 1 < aΦ ≤ bΦ < ∞,
then wLΦ(M) can be renormed as a Banach space. Consequently wLΦ(M)
can be regarded as a noncommutative symmetric space; see Remark 3.2 and
Corollary 4.2 in [2] for detailed discussions. Noting that

aΦ ≤ pE ≤ qE ≤ bΦ,

where pE and qE denote respectively the lower and upper Boyd indices of
E = wLΦ(M) (see Corollary 4.3 in [2]), we have the following inequalities for
noncommutative weak Orlicz spaces.
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Corollary 4.2. Let 1 < aΦ ≤ bΦ < ∞, and let x = (xn)n≥1 be a bounded
wLΦ(M)-martingale. Then
(1) for 2 < aΦ ≤ bΦ < ∞

‖x‖wLΦ(M) ≈ max{‖Sc(x)‖wLΦ(M), ‖Sr(x)‖wLΦ(M)} ; (4.3)

(2) for 1 < aΦ ≤ bΦ < 2

‖x‖wLΦ(M) ≈ inf
x=y+z

{‖Sc(y)‖wLΦ(M) + ‖Sr(z)‖wLΦ(M)}, (4.4)

where the infimum runs over all decompositions dxn = dyn +dzn with dyn, dzn

being martingale difference sequences.
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