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Abstract. We prove an Ekeland’s type vector variational principle for
monotonically semicontinuous mappings with perturbations given by a
convex bounded subset of directions multiplied by the distance function.
This generalizes the existing results where directions of perturbations are
singletons.
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1. Introduction. Let K ⊂ Y be a closed convex cone in a locally convex space
Y (i.e., K + K ⊂ K and αK ⊂ K for all α ∈ [0,∞)) and let f : X −→ Y
be a mapping defined on a complete metric space X. Let D ⊂ K be a closed
convex bounded subset of K such that 0 �∈ cl (D + K). We show that under
mild assumptions on f and D there is x̄ ∈ X such that

(f(x̄) − K) ∩ (f(z) + d(z, x̄)D) = ∅ for z ∈ X \ {x̄}. (1.1)

If Y = R, K = [0,∞), D = {ε}, ε > 0, then (1.1) takes the form

f(z) + εd(z, x̄) > f(x̄) whenever z �= x̄.

This is the variational inequality from Ekeland’s Variational Principle (EVP)
[4,5,21,22]. Generalizations of EVP to metric spaces are given, e.g., in [3,12,
13,20], to locally convex spaces and to general topological spaces see, e.g., [6].
Thus (1.1) can be regarded as an extension of EVP to vector-valued mappings.

EVP is a powerful tool with many applications in optimization, control
theory, subdifferential calculus, nonlinear analysis, global analysis and math-
ematical economy. Therefore, several formulations of EVP for vector-valued
and set-valued mappings are proved, e.g., in [1,2,7,8,14,15,17–19,24].
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However, the common feature of those formulations is their ‘directional’
character, more precisely, instead of (1.1) it is proved that

(f(x̄) − K) ∩ (f(z) + d(z, x̄)k0) = ∅ for z ∈ X \ {x̄}, (1.2)

with 0 �= k0 chosen from the ordering cone K. Under additional assump-
tions on the cone K, Németh (cf. Theorem 6.1 of [19]) proved (1.2) with
d(z, x̄)k0 replaced by r(z, x̄), where r : X ×X → K is a mapping such that: (i)
r(u, v) = 0 ⇔ u = v, (ii)r(u, v) = r(v, u), (iii) r(u, z) ∈ r(u, v) + r(v, z) − K
for any u, v, z ∈ X.

As in the case of scalar-valued mappings, the validity of EVP for vector- or
set-valued mappings is usually verified on the basis of topological arguments
and the core of the proofs is Cantor’s intersection theorem. In contrast to that,
in the present paper we prove EVP for vector-valued mappings by combining
topological and set-theoretic methods. The main set-theoretic tool is Theo-
rem 3.7 of [11] providing sufficient conditions for the existence of maximal
elements of countably orderable sets [11, Definition 2.1]. The application of
set-theoretic methods allows us to prove (1.1) which reduces to (1.2) when
D = {k0}, 0 �= k0 ∈ K.

The organization of the paper is as follows. In Section 2 we present basic
set-theoretical tools which are used in the sequel. In Section 3 we recall semi-
continuity concepts for vector-valued functions. Section 4 contains the main
result of the paper, namely Theorem 4.1 together with some examples. In
Section 5 the distance d(x, x̄) is estimated in the case when x is an approxi-
mate minimal point and x̄ satisfies (1.1).

2. Preliminaries. The following set-theoretic concepts and facts are used in
the sequel. For any nonempty set X and any relation s ⊂ X × X by x s y we
mean that (x, y) ∈ s and we write x s∗ y if and only if there is a finite number
of elements x1, . . . , xn ∈ X such that

x = x1, x1 s x2, . . . , xn−1 s xn, xn = y

Relation s∗ is the transitive closure of s. If s is transitive, then s = s∗.
An element x ∈ X is maximal with respect to a relation s ⊂ X ×X, we say

x is s-maximal, if for every y ∈ X

x s y ⇒ y s∗ x.

When s is a partial order, the above definition coincides with the usual defi-
nition of maximality, i.e., x is s-maximal if for every y ∈ X

x s y ⇒ x = y,

we refer to [9–11] for more information on maximality with respect to non-
transitive relations.

The following definition is essential for the results of Section 3.

Definition 2.1. (Definition 2.1 in [11]) A set X with a relation s ⊂ X × X is
countably orderable with respect to s if for every nonempty subset W ⊆ X the
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existence of a well ordering relation µ on W such that

v µ w ⇒ v s∗ w for every v, w ∈ W, v �= w (2.1)

implies that W is at most countable.

Let us recall the existence theorem for countably orderable sets. Its proof
has been originally given in [11] (see also Proposition 3.2.8, p. 90 of [14]).

Theorem 2.2. Let X be countably orderable set by a relation s ⊆ X × X.
Assume that for any sequence (xi) ⊂ X satisfying

xi s xi+1 for i ∈ N

there are a subsequence (xik
) ⊂ (xi) and an element x ∈ X such that

xik
s x for all k ∈ N. (2.2)

Then there exists an s∗-maximal element of X.

Corollary 2.3. Let X be countably orderable set by a transitive relation s ⊆
X × X. Assume that for any sequence (xi) ⊂ X satisfying

xi s xi+1 for i ∈ N

there are a subsequence (xik
) ⊂ (xi) and an element x ∈ X such that

xik
s x for all k ∈ N. (2.3)

Then there exists an s-maximal element of X.

3. Semicontinuous vector-valued functions. Let X be a topological space and
let Y be a locally convex space, i.e., Y is a linear topological space with a local
base consisting of convex neighborhoods of the origin, see [16]. Let K ⊂ Y be
a convex cone in Y . For any x, y ∈ Y define

x ≤K y ⇔ y − x ∈ K.

We say that a subset D ⊂ Y is semi-complete if every Cauchy sequence con-
tained in D has a limit in D, see [16]. According to [9] we say that a function
f : X → Y is monotonically semicontinuous (msc) with respect to K at x ∈ X
if for every sequence (xi) ⊂ X, xi → x, satisfying

f(xi+1) ≤K f(xi) i ∈ N

we have f(x) ≤K f(xi) for i ∈ N.
We say that f is msc on X if f is msc at each x ∈ X. To the best of our

knowledge monotonically semicontinuous functions were first introduced in
[19, p. 674] via nets. They were used in [9] to prove a general form of Wei-
erstrass’s theorem for vector-valued functions and in [19] to formulate vector
variational principle (see also Corollary 3.10.19 of [14]). The sequential defini-
tion given above is more adequate for our purposes.

It is not our aim to provide a detailed discussion of relationships between
msc functions and other important classes of functions. However, it is worth
mentioning that the class of msc functions is sufficiently large to encompass
level-closed functions and order lower semicontinuous functions [8].
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Let us recall that a function f is level-closed if for each b in Y the set {x ∈
X : f(x) ≤K b} is closed in X. A function f is order lower semi-continuous
(o-lsc, for short) [8] at x0 ∈ X if for each sequence (xi) ⊂ X converging to
x0 for which there exists a sequence (εi) ⊂ Y converging to 0 such that the
sequence (f(xi)+εi) is non-increasing, i.e., f(xi)+εi ≥K f(xi+1)+εi+1, there
exists a sequence (gi) ⊂ Y converging to 0 such that f(x0) ≤K f(xi) + gi for
every i ∈ N.

Level-closed functions are contained in the class of msc functions. Indeed,
suppose on the contrary that a function f defined on a metric space X is
not msc at some x0. Then, there exists a sequence (xj) ⊂ X, xj → x0, such
that f(xj+1) ≤K f(xj) for all j ∈ N and f(x0) �∈ f(xi) − K for some i ∈ N.
Then f(x0) �∈ f(xi+l) − K for all l ∈ N. This shows that the level set corre-
sponding to the level b = f(xi) is not closed. In general, msc functions are not
level-closed. Below we prove that o-lsc functions are also included in the class
of msc functions.

Proposition 3.1. Let X be a metric space and Y be a real Banach space. Let
K ⊂ Y be a closed convex cone and let f : X −→ Y be an o-lsc function at
x0. Then f is msc at x0.

Proof. Let xi −→ x0 and f(xi) ≥K f(xi+1) for every i ∈ N. By o-lsc, there is
a sequence (gi) ⊂ Y such that gi −→ 0 and f(x0) ≤K f(xi) + gi. Hence, for
every i, l ∈ N we get

f(xi) ∈ f(xi+l) + K ⊂ f(x0) + K − gi+l,

thus f(xi) ≥K f(x0) for every i ∈ N. �

We say that f is K-bounded if there exists a bounded subset M of Y such
that f(X) ⊂ K + M . The topological closure is denoted by cl .

4. Vector variational principle. The following theorem provides vector Eke-
land’s principle.

Theorem 4.1. Let X be a complete metric space and let Y be a locally convex
space. Let K ⊂ Y be a closed and convex cone in Y and let D ⊂ K be a closed
semi-complete convex and bounded subset of K such that 0 �∈ cl (D + K).

Let f : X → Y be msc with respect to K and K-bounded. Then for every
x ∈ X there exists x̄ ∈ X such that
(i) (f(x) − K) ∩ (f(x̄) + d(x, x̄)D)) �= ∅,
(ii) (f(x̄) − K) ∩ (f(z) + d(z, x̄)D) = ∅ for every z �= x̄.

Proof. Let x ∈ X and

A := {v ∈ X : (f(x) − K) ∩ (f(v) + d(x, v)D) �= ∅} .

Let r ⊂ X × X be a relation defined as follows: for any u, v ∈ X

u r v ⇔ (f(u) − K) ∩ (f(v) + d(u, v)D) �= ∅.

By the convexity of D, the relation r is transitive. In fact, let us observe that
u r v and v r w entails f(u) = f(v) + kv + d(u, v)dv and f(v) = f(w) + kw +
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d(v, w)dw for some kv, kw ∈ K and dv, dw ∈ D. If d(u, v) + d(v, w) = 0 then
f(u) = f(w) and we are done. If d(u, v) + d(v, w) > 0, then

d(u, v)
d(u, v) + d(v, w)

dv +
d(v, w)

d(u, v) + d(v, w)
dw ∈ D,

so d(u, v)dv + d(v, w)dw ∈ (d(u, v) + d(v, w))D, hence d(u, v)dv + d(v, w)dw ∈
d(u, v)D + K. Thus f(u) ∈ f(w) + d(u,w)D + K, which implies u r w.

The main step of the proof consists in applying Theorem 2.2 to show that
A has an r-maximal element. Observe that A = {v ∈ X : x r v}, and hence
any r-maximal element of A is an r-maximal element of X.

Since 0 �∈ cl (D + K), by separation arguments, there exists y∗ ∈ Y ∗ such
that

〈y∗, d〉 + 〈y∗, k〉 > ε > 0

for some ε > 0 and any d ∈ D, k ∈ K. Hence, infd∈D〈y∗, d〉 > 0 and 〈y∗, k〉 ≥ 0
for any k ∈ K. Moreover,

u r v, u �= v ⇒ 〈y∗, f(u)〉 > 〈y∗, f(v)〉. (4.1)

Indeed, if u r v, then f(u) = f(v) + d(u, v)d + k, where d ∈ D and k ∈ K.
Consequently, 〈y∗, f(u)〉 = 〈y∗, f(v) + d(u, v)d + k〉 > 〈y∗, f(v)〉.

We start by showing that A is countably orderable with respect to r. Let
∅ �= W ⊆ A be any subset of A well ordered by a relation µ satisfying (2.1).
Then for any u, v ∈ W , u �= v

u µ v ⇒ u r v ⇒ 〈y∗, f(u)〉 > 〈y∗, f(v)〉.
Thus, y∗◦f(W ) ⊂ R is well ordered by the relation ‘>’ and therefore y∗◦f(W )
is at most countable. This entails that W is at most countable since y∗ ◦ f is
a one-to-one mapping on W .

Now we show that (2.3) holds for A, i.e., for any sequence (xn) ⊂ A

∀n ∈ N, xn r xn+1 ⇒ ∃x0 ∈ A : ∀n ∈ N, xn r x0.

Let us observe that if xm = xm+1 = · · · for some m ∈ N, then by putting
x0 := xm we get (2.3) immediately. So, it is enough to consider the case when∑∞

i=n d(xi, xi+1) > 0 for every n ∈ N. By the definition of r, for each n ∈ N

xn r xn+1 ⇔ f(xn) − f(xn+1) = kn + d(xn, xn+1)dn ∈ K,

where dn ∈ D and kn ∈ K. Moreover, in view of the K-boundedness of f , for
any m ∈ N

f(x1) = f(x1) − f(x2) + f(x2) − · · · − f(xm+1) + f(xm+1)

= f(xm+1) +
m∑

i=1

ki +
m∑

i=1

d(xi, xi+1)di

∈ M + K +
m∑

i=1

d(xi, xi+1)di.
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Hence, for each m ∈ N we have

〈y∗, f(x1)〉 ≥ inf
z∈M

〈y∗, z〉 +
m∑

i=1

d(xi, xi+1) inf
d∈D

〈y∗, d〉.

By the boundedness of M and the fact that infd∈D〈y∗, d〉 > 0, the sequence
(
∑m

i=1 d(xi, xi+1)) is bounded from above, hence the series
∞∑

i=1

d(xi, xi+1)

converges. Let us fix n ∈ N. By the boundedness of D, the sequence
(∑m

i=n d(xi, xi+1)di∑m
i=n d(xi, xi+1)

)∞

m=n

⊂ D

is a Cauchy sequence (the denominators are positive for m large enough). By
the semi-completness of D, it converges to a point from D when m −→ ∞.
Moreover,

d̄n :=
∞∑

i=n

d(xi, xi+1)∑∞
i=n d(xi, xi+1)

di = lim
m−→∞

m∑

i=n

d(xi, xi+1)∑m
i=n d(xi, xi+1)

di

for any n ∈ N.
In view of the completeness of X, (xn) converges to a certain x0 ∈ X. By

msc of f , f(xn) − f(x0) ∈ K. Now we show that for all n ∈ N

f(xn) − f(x0) − d(xn, x0)d̄n ∈ K. (4.2)

By the definition of r, for any n ∈ N and m ≥ n we have

f(xn) = f(xn) − f(xn+1) + f(xn+1) − · · · − f(xm+1) + f(xm+1)

= f(xm+1) +
m∑

i=n

ki +
m∑

i=n

d(xi, xi+1)di.

Since f(xm+1) − f(x0) ∈ K this gives

f(xn) − f(x0) − d(xn, xm+1)
(∑m

i=n d(xi, xi+1)di∑m
i=n d(xi, xi+1)

)

∈ K.

Passing to the limit with m → +∞ and taking into account the closedness of
K we get (4.2). By Theorem 2.2, there exists an r-maximal element x̄ ∈ A.
Thus, (i) holds for x̄. We show that x̄ satisfies (ii). Since r is transitive, x̄
is also an r-maximal element of X. If (ii) were not satisfied, we would have
x̄rz for some z �= x̄ and, by the r-maximality, zrx̄. Consequently, by (4.1),
〈y∗, f(x̄)〉 > 〈y∗, f(z)〉 and 〈y∗, f(z)〉 > 〈y∗, f(x̄)〉, a contradiction. �

Let us note that conclusions (i) and (ii) are equivalent respectively to
(i′) (f(x) − K) ∩ (f(x̄) + d(x, x̄)(D + K)) �= ∅,
(ii′) (f(x̄) − K) ∩ (f(z) + d(z, x̄)(D + K)) = ∅ for every z �= x̄,

where D is as in Theorem 4.1.
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Let us also observe that if Y is a Banach space, the closedness of D implies
its semi-completness, and 0 �∈ cl (D+K) ⇔ d(D+K, 0) > 0, where d(D+K, 0)
stands for the distance of 0 from the set D + K. In the two examples below it
is shown that it is not difficult to verify the inequality d(D + K, 0) > 0.

Examples 4.2. 1. Let Y be a real Banach space, ϕ be from the dual space
to Y and α > 0 be given. If K is contained in a Bishop-Phelps cone
generated by ϕ and α > 0, i.e.,

K ⊂ Kα := {z ∈ Y | ϕ(z) ≥ α‖z‖}
and d(D, 0) > 0, D ⊂ K, then d(D + K, 0) > 0. Indeed, let us observe
that for every d ∈ D, k ∈ K we have

‖ϕ‖‖d + k‖ ≥ ϕ(d + k) ≥ ϕ(d) ≥ α‖d‖ ≥ αd(D, 0) > 0.

2. If K is scalarized by a norm according to the idea of Rolewicz [23] (i.e.,
u − v ∈ K implies ‖v‖ ≤ ‖u‖) and d(D, 0) > 0, then d(D + K, 0) > 0.

In the above examples the implication

0 �∈ cl D =⇒ 0 �∈ cl (D + K) (4.3)

holds.

The following fact holds true. If Y is a reflexive Banach space, K is a
closed convex cone such that K ∩ −K = {0} and D ⊂ K is closed convex
and bounded, then (4.3) holds. Indeed, if di + ki −→ 0 with i −→ ∞, where
(di) ⊂ D, (ki) ⊂ K, then by the reflexivity of Y , there exist weakly converging
subsequences (dij

) and (kij
) with limit points d0 ∈ D and k0 ∈ K, respectively.

Hence, 0 = d0 + k0 which implies d0 = k0 = 0.
The above fact allows to construct easily examples of sets D and cones K

for which (4.3) fails to hold. For instance, (4.3) does not hold if
• K = Y , D ⊂ Y , 0 �∈ clD;
• Y := l∞, K := {x = (x1, x2, . . .) ∈ l∞ : ∀i ∈ N, x2i−1 + 2−i | x2i | ≤ 0},

D := {x ∈ K : ‖x‖ ≤ 1, limi−→∞ x2i = 1};
• Y := C([0, 1]), K := {f ∈ Y :

∫
[0,1]

fdµ ≥ 0}, where µ stands for the
Lebesgue measure, D := {f ∈ K : ‖f‖ ≤ 10, f(1) ∈ [2, 4]}.

5. Approximate solutions. For any d ∈ D put f̃d(z) := f(z) + d(z, x̄)d. By
conclusion (ii) of Theorems 4.1,

(f̃d(x̄) − K) ∩ f̃d(X) = {f̃d(x̄)}
and x̄ is unique in the sense that (f̃d(x̄)−K)∩ f̃d(X \ {x̄}) = ∅. Thus, for any
d ∈ D, x̄ is a unique (in the above sense) minimal solution to problem

(P ) K- min
{

f̃d(x) : x ∈ X
}

.

Let D ⊂ K and 0 /∈ D, ε > 0. We say that x ∈ X is an ε-approximate
solution with respect to D for (P ) with the objective f if

(f(x) − εD − K) ∩ f(X) = ∅.
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For K being a closed convex pointed cone the above definition was given by
Németh [19].

Theorem 5.1. Let X be a complete metric space and let Y be locally convex
space. Let K ⊂ Y be a closed and convex cone in Y and let D ⊂ K be a closed
semi-complete convex and bounded subset of K such that 0 /∈ cl (D + K).

Let f : X → Y be msc with respect to K and K-bounded. Then for every
x ∈ X, ε > 0 and λ > 0 there exists x̄ ∈ X such that
(i) (f(x) − K) ∩ (f(x̄) + εd(x, x̄)D)) �= ∅,
(ii) (f(x̄) − K) ∩ (f(z) + εd(z, x̄)D) = ∅ for every z �= x̄,
(iii) Moreover, if x is an ελ-approximate solution with respect to D, then

d(x, x̄) < λ.

Proof. To get the statements (i) and (ii) it is enough to apply Theorem 4.1
with the metric d(·, ·) replaced by the metric εd(·, ·).

Now we prove (iii). By (i),

f(x) = f(x̄) + εd(x, x̄)d̄ + k̄, where d̄ ∈ D, k̄ ∈ K.

If it were d(x, x̄) ≥ λ, then

f(x) = f(x̄) + ελd̄ + ε(d(x, x̄) − λ)d̄ + k̄ ∈ f(x̄) + ελd̄ + K

which would contradict the fact that x is an ελ-approximate solution. �

6. Comments. For D = {k0} with 0 �= k0 ∈ K, Theorem 5.1 reduces to the
results proved, e.g., in [1,14] and the references therein. Moreover, the proofs
given in those references essentially work for D = {k0} + K and only minor
changes are required. Let us notice, however, that Theorem 5.1 can be applied,
e.g., to D = {(x1, x2) : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0} ⊂ K = R

2
+ ⊂ R

2,
and observe that D cannot be represented in the form {k0} + K moreover
D \ ({k0} + K) �= ∅ for every k0 ∈ K \ {0}.

A generalization of Theorem 5.1 in the spirit of [19], where d(z, x)D is
replaced by a set-valued mapping r : X × X →→ K, is conceivable. The result-
ing EVP would require, however, some stringent assumptions on K which
we managed to avoid in Theorem 4.1 and Theorem 5.1. For instance, in [19]
the cone is assumed to be normal and salient. Finally, it is an open ques-
tion whether the vector counterpart of the Deville–Godefroy–Zizler principle
proved in [8] can be generalized in the spirit of Theorem 4.1, i.e., by admitting
a larger class of vector bump functions.
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