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Abstract. We prove versions of results of Foxby and Holm about modules
of finite (Gorenstein) injective dimension and finite (Gorenstein) projec-
tive dimension with respect to a semidualizing module. We also verify
special cases of a question of Takahashi and White.
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0. Introduction. Let R be a commutative noetherian ring. It is well-known
that, if R is Gorenstein and local, then every module with finite projective
dimension has finite injective dimension. Conversely, Foxby [4,5] showed that,
if R is local and admits a finitely generated module of finite projective dimen-
sion and finite injective dimension, then R is Gorenstein. More recently, Holm
[12] proved that, if M is an R-module of finite projective dimension and finite
Gorenstein injective dimension, then M has finite injective dimension, and so
the localization Rp is Gorenstein for each p ∈ Spec(R) with depthRp

(Mp) < ∞.
See Sect. 1 for terminology and notation.

In this paper, we prove analogues of these results for homological dimen-
sions defined in terms of semidualizing R-modules. For instance, the following
result is proved in (2.1). Other variants of this result are also given in Sect. 2.
It should be noted that our proof of this result is different from Holm’s proof
for the special case C = R. In particular, this paper also provides a new proof
of Holm’s result.

Theorem A. Let C be a semidualizing R-module, and let M be an R-module
with PC- pdR(M) < ∞ and GidR(M) < ∞. Then idR(M) = GidR(M) < ∞
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and, for each p ∈ Spec(R) with depthRp
(Mp) finite, the Rp-module Cp is

dualizing.

Takahashi and White [19] posed the following question: When R is a local
Cohen–Macaulay ring admitting a dualizing module and C is a semidualiz-
ing R-module, if M is an R-module of finite depth such that PC- pdR(M)
and IC- idR(M) are finite, must R be Gorenstein? An affirmative answer to
this question would yield another generalization of Foxby’s theorem. Our tech-
niques allow us to answer the question in the affirmative in three special cases.
The first one is contained in the next result which we prove in (2.13); the
others are in Theorem 2.14 and Corollary 2.15.

Theorem B. Let C be a semidualizing R-module, and let M be an R-module
with PC-pdR(M) = 0 and IC- idR(M) < ∞. Then Rp is Gorenstein for each
p ∈ SuppR(M).

1. Semidualizing modules and related homological dimensions. Throughout
this paper R is a commutative noetherian ring.

This section contains definitions and background information for use in the
proofs of our main results in Sect. 2.

Definition 1.1. Let X be a class of R-modules and M an R-module. An
X -resolution of M is a complex of R-modules in X of the form

X = · · · ∂X
n+1−−−→ Xn

∂X
n−−→ Xn−1

∂X
n−1−−−→ · · · ∂X

1−−→ X0 → 0

such that H0(X) ∼= M and Hn(X) = 0 for n � 1. The X -projective dimension
of M is the quantity.

X - pdR(M) = inf{sup{n � 0 | Xn �= 0} | X is an X -resolution of M}.

In particular, one has X - pdR(0) = −∞. The modules of X -projective dimen-
sion 0 are the nonzero modules of X .

Dually, an X -coresolution of M is a complex of R-modules in X of the form

X = 0 → X0
∂X
0−−→ X−1

∂X
−1−−→ · · · ∂X

n+1−−−→ Xn
∂X

n−−→ Xn−1

∂X
n−1−−−→ · · ·

such that H0(X) ∼= M and Hn(X) = 0 for n � −1. The X -injective dimension
of M is the quantity

X - idR(M) = inf{sup{−n � 0 | Xn �= 0} | X is an X -coresolution of M}.

In particular, one has X - idR(0) = −∞. The modules of X -injective dimension
0 are the nonzero modules of X .

When X is the class of projective R-modules, we write pdR(M) for the
associated homological dimension and call it the projective dimension of M .
Similarly, the flat and injective dimensions of M are denoted fdR(M) and
idR(M).

The homological dimensions of interest in this paper are built from semid-
ualizing modules and their associated projective and injective classes, defined
next. Semidualizing modules occur in the literature with several different
names, e.g., in the work of Foxby [3], Golod [9], Mantese and Reiten [17],
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Vasconcelos [20] and Wakamatsu [21]. The prototypical semidualizing modules
are the dualizing (or canonical) modules of Grothendieck and Hartshorne [10].

Definition 1.2. A finitely generated R-module C is semidualzing if the natural
homothety morphism R→HomR(C,C) is an isomorphism and Ext�1

R (C,C)=0.
An R-module D is dualizing if it is semidualizing and has finite injective dimen-
sion.

Let C be a semidualizing R-module. We set

PC(R) = the subcategory of modules P ⊗R C where P is R-projective
FC(R) = the subcategory of modules F ⊗R C where F is R-flat
IC(R) = the subcategory of modules HomR(C, I) where I is R-injective.

Modules in PC(R) are called C-projective, and those in IC(R) are C-injective.

Fact 1.3. Let C be a semidualizing R-module. It is straightforward to show
that, if P ∈ PC(R) and I ∈ IC(R), then Pp ∈ PCp(Rp) and Ip ∈ ICp(Rp) for
each p ∈ Spec(R). It follows that we have PCp- pdRp

(Mp) � PC- pdR(M) and
ICp- idRp(Mp) � IC- idR(M) for each R-module M .

Fact 1.4. A result of Gruson and Raynaud [18, Seconde Partie,
Théorème (3.2.6)], and Jensen [16, Proposition 6] says that, if F is a flat
R-module, then pdR(F ) � dim(R). It follows that, if dim(R) < ∞, then
PC- pdR(M) < ∞.

The next classes are central to our proofs and were introduced by Foxby [6].

Definition 1.5. Let C be a semidualizing R-module. The Auslander class of C
is the class AC(R) of R-modules M such that

(1) TorR
�1(C,M) = 0 = Ext�1

R (C,C ⊗R M), and
(2) the natural map M → HomR(C,C ⊗R M) is an isomorphism.

The Bass class of C is the class BC(R) of R-modules M such that

(1) Ext�1
R (C,M) = 0 = TorR

�1(C,HomR(C,M)), and
(2) the natural evaluation map C ⊗R HomR(C,M) → M is an isomorphism.

Fact 1.6. Let C be a semidualizingR-module. The categories AC(R) and BC(R)
are closed under extensions, kernels of epimorphisms and cokernels of mono-
morphisms; see [14, Corollary 6.3]. The category AC(R) contains all modules
of finite flat dimension and those of finite IC-injective dimension, and the cat-
egory BC(R) contains all modules of finite injective dimension and those of
finite PC-projective dimension by [14, Corollaries 6.1 and 6.2].

The next definitions are due to Holm and Jørgensen [13] in this generality.

Definition 1.7. Let C be a semidualizing R-module. A complete ICI-resolution
is a complex Y of R-modules satisfying the following:

(1) Y is exact and HomR(I, Y ) is exact for each I ∈ IC(R), and
(2) Yi ∈ IC(R) for all i � 0 and Yi ∈ I(R) for all i < 0.
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An R-module H is GC-injective if there exists a complete ICI-resolution Y
such that H ∼= Im(∂Y

0 ), in which case Y is a complete ICI-resolution of H.
We set

GIC(R) = the class of GC-injective R-modules.

In the special case C = R, we set GidR(M) = GIR- idR(M), and we write
“complete injective resolution” instead of “complete IRI-resolution”.

A complete PPC-resolution is a complex X of R-modules such that:
(1) X is exact and HomR(X,P ) is exact for each P ∈ PC(R), and
(2) Xi ∈ P(R) for all i � 0 and Xi ∈ PC(R) for all i < 0.
An R-module M is GC-projective if there exists a complete PPC-resolution X
such that M ∼= Im(∂X

0 ), in which case X is a complete PPC-resolution of M .
Set

GPC(R) = the class of GC-projective R-modules.

In the case C = R, we set GpdR(M) = GPR- pdR(M).

The next two lemmas are proved as in [2, (2.17),(2.18)] using tools from
[22].

Lemma 1.8. Let C be a semidualizing R-module and let M be an R-module
with GPC- pdR(M) < ∞. There is an exact sequence of R-modules

0 → M → P → M ′ → 0

such that M ′ ∈ GPC(R) and PC- pdR(P ) = GPC-pdR(M).

Lemma 1.9. Let C be a semidualizing R-module and let M be an R-module
with GIC- idR(M) < ∞. There is an exact sequence of R-modules

0 → M ′ → E → M → 0

such that IC- idR(E) = GIC- idR(M) and M ′ ∈ GIC(R).

Definition 1.10. Assume that R is local with residue field k. The depth of a
(not necessarily finitely generated) R-module M is

depthR(M) = inf{n � 0 | Extn
R(k,M) �= 0}.

2. Main results.

2.1. Proof of Theorem A. As GidR(M) is finite, Lemma 1.9 yields an exact
sequence of R-modules

0 → M ′ → E → M → 0 (∗)

such that idR(E) < ∞ and M ′ is G-injective. The finiteness of PC- pdR(M)
and idR(E) implies that M,E ∈ BC(R), and so M ′ ∈ BC(R); see Fact 1.6.

We claim that Ext�1
R (M,M ′) = 0. To see this, let Y be a complete injective

resolution of M ′ and set M (i) = Im(∂Y
i ) for each i ∈ Z. Since M ′, Yi ∈ BC(R)

for each i ∈ Z, we have M (i) ∈ BC(R) for each i, and so Ext�1
R (C,M (i)) = 0.

Hence

Ext�1
R (P ⊗R C,M (i)) ∼= HomR(P,Ext�1

R (C,M (i))) = 0
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for each projective R-module P and each i. Using a bounded PC-resolution
of M , a dimension-shifting argument shows that Ext�d+1

R (M,M (i)) = 0 for
each i where d = PC- pdR(M). Another dimension-shifting argument using
the complete injective resolution of M ′ yields the following.

Ext�1
R (M,M ′) ∼= Ext�1

R (M,M (0)) ∼= Ext�d+1
R (M,M (d)) = 0

as claimed.
The previous paragraph shows that the sequence (∗) splits. Hence, we have

sup{idR(M), idR(M ′)} = idR(E) < ∞
and so idR(M) < ∞. The equality idR(M) = GidR(M) now follows from the
result dual to [11, (2.27)].

Now, let p ∈ Spec(R) with depthRp
(Mp) finite. Using Fact 1.3 we conclude

that PCp- pdRp
(Mp) and idRp(Mp) are finite. The finiteness of PCp- pdRp

(Mp)
implies Mp ∈ BCp(Rp) and thus Ext�1

Rp
(Cp,Mp) = 0. (Hence, in the derived cat-

egory D(Rp), there is an isomorphism RHomRp(Cp,Mp) � HomRp(Cp,Mp)).
Using [19, (2.11.c)], the finiteness of PCp- pdRp

(Mp) also implies

fdRp(HomRp(Cp,Mp)) � pdRp
(HomRp(Cp,Mp)) = PCp- pdRp

(Mp) < ∞.

The Rp-module Mp has finite injective dimension and finite depth, so the
finiteness of fdRp(HomRp(Cp,Mp)) implies that Cp is dualizing for Rp; see
[1, (8.2)]. �

Corollary 2.2. Assume that R is local, and let C be a semidualizing R-module.
The following conditions are equivalent:
(i) C is a dualizing R-module;
(ii) there exists a finitely generated R-module M �= 0 such that PC-pdR(M)

< ∞ and idR(M) < ∞;
(iii) there exists an R-module M �= 0 of finite depth such that PC- pdR(M) <

∞ and GidR(M) < ∞.

Proof. The implication (ii) =⇒ (iii) is straightforward, and (iii) =⇒ (i) follows
from Theorem A. For (i) =⇒ (ii), note that PC- pdR(C) < ∞ and idR(C) < ∞
since C is dualizing for R. �

The following versions of TheoremA and Corollary 2.2 are proved similarly,
using Lemmas 1.8 and 1.9.

Theorem 2.3. Let C be a semidualizing R-module, and let M be an R-module
with pdR(M)< ∞ and GIC- idR(M)< ∞. Then IC- idR(M)= GIC- idR(M)<
∞. Furthermore, for each p ∈ Spec(R) such that depthRp

(Mp) is finite, the
localization Cp is a dualizing Rp-module.

Corollary 2.4. Assume that R is local, and let C be a semidualizing R-module.
The following conditions are equivalent:
(i) C is a dualizing R-module;
(ii) there exists a finitely generated R-module M �= 0 such that pdR(M) < ∞

and IC- idR(M) < ∞;
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(iii) there exists an R-module M �= 0 of finite depth such that pdR(M) < ∞
and GIC- idR(M) < ∞.

Theorem 2.5. Let C be a semidualizing R-module, and let M be an R-mod-
ule with IC- idR(M) < ∞ and GpdR(M) < ∞. Then pdR(M) = GpdR(M) <
∞. Furthermore, for each p ∈ Spec(R) such that depthRp

(Mp) is finite, the
localization Cp is a dualizing Rp-module.

Corollary 2.6. Assume that R is local, and let C be a semidualizing R-module.
The following conditions are equivalent:

(i) C is a dualizing R-module;
(ii) there exists a finitely generated R-module M �= 0 such that IC- idR(M) <

∞ and pdR(M) < ∞;
(iii) there exists an R-module M �= 0 of finite depth such that IC- idR(M) < ∞

and GpdR(M) < ∞.

Remark 2.7. As is noted in [12], when R has finite Krull dimension, we can
change GpdR(M) and pdR(M) to GfdR(M) and fdR(M), respectively, in
the previous two results. Similarly, in the next two results, if dim(R) < ∞,
then GPC- pdR(M) and PC- pdR(M) can be changed to GFC- pdR(M) and
FC- pdR(M).

Theorem 2.8. Let C be a semidualizing R-module, and let M be an
R-module with idR(M) < ∞ and GPC- pdR(M) < ∞. Then PC- pdR(M) =
GPC-pdR(M)< ∞. Furthermore, for each p ∈ Spec(R) such that
depthRp

(Mp) is finite, the localization Cp is a dualizing Rp-module.

Corollary 2.9. Assume that R is local, and let C be a semidualizing R-module.
The following conditions are equivalent:

(i) C is a dualizing R-module;
(ii) there exists a finitely generated R-module M �= 0 such that idR(M) < ∞

and PC- pdR(M) < ∞;
(iii) there exists an R-module M �= 0 of finite depth such that idR(M) < ∞

and GPC- pdR(M) < ∞.

Remark 2.10. Holm proves his results in a more general setting than ours,
namely, over associative rings. While the Gorenstein projective dimension and
Gorenstein injective dimension have been well-studied in this setting, the same
cannot be said for GC-projective dimension and GC-injective dimension. Some
of the foundation has been laid by Holm and White [14]. To prove our results
in this setting, though, would require a development of these ideas that is
outside the scope of this paper.

The next lemma is useful for the two subsequent proofs.

Lemma 2.11. Let C be a semidualizing R-module. If IC- idR(C) < ∞, then
C ∼= R and R is Gorenstein.
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Proof. Assume that IC- idR(C) < ∞. Fact 1.6 implies that C ∈ AC(R). By
definition, this includes the condition TorR

�1(C,C) = 0, and so [8, (3.8)] implies
that C ⊗R C is a semidualizing R-module. From [7, (3.2)] we conclude that
C ∼= R. It follows that idR(R) = IC- idR(C) < ∞ and so R is Gorenstein as
desired. �

Remark 2.12. In unpublished work, Takahashi and White have proved the
following result that is weaker than Theorem B: If R is Cohen–Macaulay with
a dualizing module D and C is a semidualizing module with IC- idR(C) < ∞,
then C ∼= D.

2.13. Proof of Theorem B. Let p ∈ SuppR(M), and replace R with Rp to
assume that R is local. In particular, every projective R-module is free, and so
M ∼= C ⊕ M ′ for some M ′ ∈ PC(R). In the next sequence, the final equality
is from [19, (2.11.b)]

sup{idR(C ⊗R C), idR(C ⊗R M ′)} = idR((C ⊗R C) ⊕ (C ⊗R M ′))
= idR(C ⊗R (C ⊕ M ′))
= idR(C ⊗R M)
= IC- idR(M)

and so IC- idR(C) � IC- idR(M) < ∞. Lemma 2.11 implies that R is
Gorenstein, as desired. �

The next result contains another partial answer to the question of Takahashi
and White. We include the proof as it is different from the proof of Theorem B.

Theorem 2.14. If C is a semidualizing R-module and M is an R-module such
that PC-pdR(M) < ∞ and IC- idR(M) = 0, then Rp is Gorenstein for all
p ∈ Spec(R) such that depthRp

(Mp) is finite.

Proof. As M ∈ IC(R), we have M ∼= HomR(C,E) for some injective R-module
E.

We first show that the assumption that depthRp
(Mp) is finite implies that

p ∈ AssR(M). The fact that C is finitely generated and E is injective yields
the next isomorphisms

Exti
Rp

(Rp/pRp,Mp) ∼= Exti
Rp

(Rp/pRp,HomR(C,E)p)
∼= Exti

Rp
(Rp/pRp,HomRp(Cp, Ep))

∼= HomRp(TorRp

i (Rp/pRp, Cp), Ep).

Each module TorRp

i (Rp/pRp, Cp) is a finite-dimensional vector space over
Rp/pRp. Furthermore, we have TorRp

0 (Rp/pRp, Cp)∼=Rp/pRp ⊗Rp Cp �=0 since
Cp is nonzero and finitely generated over Rp. Since Exti

Rp
(Rp/pRp,Mp) �= 0
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for some i, by hypothesis, it therefore follows that Ext0Rp
(Rp/pRp,Mp) �= 0,

and so pRp ∈ AssRp(Mp), that is, p ∈ AssR(M) as claimed.
Write E ∼= ⊕qER(R/q)(µq), where the direct sum is taken over all q ∈

Spec(R). It follows that there are equalities

AssR(M)=SuppR(C) ∩ AssR(E)=Spec(R) ∩ AssR(E)
= {q ∈ Spec(R) | µq �=0}.

Since p ∈ AssR(M), this implies E ∼= ER(R/p)⊕E′ for some injective R-mod-
ule E′. It follows that M ∼= HomR(C,ER(R/p))⊕HomR(C,E′). As in the proof
of Theorem B, using [19, (2.11.c)] we see that PC- pdR(HomR(C,ER(R/p))) <
∞. If follows that we may replace R with Rp and M with HomR(C,ER(R/p))p

to assume that R is local with maximal ideal m and M ∼= HomR(C,E) where
E = ER(R/m).

Let ̂R denote the completion of R. It is straightforward to show that the
condition PC- pdR(M) < ∞ implies P

̂C- pd
̂R(M ⊗R

̂R) < ∞. Also, we have
isomorphisms

M ⊗R
̂R ∼= HomR(C,ER(R/m)) ⊗R

̂R ∼= Hom
̂R( ̂C,E

̂R( ̂R/m ̂R))

and so M ⊗R
̂R ∈ I

̂C( ̂R). It follows that we may replace R with ̂R and M

with M ⊗R
̂R to assume that R is complete.

To complete the proof, we show that IC- idR(C) < ∞; the desired conclu-
sion then follows from Lemma 2.11. The module M admits a bounded aug-
mented PC-resolution

0 → C ⊗R Pn → · · · → C ⊗R P0 → M → 0.

Applying the functor HomR(−, E) yields an exact sequence

0 → HomR(M,E)
︸ ︷︷ ︸

∼=C

→ HomR(C ⊗R P0, E) → · · · → HomR(C ⊗R Pn, E) → 0.

The isomorphism HomR(M,E) ∼= C follows from Matlis duality because of
the assumption M ∼= HomR(C,E). Since each Pi is projective, each module
HomR(Pi, E) is injective, and so

HomR(C ⊗R Pi, E) ∼= HomR(C,HomR(Pi, E)) ∈ IC(R).

It follows that the displayed exact sequence is an augmented IC-coresolution
of C, and so IC- idR(C) < ∞, as desired. �

For our final result, recall that, when R is local with maximal ideal m, the
width of an R-module M is widthR(M) = inf{i � 0 | TorR

i (k,M) �= 0} where
k = R/m.

Corollary 2.15. If C is a semidualizing R-module and M is an R-module such
that FC-pdR(M) = 0 and IC- idR(M)< ∞, then Rp is Gorenstein for all p ∈
Spec(R) such that widthRp(Mp) is finite.

Proof. As in the proof of Theorem B, replace R and M with Rp and Mp to
assume that R is local and that widthR(M) is finite. It remains to show that
R is Gorenstein. Let E denote the injective hull of the residue field of R, and
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set (−)∨ = HomR(−, E). By assumption, there is a flat R-module F such that
M ∼= F ⊗R C. Hom-tensor adjointness can be used to show that the R-module
F∨ is injective, and so the sequence of isomorphisms

M∨ ∼= HomR(F ⊗R C,E) ∼= HomR(C,HomR(F,E)) = HomR(C,F∨)

shows that M∨ ∈ IC(R).
We claim that PC- pdR(M∨) < ∞. To see this, consider a bounded aug-

mented IC-coresolution of M

0 → M → HomR(C, I0) → HomR(C, I1) → · · · → HomR(C, In) → 0.

The functor (−)∨ yields an exact sequence

0 → HomR(C, In)∨ → · · · → HomR(C, I1)∨ → HomR(C, I0)∨ → M∨ → 0.
(†)

For each j, the module (Ij)∨ is flat by [15, (1.5)], and Hom-evaluation [15,
(1.6)] explains the isomorphism in the next display

HomR(C, Ij)∨ = HomR(HomR(C, Ij), E) ∼= C ⊗R HomR(Ij , E)= C ⊗R (Ij)∨.

It follows that HomR(C, Ij)∨ ∈ FC(R), and so the sequence (†) implies that
FC- pdR(M∨) is finite. Since R is local, it follows from Fact 1.4 that PC- pdR

(M∨) is also finite, as claimed.
Next, we claim that depthR(M∨) < ∞. (Once this is shown, it follows

that R is Gorenstein by Theorem 2.14, using the module M∨.) To verify the
claim, it suffices to show that Exti

R(k,M∨) �= 0 for some i. The assumption
widthR(M) < ∞ implies TorR

i (k,M) is a nonzero k-vector space for some i.
Write TorR

i (k,M) ∼= ⊕λ∈Λk for some index set Λ �= ∅. The first isomorphism
in the next sequence is a version of Hom-tensor adjointness

Exti
R(k,M∨) ∼= TorR

i (k,M)∨ ∼= (⊕λ∈Λk)∨ ∼= ∏

λ∈Λ k∨ ∼= ∏

λ∈Λ k �= 0

and the remaining steps are standard. �
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Notas de Matemática No. 53. [Notes on Mathematics, No. 53].

[21] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988),

106–114.

[22] D. White, Gorenstein projective dimension with respect to a semidualizing

module, J. Commut. Algebra, to appear, arXiv:math.AC/0611711v1.

Sean Sather-Wagstaff
Department of Mathematics, NDSU Dept # 2750,
PO Box 6050, Fargo, ND 58108-6050, USA
e-mail: Sean.Sather-Wagstaff@ndsu.edu



Vol. 93 (2009) Modules of finite homological dimension 121

Siamak Yassemi
Department of Mathematics, University of Tehran,
P.O. Box 13145–448, Tehran, Iran

Siamak Yassemi
School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5746, Tehran, Iran
e-mail: yassemi@ipm.ir

Received: 03 December 2008

Revised: 16 March 2009


	0. Introduction
	1. Semidualizing modules and related homological dimensions
	2. Main results
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


