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An ultimate extremely accurate formula for approximation
of the factorial function
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Abstract. We prove in this paper that for every x ≥ 0,
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where ω = (3 − √
3)/6 and α = 1.072042464..., then
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,

where ζ = (3 +
√

3)/6 and β = 0.988503589... Besides the simplicity, our
new formulas are very accurate, if we take into account that they are
much stronger than Burnside’s formula, which is considered one of the
best approximation formulas ever known having a simple form.
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1. Introduction. Stirling’s formula and its generalizations have a large class of
applications in science as in statistical physics or probability theory. In con-
sequence, it has been deeply studied by a large number of authors, due to its
practical importance. Stirling’s formula:

n! ≈
(n

e

)n √
2πn = σn, (1.1)

is an approximation for big factorials. In fact, the formula (1.1) was discovered
by the French mathematician Abraham de Moivre (1667–1754) in the form

n! ≈ constant ·
(n

e

)n √
n

and the Scottish mathematician James Stirling (1692–1770) discovered the
constant

√
2π in the previous formula. For proofs and other details see [6].
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Furthermore, there is a variety of approaches to Stirling’s formula, ranging
from elementary to advanced methods. As recent examples, we mention the
estimations given by W. Schuster in [8], or the formula

n! ≈
√

2π
(
n+ 1

2

e

)n+ 1
2

= βn,

with n! < βn, due to W. Burnside, whose superiority over Stirling’s formula
was proved in [4].

2. The results. In the first part of this section we prove the following new
estimation formula:

n! ≈
√

2π
e

(
n+ 1
e

)n+ 1
2

= αn, (2.1)

with σn < αn < n!, which is already stronger than the much celebrated Stir-
ling’s formula. The starting idea is the following representation of the factorial
function involving a double sum:

n! =
(n
e

)n √
2πn · exp

⎛
⎝

∞∑
k=n

∞∑
j=2

j − 1
2j(j + 1)

(−1
k

)j
⎞
⎠ .

See [5]. In connection with this relation, we give the following

Lemma 2.1. There exists a convergent series
∑∞

n=1
an with positive terms that

satisfies, for every integer n ≥ 1, the relation

n! =
(n
e

)n √
2πn exp

( ∞∑
k=n

ak

)
. (2.2)

Proof. By dividing the relations
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(n
e
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)

and
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,

we get
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(
n+

1
2

)
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for every n ≥ 2. The obtained series
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is convergent (with sum s), according to a comparison test applied in the case

lim
n→∞

(
n+ 1

2

)
ln
(
1 + 1

n

)− 1
1

n2

=
1
12
.

Then, for n = 1 in (2.2), we impose the condition

1 =
√

2π
e

exp (a1 + s) ,

thus a1 = 1 − s− ln
√

2π.
Now let us separate the term an from the series to obtain:

n! =
(n
e

)n √
2πn exp an · exp
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)

=

√
2π
e

(
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e
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2
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)
. (2.3)

The remainder of the (convergent) series from the right-hand side of (2.3)
tends to zero as n tends to infinity, so we have the following estimation:

n! ≈
√

2π
e

(
n+ 1
e

)n+ 1
2

.

If we compare the remainders of the series (2.2)–(2.3) (with positive terms),
we deduce that

(n
e

)n √
2πn <

√
2π
e

(
n+ 1
e

)n+ 1
2

< n!,

which proves that our new formula (2.1) is substantially stronger than Stir-
ling’s formula. Further, we mention the following formula

n! ≈
√

2π
(
n+ 1

2

e

)n+ 1
2

= βn, (2.4)

established by W. Burnside in [4], then rediscovered by Y. Weissman in [10].
If we look carefully at the estimations (2.1) and (2.4), then we remark that

both are estimations for n! of the form

n! ≈ λ

(
n+ p

e

)n+q

= τn, (2.5)

where λ, p, q are constants (αn is obtained for λ =
√

2π/e, p = 1, q = 1/2,
while βn is obtained for λ =

√
2π, p = q = 1/2). Surprisingly, also Stirling’s

formula can be deduced from (2.5) in case λ =
√

2πe, p = 0 and q = 1/2.
Then a natural question appears, namely which are the constants λ, p, q

such that better approximations (2.5) are obtained. First we impose the condi-
tion that the sequence τn/n! tends to 1. It is difficult to find this limit directly,
because, at least theoretically, the computation of such a limit must repeat in
some way the proof of Stirling’s formula. Under these circumstances, we have
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the idea to interprese the sequence βn/n! which already tends to 1. Hence the
previous condition can be written as

lim
n→∞

τn
βn

= 1,

or

1 = lim
n→∞

τn
βn

=
λ√
2π

· eq− 1
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(
1 +

p

n

)n+q

(
1 +

1
2n

)n+ 1
2

· nq− 1
2

=
λ√
2π

· ep+q−1 lim
n→∞nq− 1

2 .

First, it results q = 1/2, then λ = e−p
√

2πe. Thus for every positive real p,
the following sharp estimations hold:

n! ≈
√

2πe · e−p

(
n+ p

e

)n+ 1
2

(2.6)

Now let us define the function f : [0, 1] → R by the formula

f(x) =
√

2πe · e−x

(
n+ x

e

)n+ 1
2

,

where n ≥ 1 is any fixed integer. As we have already noted, we have

f(0)=
√

2πn
(n
e

)n

, f

(
1
2

)
=

√
2π
(
n+ 1

2

e

)n+ 1
2

, f(1)=

√
2π
e

(
n+1
e

)n+ 1
2

.

The function f is strictly increasing on [0, 1/2] and strictly decreasing on
[1/2, 1] , if we take into account that

d

dx
(log f(x)) =

1
2 − x

n+ x
.

The upper and the lower bound of the function f are estimations for n! and

f(0) < n! < f

(
1
2

)
> n! > f(1),

so performant approximations (2.6) can be obtained for p ∈ [0, 1] .
As usually, we associate to the approximation (2.6) the following function

Fa : [0,∞) → R, Fa(x) = log
Γ(x+ 1)

√
2πe · e−a

(
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e

)x+ 1
2
,

where a ∈ [0, 1] is a parameter. We have

Fa(x) = − log
√
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(
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1
2

)
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1
2

+ log Γ(x+ 1),

so

F ′
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2
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+ 1 + ψ(x) +

1
x
,
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where ψ(x) = Γ′(x)/Γ(x) is the Euler’s digamma function, then

F ′′
a (x) = − 1

x+ a
+

1 − 2a
2(a+ x)2

+ ψ′(x) − 1
x2
.

Using the integral representations (e.g., [1,9]):

ψ′(x) =

∞∫

0

te−xt

1 − e−t
dt,

1
x

=

∞∫

0

e−xtdt,
1
x2

=
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0

te−xtdt,

we obtain
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2

)
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dt,

or

F ′′
a (x) =

∞∫
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1 − e−t
ϕ(t)dt, (2.7)

where

ϕ(t) = teat +
(
et − 1

)((1
2

− a

)
t− 1

)
.

The function ϕ can be easily expanded in powers series as

ϕ(t) =
1
12
(
6a2 − 6a+ 1

)
t3 +

∞∑
n=4

(
n

(
1
2

− a

)
+ nan−1 − 1

)
tn

n!
. (2.8)

Lemma 2.2. Let

xn = n

(
1
2

− a

)
+ nan−1 − 1 , a > 0.

Then xn is positive for all a ∈ [
0,
(
3 − √

3
)
/6
]
, and negative for all a ∈[

1/2,
(
3 +

√
3
)
/6
]

and n ≥ 4.

Proof. First, for a ∈ [0, (3 − √
3
)
/6
]

and n ≥ 4, we have

n

(
1
2

− a

)
+ nan−1 − 1 ≥

(
4

(
1
2

− 3 − √
3

6

)
− 1

)
+ nan−1 > 0.

We show that xn < 0, for every n ≥ 4 and a ∈ [1/2, 4/5] .
In this sense, let us define the function tn : [1/2, 4/5] → R, by

tn(a) = n

(
1
2

− a

)
+ nan−1 − 1.

Then tn is negative, since it is convex, with tn(1/2) < 0 and tn (4/5) < 0.
Indeed, t′′n(a) = n (n− 1) (n− 2) an−3 > 0,

tn

(
1
2

)
=

n

2n−1
− 1 < 0
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and t4 (4/5) = −0.152, t5 (4/5) = −0.452, t6 (4/5) = −0.83392, and for every
n ≥ 7,

tn

(
4
5

)
= −3n

10
+ n

(
4
5

)n−1

− 1 ≤ −
(

3
10

−
(

4
5

)6
)
n− 1 < 0.

Now we are in position to give the following

Theorem 2.1. a) For every a ∈
[
0, 3−√

3
6

]
, the function Fa is decreasing and

for every x ≥ 0, the following inequalities hold:

√
2πe · e−a

(
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e

)x+ 1
2

< Γ(x+ 1) ≤
√
e

a

(
x+ a

e

)x+ 1
2

. (2.9)

b) For every b ∈
[

1
2 ,

3+
√

3
6

]
, the function Fb is increasing and for every x ≥ 0,

the following inequalities hold:
√
e

b

(
x+ b

e

)x+ 1
2

≤ Γ(x+ 1) <
√

2πe · e−b

(
x+ b

e

)x+ 1
2

. (2.10)

Proof. a) We can see from the relation (2.8) that 6a2 −6a+1 ≥ 0, for every
a ∈

[
0, 3−√

3
6

]
and each coefficient n

(
1
2 − a

)
+ nan−1 − 1 is positive, for

n ≥ 4, thus ϕ > 0. From (2.7) it results that F ′′
a > 0, so Fa is convex. As

we proved,

lim
x→∞Fa(x) = lim

x→∞F ′
a(x) = 0,

so Fa(x) > 0 and F ′
a(x) < 0, for x ∈ [0,∞). This implies that Fa is

strictly decreasing,

0 = lim
x→∞Fa(x) < Fa(x) ≤ Fa(0),

which is equivalent with (2.9).
b) Now, for b ∈

[
1
2 ,

3+
√

3
6

]
, we have 6b2 − 6b + 1 ≤ 0, and each coefficient(

nbn−1 − 1
) − n

(
b− 1

2

)
is negative, for n ≥ 4, thus ϕ < 0. From (2.7) it

results that F ′′
b < 0, so Fb is concave. As we proved,

lim
x→∞Fb(x) = lim

x→∞F ′
b(x) = 0,

so Fb(x) < 0 and F ′
b(x) > 0, for x ∈ [0,∞). This implies that Fb is strictly

increasing,

Fb(0) ≤ F (x) < lim
x→∞Fb(x) = 0,

which is equivalent with (2.10). �

If we take a = ω =
(
3 − √

3
)
/6 in (2.9), we obtain the estimations

√
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(
x+ ω

e

)x+ 1
2

< Γ(x+ 1) ≤ α ·
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2πe · e−ω
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e

)x+ 1
2

,
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where

α =
eω

√
2πe

(
ω
e

) 1
2

= 1.072042464 . . . .

Analogously, for b = ζ =
(
3 +

√
3
)
/6 in (2.10), we obtain the estimations

β ·
√

2πe · e−ζ

(
x+ ζ

e

)x+ 1
2

≤ Γ(x+ 1) <
√

2πe · e−ζ

(
x+ ζ

e

)x+ 1
2

,

where

β =
eζ

√
2πe

(
ζ
e

) 1
2

= 0.988503589 . . . .

3. Conclusions. The basic estimations (2.9) and (2.10) can be viewed as very
accurate approximations for the factorial function. In order to show the prac-
tical utility of our estimations

θn :=
√

2πe · e−ω

(
n+ ω

e

)n+ 1
2

< n! <
√

2πe · e−ζ

(
n+ ζ

e

)n+ 1
2

:= ξn(3.1)

we give next some of their numeric values:

n θn/n! ξn/n!
5 0.99971 1.0002
10 0.99992 1.0001
20 0.99998 1.0000
25 0.99999 1.0000
40 1.00000 1.0000

In this table, the values 1.0000, or 1.00000 mean that θn/n! and ξn/n! differ
from the unity by a quantity less than 10−4, respective 10−5.

If we want to compare (3.1) with other results, then it is to be noted that,
more recently, the double inequality

nn+1e−n
√

2π√
n− α

< n! <
nn+1e−n

√
2π√

n− β

was established in [7] in case α = 0 and β = 1. The best possible constants
α = 1 − 2πe−2 and β = 1/6 were discovered by N. Batir in the very recent
paper [2]. The author of [2] proves the superiority of his approximation formula

n! ≈ nn+1e−n
√

2π√
n− 1/6

= γn (3.2)
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over Burnside’s formula (2.4), using numerical computations. As we can see
from the next table, our formula n! ≈ ξn from (3.1) is more accurate than
(3.2).

n n! ξn γn

1 1 1.0024785 1.01015
2 2 2.0020656 2.0043347
3 6 6.0033665 6.0054101
5 120 120.028847 120.036736
10 3628800 3629050.545 3629064.897

Finally, we give the comparison table of our under-approximation θn from
(3.1), with the corresponding under-approximation

n! ≈ nn+1e−n
√

2π√
n− (1 − 2πe−2)

= νn (N. Batir [2])

from which we can see that (3.1) has at least one order advantage over the
formula νn. Our approximation θn is comparable with the following approxi-
mation

n! ≈ nne−n

√
2π
(
n+

1
6

)
= ρn (N. Batir [3]).

n n! − θn n! − νn n! − ρn

5 0.03481 0.17385 0.02997
7 0.76766 5.49330 0.66252
10 276.56 2868.64 239. 18
15 4.4989 × 107 7.0713 × 108 3. 8988 × 107

20 4.7425 × 1013 9.9891 × 1014 4. 116 × 1013

30 2.3125 × 1027 7.3476 × 1028 2. 011 9 × 1027

70 1.9215 × 1094 1.4409 × 1096 1. 6853 × 1094

120 3.6277 × 10192 4.713 × 10194 3. 2123 × 10192
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