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Fixed point theorems for a class of nonlinear mappings related to
maximal monotone operators in Banach spaces
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Abstract. In this paper, the class of nonspreading mappings in Banach spaces
is introduced. This class contains the recently introduced class of firmly nonex-
pansive type mappings in Banach spaces and the class of firmly nonexpansive
mappings in Hilbert spaces. Among other things, we obtain a fixed point the-
orem for a single nonspreading mapping in Banach spaces. Using this result,
we also obtain a common fixed point theorem for a commutative family of
nonspreading mappings in Banach spaces.
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1. Introduction. The following Browder-Göhde-Kirk fixed point theorem is well-
known; see also Goebel and Kirk [14] and Takahashi [31]:

Theorem 1.1 (Browder-Göhde-Kirk [4, 15, 19]). Let E be a uniformly convex
Banach space, let C be a nonempty bounded closed convex subset of E and let
T be a nonexpansive mapping from C into itself. Then T has a fixed point.

The fixed point problem for nonexpansive mappings in Hilbert spaces is con-
nected with the problem of finding zero points of maximal monotone operators in
the spaces. Let H be a (real) Hilbert space and let A ⊂ H × H be a maximal
monotone operator. Then, for each r > 0, the resolvent Jr of A is defined by
Jrx = (I + rA)−1x for all x ∈ H. It is well-known that Jr is a single-valued firmly
nonexpansive mapping, that is,

‖Jrx − Jry‖2 ≤ 〈x − y, Jrx − Jry〉(1)

for all x, y ∈ H. It also holds that F (Jr) = A−10, where F (Jr) denotes the
set of fixed points of Jr. Thus the problem of finding zero points of maximal
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monotone operators in Hilbert spaces is reduced to the fixed point problem for
firmly nonexpansive mappings. In particular, if A is the subdifferential ∂f of a
proper lower semicontinuous convex function f from H into (−∞,∞], then Jr is
given by

Jrx = arg min
y∈H

{
f(y) +

1
2r

‖y − x‖2
}

(2)

for all x ∈ H. In this case, F (Jr) = {z ∈ H : f(z) = infy∈H f(y)}.

There are two generalizations of the class of maximal monotone operators in
Hilbert spaces to Banach spaces. One of them is the class of m-accretive operators
and the other is that of maximal monotone operators. By Rockafellar’s theorem
[25, 26], the subdifferential ∂f of a proper lower semicontinuous convex function
f from a Banach space E into (−∞,∞] is a maximal monotone operator.

Let E be a Banach space and let C be a nonempty closed convex subset of E.
Then a mapping T from C into itself is said to be firmly nonexpansive (Bruck [6])
if

‖Tx − Ty‖ ≤ ‖r(x − y) + (1 − r)(Tx − Ty)‖(3)

for all r > 0, x, y ∈ C. It is known that T is firmly nonexpansive if and only if
there exists an accretive operator A ⊂ E × E such that D(A) ⊂ C ⊂ R(I + A)
and Tx = (I + A)−1x for all x ∈ C. In this case, F (T ) = A−10 holds. It is also
known that T is firmly nonexpansive if and only if for all x, y ∈ C, there exists
j ∈ J(Tx − Ty) such that

‖Tx − Ty‖2 ≤ 〈x − y, j〉,(4)

where J is the normalized duality mapping from E into 2E∗
. Bruck and Reich [7]

studied the asymptotic behavior of the sequence {Tnx} for all x ∈ C, where T is a
strongly nonexpansive mapping in a Banach space. As a corollary, they deduced a
weak convergence theorem for a firmly nonexpansive mapping; see also Reich and
Shafrir [24] for similar results on this subject. On the other hand, Smarzewski [28]
obtained a fixed point theorem for λ-firmly nonexpansive mappings defined on a
nonconvex subset of a Banach space; see also Kaczor [16] for a generalization of
Smarzewski’s result.

Recently, the authors [20] introduced the class of firmly nonexpansive type
mappings in Banach spaces. Let C be a nonempty closed convex subset of a smooth
Banach space E and let T be a mapping from C into itself. Then T is said to be
of firmly nonexpansive type if

〈Tx − Ty, JTx − JTy〉 ≤ 〈Tx − Ty, Jx − Jy〉(5)

for all x, y ∈ C. In [20], it was shown that T is of firmly nonexpansive type if and
only if

φ(Tx, Ty) + φ(Ty, Tx) + φ(Tx, x) + φ(Ty, y) ≤ φ(Tx, y) + φ(Ty, x)(6)
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for all x, y ∈ C, where φ is the mapping from E × E into [0,∞) defined by

φ(u, v) = ‖u‖2 − 2〈u, Jv〉 + ‖v‖2(7)

for all u, v ∈ E. We also know that if E is smooth, strictly convex and reflexive, C
is a nonempty closed convex subset of E and A ⊂ E × E∗ is a monotone operator
such that

D(A) ⊂ C ⊂ J−1R(J + rA)(8)

for all r > 0, then for each r > 0, the resolvent Jr of A which is defined by
Jrx = (J + rA)−1Jx for all x ∈ C is a firmly nonexpansive type mapping and
F (Jr) = A−10. In particular, if A ⊂ E×E∗ is a maximal monotone operator, then
R(J + rA) = E∗ for all r > 0; see [2, 5, 27, 30]. In this case, we can define the
resolvent Jr of A by Jrx = (J + rA)−1Jx for all x ∈ E; see, for instance, [17, 18].
We know that Jr is a firmly nonexpansive type mapping from E into itself.

In this paper, we say that a mapping T from C into itself is nonspreading if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)(9)

for all x, y ∈ C. In view of (6) and

φ(u, v) ≥ (‖u‖ − ‖v‖)2 ≥ 0(10)

for all u, v ∈ E, it is obvious that every firmly nonexpansive type mapping is
nonspreading. In Section 3, we first show that the class of firmly nonexpansive
type mappings coincides with that of resolvents of monotone operators in Banach
spaces (Proposition 3.1). After that, we prove that every nonspreading mapping in
a Banach space with a fixed point is relatively nonexpansive in the sense of Mat-
sushita and Takahashi [21, 22] (Theorem 3.3). In Section 4, we first obtain a fixed
point theorem for a single nonspreading mapping in Banach spaces (Theorem 4.1).
Using this result, we also obtain a common fixed point theorem for a commutative
family of nonspreading mappings in Banach spaces (Theorem 4.6).

2. Preliminaries. Throughout this paper, all linear spaces are real. Let N be the
set of all positive integers. Let E be a Banach space and let E∗ be the dual space
of E. For a sequence {xn} of E and a point x ∈ E, the weak convergence of
{xn} to x and the strong convergence of {xn} to x are denoted by xn ⇀ x and
xn → x, respectively. A set-valued mapping A ⊂ E × E∗ with domain D(A) =
{x ∈ E : Ax 
= ∅} and range R(A) =

⋃{Ax : x ∈ D(A)} is said to be monotone if
〈x−y, x∗−y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. A monotone operator A ⊂ E×E∗

is also said to be maximal monotone if A = B whenever B ⊂ E×E∗ is a monotone
operator such that A ⊂ B.

Let E be a Banach space. Then the duality mapping J from E into 2E∗
is

defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}(11)
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for all x ∈ E. Let S(E) be the unit sphere centered at the origin of E. Then the
space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(12)

exists for all x, y ∈ S(E). The norm of E is also said to be uniformly Gâteaux
differentiable if for all y ∈ S(E), the limit (12) attains uniformly in x ∈ S(E).
A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 whenever
x, y ∈ S(E) and x 
= y. We know the following; see, for instance, Cioranescu [13]
and Takahashi [31]:

(1) If E is smooth, then J is single-valued;
(2) if E is reflexive, then J is onto;
(3) if E is strictly convex, then J is one-to-one, that is, Jx∩Jy 
= ∅ implies that

x = y;
(4) if E is strictly convex, then J is strictly monotone, that is, if (x, x∗), (y, y∗) ∈

J and 〈x − y, x∗ − y∗〉 = 0, then x = y.

Let E be a smooth Banach space. Following Alber [1] and Kamimura and
Takahashi [18], let φ : E × E → [0,∞) be the mapping defined by (7). It is well-
known that φ is the Bregman distance corresponding to ‖ · ‖2; see Bregman [3],
Butnariu and Iusem [8] and Censor and Lent [11]. It is known that

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉(13)

for all x, y, z ∈ E. It is also known that

2〈x − y, Jz − Jw〉 = φ(x, w) + φ(y, z) − φ(x, z) − φ(y, w)(14)

for all x, y, z, w ∈ E. Let C be a nonempty closed convex subset of E and let T
be a mapping from C into itself. We denote the set of fixed points of T by F (T ),
that is, F (T ) = {z ∈ C : Tz = z}. A point u ∈ C is said to be an asymptotic
fixed point (Reich [23]) of T if there exists a sequence {xn} of C such that xn ⇀ u

and xn − Txn → 0. We denote the set of asymptotic fixed points of T by F̂ (T ).
Following Matsushita and Takahashi [21, 22], we say that a mapping T from C
into itself is relatively nonexpansive if the following conditions are satisfied; see
also [8, 9, 10, 12, 23] for similar classes of nonlinear operators:

(1) F (T ) is nonempty;
(2) φ(u, Tx) ≤ φ(u, x) for all (x, u) ∈ C × F (T );
(3) F̂ (T ) = F (T ).

We know the following lemma:

Lemma 2.1 ([22]). Let E be a smooth and strictly convex Banach space, let C be
a nonempty closed convex subset of E and let T be a mapping from C into itself
such that F (T ) is nonempty and

φ(u, Tx) ≤ φ(u, x)(15)

for all u ∈ F (T ) and x ∈ C. Then F (T ) is closed and convex.



170 F. Kohsaka and W. Takahashi Arch. Math.

Using Lemma 2.1, we can show the following:

Proposition 2.2. Let E be a smooth and strictly convex Banach space, let C be a
nonempty closed convex subset of E and let T be a nonspreading mapping from C
into itself. Then F (T ) is closed and convex.

Proof. It is sufficient to consider the case that F (T ) is nonempty. In this case,
since T is nonspreading, we have

φ(Tx, Tu) + φ(Tu, Tx) ≤ φ(Tx, u) + φ(Tu, x)(16)

for all u ∈ F (T ) and x ∈ C, that is, φ(u, Tx) ≤ φ(u, x) for all u ∈ F (T ) and
x ∈ C. Thus, by Lemma 2.1, F (T ) is closed and convex. �

3. Firmly nonexpansive type mappings and nonspreading mappings. In this sec-
tion, we study some properties of firmly nonexpansive type mappings and non-
spreading mappings in Banach spaces. We first show that the class of firmly non-
expansive type mappings coincides with that of resolvents of monotone operators
in Banach spaces.

Proposition 3.1. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed convex subset of E and let T be a mapping from C into
itself. Then the following are equivalent:

(1) T is of firmly nonexpansive type;
(2) there exists a monotone operator A ⊂ E × E∗ such that

D(A) ⊂ C ⊂ J−1R(J + A)(17)

and Tx = (J + A)−1Jx for all x ∈ C.

Proof. By [20], we know that (2) implies (1). For the sake of completeness, we
give the proof. Suppose that there exists a monotone operator A ⊂ E × E∗ such
that D(A) ⊂ C ⊂ J−1R(J + A) and Tx = (J + A)−1Jx for all x ∈ C. Since E is
smooth and strictly convex, T is single-valued. By D(A) ⊂ C ⊂ J−1R(J +A), T is
a mapping from C into itself. Let x, y ∈ C be given. Then we have Jx−JTx ∈ ATx
and Jy − JTy ∈ ATy. Since A is monotone, we have

〈Tx − Ty, Jx − JTx − (Jy − JTy)〉 ≥ 0.(18)

This shows that T is of firmly nonexpansive type.

We next show that (1) implies (2). Suppose that T is of firmly nonexpansive
type. Let A ⊂ E ×E∗ be the set-valued mapping defined by A = JT−1 −J , where
T−1 is defined by

T−1u =

{
{v ∈ C : Tv = u} (u ∈ R(T ));
∅ (otherwise).

(19)
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It is obvious that Tx = (J + A)−1Jx for all x ∈ C. We show that A is monotone.
Let (xi, x

∗
i ) ∈ A be given (i = 1, 2). Then we have

x∗
i ∈ Axi ⇐⇒ x∗

i ∈ JT−1xi − Jxi

⇐⇒ x∗
i + Jxi ∈ JT−1xi

⇐⇒ J−1(x∗
i + Jxi) ∈ T−1xi

⇐⇒ TJ−1(x∗
i + Jxi) = xi

(20)

for i = 1, 2. Putting ui = J−1(x∗
i + Jxi), we have Tui = xi and Jui − Jxi = x∗

i

(i = 1, 2). Since T is of firmly nonexpansive type, we have

〈x1 − x2, x
∗
1 − x∗

2〉 = 〈Tu1 − Tu2, x
∗
1 − x∗

2〉
= 〈Tu1 − Tu2, Ju1 − Jx1 − (Ju2 − Jx2)〉
= 〈Tu1 − Tu2, Ju1 − JTu1 − (Ju2 − JTu2)〉 ≥ 0.

(21)

Thus A is monotone. We finally show that D(A) ⊂ C ⊂ J−1R(J + A). It is easy
to see that D(A) = D(JT−1 − J) = D(T−1) = R(T ) ⊂ C. Since J + A = JT−1,
we also have

R(J + A) = R(JT−1) = D((JT−1)−1) = D(TJ−1) = JD(T ) = JC.(22)

Thus C = J−1R(J + A). This completes the proof. �

We next show that every nonspreading mapping with a fixed point is relatively
nonexpansive in the sense of Matsushita and Takahashi [21, 22] (Theorem 3.3).
Before proving it, we show the following proposition:

Proposition 3.2. Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm, let C be a nonempty closed convex subset of E and let T be a
nonspreading mapping from C into itself. Then F (T ) = F̂ (T ).

Proof. The inclusion F̂ (T ) ⊃ F (T ) is obvious. Thus we show F̂ (T ) ⊂ F (T ). Let
u ∈ F̂ (T ) be given. Then we have a sequence {xn} of C such that xn ⇀ u and
xn − Txn → 0. Since the norm of E is uniformly Gâteaux differentiable, J is
uniformly norm-to-weak* continuous on each bounded subset of E; see Takahashi
[31]. Thus

lim
n→∞〈w, JTxn − Jxn〉 = 0(23)

for all w ∈ E. On the other hand, since T is nonspreading, we have

φ(Txn, Tu) + φ(Tu, Txn) ≤ φ(Txn, u) + φ(Tu, xn)(24)
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for all n ∈ N. This implies that

0 ≤ φ(Txn, u) − φ(Txn, Tu) + φ(Tu, xn) − φ(Tu, Txn)

= 2〈Txn, JTu − Ju〉 + ‖u‖2 − ‖Tu‖2

+ 2〈Tu, JTxn − Jxn〉 + ‖xn‖2 − ‖Txn‖2

≤ 2〈Txn, JTu − Ju〉 + ‖u‖2 − ‖Tu‖2

+ 2〈Tu, JTxn − Jxn〉 + (‖xn‖ + ‖Txn‖)‖xn − Txn‖

(25)

for all n ∈ N. Letting n → ∞ in (25), we get from (23), Txn −xn → 0 and xn ⇀ u
that

0 ≤ 2〈u, JTu − Ju〉 + ‖u‖2 − ‖Tu‖2

≤ φ(u, u) − φ(u, Tu)(26)

≤ −φ(u, Tu).

Thus φ(u, Tu) ≤ 0. This implies that φ(u, Tu) = 0. Since E is strictly convex, we
obtain u = Tu. This completes the proof. �

Using Proposition 3.2, we can prove the following theorem:

Theorem 3.3. Let E be a strictly convex Banach space with a uniformly Gâteaux
differentiable norm, let C be a nonempty closed convex subset of E and let T be a
nonspreading mapping from C into itself such that F (T ) is nonempty. Then T is
relatively nonexpansive.

Proof. By assumption, F (T ) is nonempty. Since T is nonspreading, we have

φ(u, Tx) ≤ φ(u, x)(27)

for all u ∈ F (T ) and x ∈ C. By Proposition 3.2, F̂ (T ) = F (T ). Thus T is a
relatively nonexpansive mapping from C into itself. �

4. Fixed point theorems for nonspreading mappings. In this section, we obtain
fixed point theorems for nonspreading mappings in a Banach space. Using the
technique developed by Takahashi [29, 31], we first prove the following fixed point
theorem for a single nonspreading mapping in Banach spaces:

Theorem 4.1. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty closed convex subset of E and let T be a nonspreading mapping
from C into itself. Then the following are equivalent:

(1) There exists x ∈ C such that {Tnx} is bounded;
(2) F (T ) is nonempty.
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Proof. Since it is obvious that (2) implies (1), we show that (1) implies (2). Suppose
that there exists x ∈ C such that {Tnx} is bounded. Let y ∈ C, k ∈ N ∪ {0} and
n ∈ N be given. Since T is nonspreading and (13) holds, we have

φ(T k+1x, Ty) + φ(Ty, T k+1x)

≤ φ(T k+1x, y) + φ(Ty, T kx)

= φ(T k+1x, Ty) + φ(Ty, y) + 2〈T k+1x − Ty, JTy − Jy〉 + φ(Ty, T kx).

(28)

This implies that

0 ≤ φ(Ty, y) + φ(Ty, T kx) − φ(Ty, T k+1x) + 2〈T k+1x − Ty, JTy − Jy〉.(29)

Summing these inequalities with respect to k = 0, 1, . . . , n − 1, we have

0 ≤ nφ(Ty, y)

+ φ(Ty, x) − φ(Ty, Tnx) + 2

〈
n−1∑
k=0

T k+1x − nTy, JTy − Jy

〉
.

(30)

Dividing this inequality by n, we have

0 ≤ φ(Ty, y) +
1
n

{φ(Ty, x) − φ(Ty, Tnx)} + 2〈Sn(Tx) − Ty, JTy − Jy〉,(31)

where Sn(z) = (1/n)
∑n−1

k=0 T kz for all z ∈ C. Since {Tnx} is bounded by
assumption, {Sn(Tx)} is also bounded. Thus we have a subsequence {Sni(Tx)} of
{Sn(Tx)} such that Sni

(Tx) ⇀ u ∈ C. Letting ni → ∞ in (31), we obtain

0 ≤ φ(Ty, y) + 2〈u − Ty, JTy − Jy〉.(32)

Putting y = u in (32), we have from (14) that

0 ≤ φ(Tu, u) + 2〈u − Tu, JTu − Ju〉
= φ(Tu, u) +

{
φ(u, u) + φ(Tu, Tu) − φ(u, Tu) − φ(Tu, u)

}
= −φ(u, Tu)

(33)

Hence we have φ(u, Tu) ≤ 0 and hence φ(u, Tu) = 0. Since E is strictly convex,
we obtain u = Tu. Therefore, F (T ) is nonempty. This completes the proof. �

As direct consequences of Theorem 4.1, we have the following:

Corollary 4.2. Every bounded closed convex subset of a smooth, strictly convex and
reflexive Banach space has the fixed point property for nonspreading self mappings.

Corollary 4.3 ([20]). Let E be a smooth, strictly convex and reflexive Banach space,
let C be a nonempty closed convex subset of E and let T be a firmly nonexpansive
type mapping from C into itself. Then the following are equivalent:

(1) There exists x ∈ C such that {Tnx} is bounded;
(2) F (T ) is nonempty.
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Corollary 4.4. Let H be a Hilbert space, let C be a nonempty closed convex subset
of H and let T be a mapping from C into itself such that

2‖Tx − Ty‖2 ≤ ‖Tx − y‖2 + ‖Ty − x‖2(34)

for all x, y ∈ C. Then the following are equivalent:

(1) There exists x ∈ C such that {Tnx} is bounded;
(2) F (T ) is nonempty.

Proof. In a Hilbert space H, we know that φ(u, v) = ‖u − v‖2 for all u, v ∈ H. So,
the mapping T in Corollary 4.4 is a nonspreading mapping from C into itself. By
Theorem 4.1, we obtain the desired result. �

To prove a common fixed point theorem (Theorem 4.6), we need the following
lemma:

Lemma 4.5. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty bounded closed convex subset of E and let {T1, T2, . . . , TN} be
a commutative finite family of nonspreading mappings from C into itself. Then
{T1, T2, . . . , TN} has a common fixed point.

Proof. The proof is given by induction with respect to N . We first show the case
that N = 2. By Proposition 2.2 and Corollary 4.2, F (T1) is nonempty, bounded,
closed and convex. It follows from T1T2 = T2T1 that F (T1) is T2-invariant. In fact,
if u ∈ F (T1), then we have T1T2u = T2T1u = T2u.

Thus we have T2u ∈ F (T1). Hence the restriction of T2 to F (T1) is a nonspread-
ing self mapping. By Corollary 4.2, T2 has a fixed point in F (T1), that is, we have
v ∈ F (T1) such that T2v = v. Consequently, v ∈ F (T1) ∩ F (T2).

Suppose that for some n ≥ 2, X =
⋂n

k=1 F (Tk) is nonempty. Then X is a
nonempty bounded closed convex subset of C and the restriction of Tn+1 to X
is a nonspreading self mapping. By Corollary 4.2, Tn+1 has a fixed point in X.
This shows that X ∩F (Tn+1) is nonempty, that is,

⋂n+1
k=1 F (Tk) is nonempty. This

completes the proof. �

Using Lemma 4.5, we can finally prove the following common fixed point the-
orem for a commutative family of nonspreading mappings in a Banach space:

Theorem 4.6. Let E be a smooth, strictly convex and reflexive Banach space, let
C be a nonempty bounded closed convex subset of E and let {Tα}α∈A be a com-
mutative family of nonspreading mappings from C into itself. Then {Tα}α∈A has
a common fixed point.

Proof. By Proposition 2.2, we know that each F (Tα) is a closed convex subset
of C. Since E is reflexive and C is bounded, closed and convex, C is weakly
compact. Thus, to show that

⋂
α∈A F (Tα) is nonempty, it is sufficient to show
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that {F (Tα)}α∈A has the finite intersection property. By Lemma 4.5, {F (Tα)}α∈A

has this property. Thus the proof is completed. �
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