
Arch. Math. 90 (2008), 193–199
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A note on character kernels in finite groups
of prime power order
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Abstract. In this note, we classify the finite groups of prime power order
for which all nonlinear irreducible character kernels constitute a chain with
respect to inclusion.
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1. Introduction. For a finite group G, we write Kern(G) to denote the set of
kernels of nonlinear irreducible characters of G. Since every normal subgroup is an
intersection of some irreducible character kernels, the set Kern(G) heavily influ-
ences the structure of the group G. In this note, we determine the finite p-groups
G for which Kern(G) is just a chain with respect to inclusion. This is the first half
of Research Problem 25 in [1] posed by Y. Berkovich.

Main Theorem Let G be a finite nonablian p-group. Then the following statements
are equivalent :

(1) Kern(G) is a chain with respect to inclusion.

(2) Whenever N < G′ is a normal subgroup of G, N is a member of Kern(G).

(3) G is one of the following groups :

(3.1) G′ is a unique minimal normal subgroup of G.

(3.2) G is of maximal class.
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Remark 1.1. If a finite p-group G is of type (3.1), then Z(G) ≥ G′ is cyclic,
G/Z(G) is an elementary abelian group of order p2m, and all its nonlinear irre-
ducible characters are faithful and of degree pm (see [3, Lemma 12.3]).

Remark 1.2. For a finite p-group G, we write G1 = G, and Gn = [Gn−1, G] for
n ≥ 2. Then G2 = G′. The class c(G) of G is defined by an integer n such that
Gn+1 = 1 but Gn > 1. A nonabelian p-group G is called to be of maximal class
provided that c(G) = −1 + logp|G|. For more detailed information about p-groups
of maximal class, we refer readers to [2, Chapter 3, §14].

In this note, p always denotes a prime integer. For a finite group, Irr(G) is the
set of irreducible complex characters of G, and cd(G) := {χ(1) | χ ∈ Irr(G)}.

2. Proofs.

Lemma 2.1. Let G be a finite p-group of class 3. Suppose that G3 = Z(G) ∩ G2,
|G3| = p, and G2/G3 is cyclic. Then G/G3 has a normal abelian subgroup of index
p. In particular, cd(G/G3) = {1, p}

Proof. Let y1 ∈ G2 − G3 be such that G2 = 〈y1〉G3 and y2 be any element in
G2 −G3. Note that |CG/G3(y2G3)| ≤ |CG(y2)| by [3, Corollary 2.24]. We have

p−1|G| = |CG/G3(y2G3)| ≤ |CG(y2)| ≤ p−1|G|
and

CG(y1) = CG(G2) ≤ CG(y2).
It follows that CG(y2) = CG(G2) is of order p−1|G| for any y2 ∈ G2 − G3. Take
x ∈ G− CG(G2). Then

CG(x) ∩G2 = G3.

Since G2/G3 ≤ Z(G/G3), we have

CG(x)G2/G3 = CG(x)/G3 ×G2/G3.

Observe that |CG(x)/G3| = p−1|CG(x)| ≥ p−1|G/G2|, and that CG(x)/G3 ∼=
CG(x)G2/G2 ≤ G/G2 is abelian. Thus CG(x)G2/G3 is abelian and of order at
least p−1|G/G2||G2/G3| = p−1|G/G3|, and so |G/G3 : CG(x)G2/G3| = p because
G/G3 is nonabelian. Now [3, Theorem 12.11] implies that cd(G/G3) = {1, p}. �

For any finite nonabelian p-group G, it is easy to see that c(G) ≤ 1 + logp|G′|.
Now applying Lemma 2.1 on G/G4, we conclude the following consequence which
seems of independent interest.

Corollary 2.2. Suppose that G is a finite p-group of class at least 3. Then G is
of maximal class if and only if c(G) = 1 + logp|G′| and G/G3 is an extraspecial
group.

Lemma 2.3. Let G be a finite nonabelian group and K be the intersection of all
members of Kern(G). Then K = 1.
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Proof. By [3, Lemma 2.21] and [3, Corollary 2.23], we have K ∩G′ = 1. Assume
the contrary, that is K > 1. Let λ be a nonprincipal irreducible character of K
and χ be any irreducible constituent of λG. Then kerχ �≥ K. This implies that χ
is linear, and so χ is an extension of λ to G. Take nonlinear ψ0 ∈ Irr(G/K). By [3,
Corollary 6.17], χψ0 ∈ Irr(G) is nonlinear and ker(χψ0) �≥ K, a contradiction. �
Definition 2.4. Let K be a normal subgroup of some finite group G. We say that
K is a heavy subgroup of G (or K is heavy in G) if for any normal subgroup T
of G, either T ≥ K or T < K.

Now we are ready to prove our main theorem.

Theorem 2.5. Let G be a finite nonabelian p-group. Then the following statements
are equivalent:

(1) Kern(G) is a chain with respect to inclusion.

(2) All normal subgroups of G contained in G′ are heavy subgroups of G.

(3) G is one of the following groups:

(3.1) G′ is a unique minimal normal subgroup of G.

(3.2) G is of maximal class.

(4) Whenever N < G′ is a normal subgroup of G, N is a member of Kern(G).

Proof. (1) ⇒ (2). Suppose that Kern(G) is a chain with respect to inclusion.
Let K � G with K ≤ G′. For any normal subgroup T of G, let us consider a
quotient group G/(T ∩K). If G/(T ∩K) is abelian, then T ≥ T ∩K ≥ G′ ≥ K.
Suppose that G/(T ∩K) is nonabelian. Let χ1, · · · , χs be all nonlinear irreducible
characters of G with T ∩ K ≤ kerχi. Clearly, those χi’s are just all nonlinear
irreducible characters of G/(T ∩ K). Applying Lemma 2.3 on G/(T ∩ K), we
conclude that T ∩K = kerχ1 ∩· · ·∩kerχs. By the hypothesis, we may assume that
kerχ1 ≤ kerχ2 ≤ · · · ≤ kerχs, then we see that G/(T ∩K) has a faithful irreducible
character χ1. It follows by [3, Lemma 2.27] that the center of G/(T ∩K) is cyclic.
Suppose that both T/(T ∩ K) and K/(T ∩ K) are nontrivial. Since G/(T ∩ K)
is a p-group, both Z(G/(T ∩ K)) ∩ T/(T ∩ K) and Z(G/(T ∩ K)) ∩ K/(T ∩ K)
are nontrivial, and this leads to a contradiction: Z(G/(T ∩K)) is not cyclic. Thus
either T/(T ∩ K) = 1 or K/(T ∩ K) = 1, and so T ≤ K or K ≤ T . Now any
normal subgroup K of G with K ≤ G′ is a heavy subgroup of G.

(2) ⇒ (3). We claim first that the hypothesis (2) is inherited by any quotient
group G/N whenever N ≤ G′ and N � G. Suppose that K/N, T/N are normal
subgroups of G/N with K/N ≤ (G/N)′ = G′N/N = G′/N . Then K,T are normal
in G with K ≤ G′. Since K is heavy in G, we have either K ≤ T or K ≥ T , and
so either K/N ≤ T/N or K/N ≥ T/N . Thus K/N is heavy in G/N , as claimed.

Suppose that G′ is of order p. Since G′ is a heavy subgroup of G, G′ is a unique
minimal normal subgroup of G, and thus G is of type (3.1).
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In what follows, we always assume |G2| ≥ p2 and we shall show that G is of
maximal class. Write c(G) = n.

Claim (I). Gi/Gi+1 is cyclic for any i = 2, · · · , n.

Since the hypothesis is inherited by quotient group G/Gn, by induction we
conclude that Gi/Gi+1 is cyclic for any i = 2, · · · , n − 1. Since Gn ≤ Z(G), all
subgroups in Gn are normal and so heavy in G. This implies that all subgroups of
Gn constitute a chain with respect to inclusion, and hence Gn is cyclic.

Claim (II). Let T be an abelian normal subgroup of G and suppose that T ∩G2
is a cyclic group of order at least p2. Then T is cyclic.

Let us consider Ω1(T ) = 〈x ∈ T |xp = 1〉. Ω1(T ) is characteristic in T , and so
Ω1(T )�G. Since Ω1(T ) is elementary abelian and G2∩T is a cyclic heavy subgroup
of order at least p2, we must have Ω1(T ) < G2 ∩ T . Thus Ω1(T ) is of order p, and
so T is cyclic.

Claim (III). |G2/G3| = p.

Suppose that |G2/G3| ≥ p2. To see a contradiction, by induction we may
assume G3 = 1. Now G2 is cyclic by claim (I). Let x be any element outside G2.
As G2 = G′ ≤ Z(G), 〈x〉G2 is an abelain normal subgroup of G. Since G2 is a
cyclic group of order at least p2, claim (II) yields that 〈x〉G2 is cyclic. Thus any
element outside G2 is of order at leat p3. By [2, Chapter 3, Theorem 8.2], we
conclude that G is a cyclic group or a quaternion 2-group. Since G is nonabelian
and any nonabelian quaternion group has more than two cyclic subgroups of order
4, we get a contradiction.

Claim (IV). If |G2| = p2, then G is of maximal class.

By claim (III), we have |G2/G3| = |G3| = p. It follows by Lemma 2.1 that
cd(G/G3) = {1, p}. Let Z � G be such that Z/G3 = Z(G/G3). Since G/G3 is of
type (3.1), [3, Lemma 12.3] yields that |G : Z| = p2 and Z/G3 is a cyclic group.

Suppose that Z > G2 and Z is noncyclic . Observe that Z is abelian, it follows
that Z = A × G3, where A ∼= Z/G3. Let W = 〈gp | g ∈ Z〉. Then W is a charac-
teristic subgroup of Z, so W � G. As 1 < W < A, neither W ≥ G3 nor W < G3
holds, and this contradicts the assumption that G3 is heavy in G.

Suppose that Z > G2 and Z is cyclic. In this case, it is easy to see that
G3 = Z(G), Z/Z(G) = Z(G/Z(G)). It follows by [2, Chapter 3, Theorem 7.7]
that p = 2 and G possesses a cyclic subgroup of index 2. Now we know either
|G/G2| = 4 or |G2| = 2 (see [2, Chapter 1, Theorem 14.9], a contradiction.

Therefore Z = G2, and so G is of maximal class.

Claim (V). G is of maximal class.
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Let E � G with |G2/E| = p2. Since our hypothesis is inherited by the quotient
group G/E, it follows by claim (IV) that G/E is of maximal class. In particular,
G/G2 is an elementary abelian p-group of order p2.

Suppose that p = 2. Then the result follows from [2, Chapter 3, Theorem 11.9].

Suppose now that p > 2. By induction and claim (III) and claim (IV), G/Gn

is of maximal class. In particular, |Gi/Gi+1| = p for any i = 2, · · ·n − 1. Now it
suffices to show that |Gn| = p. Suppose that |Gn| ≥ p2. Since Gn is cyclic, we can
find an integer s minimal subject to 2 ≤ s ≤ n and Gs is cyclic. Let T/Gs be any
chief factor of G.

Assume T is nonabelian for some chief factor T/Gs. Then T is nonabelian but
possess a cyclic subgroup Gs of index p. It follows by [2, Chapter 3, Lemma 8.7]
that T possesses a unique noncyclic subgroup A of index p (note that p > 2). Thus
A is characteristic in T and so normal in G. Clearly neither A ≥ Gs nor A < Gs

holds, this contradicts the assumption that Gs is heavy in G.

Assume T is abelian for any chief factor T/Gs. Then T is cyclic by claim (III).
Suppose that s ≥ 3. Since |Gs−1/Gs| = p, we may choose T = Gs−1. Then Gs−1
is cyclic, which contradicts the minimality of s. Therefore G2 = Gs. Now for any
element x outside G2, since G/G2 is elementary abelian, we may take T = 〈x〉G2.
As T is cyclic, x is of order at least p3. This implies that G possesses a unique
subgroup of order p2, which contradicts [2, Chapter 3,Theorem 8.3].

Thus |Gn| = p, and G is of maximal class.

(3) ⇒ (1) and (3) ⇒ (4). Let G be a finite p-group satisfying (3.1) or (3.2).
Then for any pi = p0, p1, · · · , pt = |G′|, G′ possesses unique normal subgroup Ni

(of G) of order pi. Also, 1 = N0 < N1 < · · · < · · · < Nt = G′.

For any member K of Kern(G), we may choose E �G maximal subject to G/E
is nonabelian with E ≥ K. By [3, Lemma 12.3], G′E/E is of prime order and hence
|G′/(G′ ∩ E)| = p. It follows that G′ ∩ E = Nt−1. Since G/Nt−1 is of type (3.1),
G′/Nt−1 is a unique minimal normal subgroup of G/Nt−1. Thus E/Nt−1 = 1,
so E = Nt−1 = G′ ∩ E, and then K ≤ E < G′. Thus Kern(G) is a subset of
{Ni | 0 ≤ i ≤ t−1}, and so Kern(G) is a chain with respect to inclusion, (1) holds.

By Lemma 2.3, we have

Ni = ∩ {kerχ | χ ∈ Irr(G), Ni ≤ kerχ, χ(1) > 1}.
Since Kern(G) is a chain with respect to inclusion ((3)⇒ (1)), Ni = kerχ for some
nonlinear χ ∈ Irr(G), (4) holds.

(4) ⇒ (2). Let E,K be normal subgroups of G with E ≤ G′. Then either
E ≤ K or E ∩ K < E ≤ G′. Suppose that E ∩ K < E ≤ G′. Then E ∩ K is
a member of Kern(G), and this implies by [3, Lemma 2.27] that Z(G/(E ∩ K))
is cyclic. Arguing as in the proof of ((1) ⇒ (2)), we conclude that K = E ∩ K
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(E = E ∩K is not the case), that is K ≤ E. Thus any normal subgroup E of G
contained in G′ is heavy in G, (2) holds. �
Remark 2.6. Let G be a finite group without the assumption that G is a p-group.
If all normal subgroups of G contained in G′ are heavy subgroups of G, then
Kern(G) is a chain with respect to inclusion; the converse is not true.

Proof. Let 1 = N0, N1, · · · , Ns = G′ be all normal subgroups of G contained in
G′, and suppose that these Ni’s are heavy subgroups of G. Then we may assume
1 = N0 < N1 < · · · < Ns = G′. Let K be any member of Kern(G). Since G′ is a
heavy subgroup of G, we have either G′ > K or G′ ≤ K. This implies that G′ > K
because G/K is nonabelian. Thus Kern(G) is a subset of {Ni | 1 ≤ i ≤ s− 1}, and
so Kern(G) is a chain with respect to inclusion.

To see the converse is not true, let G = H ×U , where H is a nonabelian group
of order 8 and U is a cyclic group of order 3. Then Kern(G) = {1, U}, but G′ = H ′

is not a heavy subgroup of G because neither H ′ ≤ U nor H ′ ≥ U holds. �
Remark 2.7. Let G be a finite group without the assumption that G is a p-group.
If Kern(G) is a chain with respect to inclusion, then N is a member of Kern(G)
for any normal subgroup N of G with N < G′; the converse is not true.

Proof. Suppose that Kern(G) is a chain with respect to inclusion and let N be a
normal subgroup of G with N < G′. By Lemma 2.3, we have

N = ∩ {kerχ | χ ∈ Irr(G), N ≤ kerχ, χ(1) > 1},
and then N = kerχ for some nonlinear χ ∈ Irr(G).

To see the converse is not true, let G = H ×U , where H is a quaternion group
of order 16 and U is a cyclic group of order 3. Then H ′ = G′, and 1, Z(H) are
all proper subgroups of G′ which are also normal in G. Let χ1, χ2 ∈ Irr(H) be of
degree 2 and 4 respectively, and let σ be a faithful linear character of U . Then
χ1 × σ, χ2 × σ are nonlinear irreducible characters of G, and their kernels are just
Z(H), 1. However, U is the kernel of the irreducible character χ1 × 1U , where 1U

is the principal character of U , and so Kern(G) is not a chain with respect to
inclusion. �
Corollary 2.8. Let G be a finite nonabelian nilpotent group. If Kern(G) is a chain
with respect to inclusion, then either G is one of the p-groups stated in our main
theorem, or G = P×U , where P is of type (3.1) in our main theorem, and p′-group
U is a cyclic group of prime power order.

Proof. Let P be a nonabelian Sylow p-subgroup of G. Then G = P ×U , where U
is a nilpotent p′-group. Clearly Kern(G/U) is also a chain with respect to inclusion.
Thus by our main theorem P is one of the p-groups stated in our main theorem.

Suppose that G > P . Let χ be a nonlinear irreducible character of P and λ
be a linear character of U . Observe that ψλ := χ × λ ∈ Irr(G) and that kerψλ =
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kerχ×kerλ. Since all members of the set {ker(ψλ) | λ ∈ Irr(U), λ(1) = 1} constitute
a chain, {kerλ | λ ∈ Irr(U), λ(1) = 1} is also a chain with respect to inclusion. It
follows that U/U ′ is a cyclic group of prime power order, and so is U . Now it suffices
to show that P is of type (3.1) in our main theorem. Otherwise, P is of type (3.2),
and we may take nonlinear χ1, χ2 ∈ Irr(P ) such that kerχ1 = 1, P1 := kerχ2 > 1.
Then P1 = ker(χ2×λ) for a faithful linear character λ of U , and U = ker(χ1×1U ).
Clearly P1, U are members of Kern(G), hence Kern(G) is not a chain with respect
to inclusion, a contradiction. Now the proof is complete. �
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