Arch. Math. 89 (2007), 419–429 c 2007 Birkh¨auser Verlag Basel/Switzerland 0003/889X/050419-11, published online 2007-10-19 0003/889X/050419-11, *published online* 2007-10-19
DOI 10.1007/s00013-007-2108-4

Metrical characterization of super-reflexivity and linear type of Banach spaces

Florent Baudier

Abstract. We prove that a Banach space X is not super-reflexive if and only if the hyperbolic infinite tree embeds metrically into X . We improve one implication of J.Bourgain's result who gave a metrical characterization of superreflexivity in Banach spaces in terms of uniform embeddings of the finite trees. A characterization of the linear type for Banach spaces is given using the embedding of the infinite tree equipped with the metrics d_p induced by the ℓ_p norms.

Mathematics Subject Classification (2000). 46B20, 51F99.

Keywords. Super-reflexivity, trees, linear type, metric embedding.

1. Introduction and Notation. We fix some notation and recall basic results.

Let (M, d) and (N, δ) be two metric spaces and an injective map $f : M \to N$. Following [11], we define the *distortion* of f to be

$$
dist(f) := \|f\|_{Lip} \|f^{-1}\|_{Lip} = \sup_{x \neq y \in M} \frac{\delta(f(x), f(y))}{d(x, y)} \cdot \sup_{x \neq y \in M} \frac{d(x, y)}{\delta(f(x), f(y))}.
$$

If dist(f) is finite, we say that f is a metric embedding, or simply an embedding of M into N.

And if there exists an embedding f from M into N, with $dist(f) \leq C$, we use the notation $M \overset{C}{\hookrightarrow} N$.

Denote $\Omega_0 = \{\emptyset\}$, the root of the tree. Let $\Omega_n = \{-1,1\}^n$, $T_n = \bigcup_{i=0}^n \Omega_i$ and $T = \bigcup_{n=0}^{\infty} \Omega_n$. Thus T_n is the finite tree with n levels and T the infinite tree.

For $\varepsilon, \varepsilon' \in T$, we note $\varepsilon \leq \varepsilon'$ if ε' is an extension of ε .

Denote $|\varepsilon|$ the length of ε ; i.e the numbers of nodes of ε . We define the hyperbolic distance between ε and ε' by $\rho(\varepsilon, \varepsilon') = |\varepsilon| + |\varepsilon'| - 2|\delta|$, where δ is the greatest common ancestor of ε and ε' . The metric on T_n , is the restriction of ρ .

For a Banach space X, we denote B_X its closed unit ball, and X^* its dual space.

T embeds isometrically into $\ell_1(\mathbb{N})$ in a trivial way. Actually, let $(e_{\varepsilon})_{\varepsilon \in T}$ be the canonical basis of $\ell_1(T)$ (T is countable), then the embedding is given by $\varepsilon \mapsto \sum_{s\leq \varepsilon} e_s.$

Aharoni proved in [1] that every separable metric space embeds into c_0 , so T does.

The main result of this article is an improvement of Bourgain's metrical characterization of super-reflexivity. Bourgain proved in $[2]$ that X is not super-reflexive if and only if the finite trees T_n uniformly embed into X (i.e with embedding constants independent of n). Obviously if T embeds into X then the T_n s embed uniformly into X and X is not super-reflexive, but if X is not super-reflexive we did not know whether the infinite tree T embeds into X . In this paper, we prove that it is indeed the case :

Theorem 1.1. Let X be a non super-reflexive Banach space, then (T, ρ) embeds *into* X*.*

The proof of the direct part of Bourgain's Theorem essentially uses James' characterization of super-reflexivity (see [7]) and an enumeration of the finite trees T_n . We recall James' Theorem:

Theorem 1.2 (James). *Let* $0 < \theta < 1$ *and* X *a non super-reflexive Banach space, then:* $\forall n \in \mathbb{N}, \exists x_1, x_2, \ldots, x_n \in B_X, \exists x_1^*, x_2^*, \ldots, x_n^* \in B_{X^*}$ *s.t:*

$$
x_k^*(x_j) = \theta \quad \forall k < j
$$

$$
x_k^*(x_j) = 0 \quad \forall k \ge j
$$

2. Metrical characterization of super-reflexivity. The main obstruction to the embedding of T into any non-super-reflexive Banach space X is the finiteness of the sequences in James' characterization. How, with a sequence of Bourgain's type embedding, can we construct a single embedding from T into X ?

In [13], Ribe shows in particular, that $\bigoplus_2 l_{p_n}$ and $(\bigoplus_2 l_{p_n}) \bigoplus l_1$ are uniformly homeomorphic, where $(p_n)_n$ is a sequence of numbers such that $p_n > 1$, and p_n tends to 1. But T embeds into l_1 , hence via the uniform homeomorphism T embeds into $\bigoplus_2 l_{p_n}$. However T does not embed into any l_{p_n} (they are super-reflexive).

The problem solved in the next theorem, inspired in part by Ribe's proof, is to construct a subspace with a Schauder decomposition $\bigoplus F_n$ where T_{2n+1} embeds into F_n and to repast properly the embeddings in order to obtain the desired embedding.

Proof of Theorem 1.1. Let $(\varepsilon_i)_{i\geq 0}$, a sequence of positive real numbers such that $\prod_{i\geq 0}(1+\varepsilon_i) \leq 2$, and fix $0 < \theta < 1$. Let $k_n = 2^{2^{n+1}+1} - 1$.

First we construct inductively a sequence $(F_n)_{n\geq 0}$ of subspaces of X, which is a Schauder finite dimensional decomposition of a subspace of X s.t the projection

from $\bigoplus_{i=0}^q F_i$ onto $\bigoplus_{i=0}^p F_i$, with kernel $\bigoplus_{i=p+1}^q F_i$ (with $p < q$) is of norm at most $\prod_{i=p}^{q-1}(1+\varepsilon_i)$, and sequences

$$
x_{n,1}, x_{n,2}, \dots, x_{n,k_n} \in B_{F_n}
$$

$$
x_{n,1}^*, x_{n,2}^*, \dots, x_{n,k_n}^* \in B_{X^*}
$$

$$
x_{n,k}^*(x_{n,j}) = \theta \quad \forall k < j
$$

s.t:

$$
x_{n,k}^*(x_{n,j}) = \theta \quad \forall k < j
$$

$$
x_{n,k}^*(x_{n,j}) = 0 \quad \forall k \ge j.
$$

Denote $\Phi_n: T_n \to \{1, 2, ..., 2^{n+1} - 1\}$ the enumeration of T_n following the lexicographic order. It is an enumeration of T_n such that any pair of segments in T_n starting at incomparable nodes (with respect to the tree ordering \leq) are mapped inside disjoint intervals.

Let $\Psi_n = \Phi_{2^{n+1}}$ and $\Gamma_n = T_{2^{n+1}}$.

 X is non super-reflexive, hence from James' Theorem: $\exists x_{0,1}, x_{0,2}, \ldots, x_{0,7} \in B_X, \exists x_{0,1}^*, x_{0,2}^*, \ldots, x_{0,7}^* \in B_{X^*}$ s.t:

$$
x_{0,k}^*(x_{0,j}) = \theta \quad \forall k < j
$$

$$
x_{0,k}^*(x_{0,j}) = 0 \quad \forall k \ge j.
$$

 $\Gamma_0 = T_2$ embeds into X via the embedding $f_0(\varepsilon) = \sum_{s \leq \varepsilon} x_{0,\Psi_0(s)}$ (see [2]). Let $F_0 = \text{Span}\{x_{0,1}, \ldots, x_{0,7}\},\$ then $\dim(F_0) < \infty$.

Suppose that F_p and

$$
x_{p,1}, x_{p,2}, \dots, x_{p,k_p} \in B_{F_p}
$$

$$
x_{p,1}^*, x_{p,2}^*, \dots, x_{p,k_p}^* \in B_{X^*}
$$

verifying the required conditions, are constructed for all $p \leq n$.

We apply Mazur's Lemma (see [9] page 4) to the finite dimensional subspace $\bigoplus_{i=0}^n F_i$ of X. Thus there exists $Y_n \subset X$ such that $\dim(X/Y_n) < \infty$ and:

$$
||x|| \le (1 + \varepsilon_n) ||x + y||, \forall (x, y) \in \bigoplus_{i=0}^n F_i \times Y_n.
$$

But Y_n is of finite codimension in X, hence is not super-reflexive. From James' Theorem and Hahn-Banach Theorem:

$$
\exists x_{n+1,1}, x_{n+1,2}, \dots, x_{n+1,k_{n+1}} \in B_{Y_n},
$$

$$
\exists x_{n+1,1}^*, x_{n+1,2}^*, \dots, x_{n+1,k_{n+1}}^* \in B_{X^*},
$$

s.t:

$$
x_{n+1,k}^*(x_{n+1,j}) = \theta \quad \forall k < j
$$

$$
x_{n+1,k}^*(x_{n+1,j}) = 0 \quad \forall k \ge j.
$$

 Γ_{n+1} embeds into Y_n via the embedding $f_{n+1}(\varepsilon) = \sum_{s\leq \varepsilon} x_{n+1,\Psi_{n+1}(s)}$.

Let $F_{n+1} = \text{Span}\{x_{n+1,j}$; $1 \leq j \leq k_{n+1}\}$, then $\dim(F_{n+1}) < \infty$, which achieves the induction.

Now define the following projections:

Let, P_n the projection from $\overline{\text{Span}}(\bigcup_{i=0}^{\infty} F_i)$ onto $F_0 \bigoplus \cdots \bigoplus F_n$ with kernel $\overline{\text{Span}}(\bigcup_{i=n+1}^{\infty} F_i).$

It is easy to show that $||P_n|| \le \prod_{i=n}^{\infty} (1 + \varepsilon_i) \le 2$.

We denote now $\Pi_0 = P_0$ and $\Pi_n = P_n - P_{n-1}$ for $n \ge 1$. We have that $\|\Pi_n\| \le 4$.

From Bourgain's construction, for all n:

(1)
$$
\frac{\theta}{3}\rho(\varepsilon,\varepsilon')\leq \|f_n(\varepsilon)-f_n(\varepsilon')\|\leq \rho(\varepsilon,\varepsilon'),
$$

where f_n denotes the Bourgain's type embedding from Γ_n in F_n , i.e $f_n(\varepsilon)$ $\sum_{s\leq \varepsilon} x_{n,\Psi_n(s)}$.

Note that:

$$
\forall n, \forall \varepsilon \in \Gamma_n \ \|f_n(\varepsilon)\| \leq |\varepsilon|.
$$

Now we define our embedding.

Let

$$
f: T \to Y = \overline{\text{Span}}(\bigcup_{i=0}^{\infty} F_i) \subset X
$$

$$
\varepsilon \mapsto \lambda f_n(\varepsilon) + (1 - \lambda) f_{n+1}(\varepsilon) , \text{ if } 2^n \leq |\varepsilon| \leq 2^{n+1}
$$

where,

$$
\lambda=\frac{2^{n+1}-|\varepsilon|}{2^n}
$$

We will prove that:

(2)
$$
\forall \varepsilon, \varepsilon' \in T \frac{\theta}{24} \rho(\varepsilon, \varepsilon') \leq ||f(\varepsilon) - f(\varepsilon')|| \leq 9 \rho(\varepsilon, \varepsilon').
$$

Remark 2.1. We have $\frac{\theta}{24} |\varepsilon| \le ||f(\varepsilon)|| \le |\varepsilon|$.

First of all, we show that f is 9-Lipschitz. We can suppose that $0 < |\varepsilon| \leq |\varepsilon'|$ w.r.t remark 2.1. If $|\varepsilon| \leq \frac{1}{2} |\varepsilon'|$ then:

$$
\rho(\varepsilon,\varepsilon')\geq |\varepsilon'|-|\varepsilon|\geq \frac{|\varepsilon|+|\varepsilon'|}{3}
$$

Hence,

$$
||f(\varepsilon) - f(\varepsilon')|| \le 3\rho(\varepsilon, \varepsilon').
$$

If $\frac{1}{2}|\varepsilon'| < |\varepsilon| \le |\varepsilon'|$, we have two different cases to consider.

1) if
$$
2^n \leq |\varepsilon| \leq |\varepsilon'| < 2^{n+1}
$$
.
\nThen, let
\n
$$
\lambda = \frac{2^{n+1} - |\varepsilon|}{2^n} \text{ and } \lambda' = \frac{2^{n+1} - |\varepsilon'|}{2^n}.
$$
\n
$$
||f(\varepsilon) - f(\varepsilon')|| = ||\lambda f_n(\varepsilon) - \lambda' f_n(\varepsilon') + (1 - \lambda) f_{n+1}(\varepsilon) - (1 - \lambda') f_{n+1}(\varepsilon')||
$$
\n
$$
\leq \lambda ||f_n(\varepsilon) - f_n(\varepsilon')|| + |\lambda - \lambda'| (||f_n(\varepsilon')|| + ||f_{n+1}(\varepsilon')||)
$$
\n
$$
+ (1 - \lambda) ||f_{n+1}(\varepsilon) - f_{n+1}(\varepsilon')||
$$
\n
$$
\leq \rho(\varepsilon, \varepsilon') + 2\rho(\varepsilon, \varepsilon')
$$
\nbecause $||f_n(\varepsilon')|| < 2^{n+1}$, $||f_{n+1}(\varepsilon')|| < 2^{n+1}$ and,
\n
$$
|\lambda - \lambda'| = \frac{|\varepsilon'| - |\varepsilon|}{2^n} \leq \frac{\rho(\varepsilon, \varepsilon')}{2^n}.
$$
\n2) if $2^n \leq |\varepsilon| \leq 2^{n+1} \leq |\varepsilon'| < 2^{n+2}.$
\nThen, let
\n
$$
\lambda = \frac{2^{n+1} - |\varepsilon|}{2^n} \text{ and } \lambda' = \frac{2^{n+2} - |\varepsilon'|}{2^{n+1}}.
$$
\n
$$
||f(\varepsilon) - f(\varepsilon')|| = ||\lambda f_n(\varepsilon) + (1 - \lambda) f_{n+1}(\varepsilon) - \lambda' f_{n+1}(\varepsilon') - (1 - \lambda') f_{n+2}(\varepsilon')||
$$
\n
$$
\leq \lambda (||f_n(\varepsilon)|| + ||f_{n+1}(\varepsilon)||) + (1 - \lambda') (||f_{n+1}(\varepsilon')|| + ||f_{n+2}(\varepsilon')||)
$$
\n
$$
+ ||f_{n+1}(\varepsilon) - f_{n+1}(\varepsilon')||
$$
\n<math display="block</p>

because,

$$
\lambda \leq \frac{\rho(\varepsilon,\varepsilon')}{2^n}, \ \ \text{so} \ \ \lambda |\varepsilon| \leq 2 \rho(\varepsilon,\varepsilon').
$$

Similarly

$$
1 - \lambda' = \frac{|\varepsilon'| - 2^{n+1}}{2^{n+1}} \le \frac{\rho(\varepsilon, \varepsilon')}{2^{n+1}} \text{ and } (1 - \lambda')|\varepsilon'| \le 2\rho(\varepsilon, \varepsilon').
$$

Finally, f is 9-Lipschitz.

Now we deal with the minoration.

In our next discussion, whenever $|\varepsilon|$ (respectively $|\varepsilon'|$) will belong to $[2^n, 2^{n+1})$, for some integer n , we shall denote

$$
\lambda = \frac{2^{n+1} - |\varepsilon|}{2^n} \quad \text{(respectively} \quad \lambda' = \frac{2^{n+1} - |\varepsilon'|}{2^n} \text{)}.
$$

We can suppose that ε is smaller than ε' in the lexicographic order. Denote δ the greatest common ancestor of ε and ε' . And let $d = |\varepsilon| - |\delta|$ (respectively $d' = |\varepsilon'| - |\delta|$).

424 F. BAUDIER Arch. Math.

1) if $2^n \leq |\varepsilon|, |\varepsilon'| \leq 2^{n+1}$. We have,

$$
x_{n,\Psi_n(\delta)}^* \Pi_n(f(\varepsilon) - f(\varepsilon')) = \theta(\lambda d - \lambda'd')
$$

$$
x_{n+1,\Psi_{n+1}(\delta)}^* \Pi_{n+1}(f(\varepsilon) - f(\varepsilon')) = \theta((1-\lambda)d - (1-\lambda')d').
$$

Hence,

$$
||f(\varepsilon) - f(\varepsilon')|| \ge \frac{\theta(d - d')}{8}.
$$

And,

$$
-x_{n,\Psi_n(\varepsilon)}^* \Pi_n(f(\varepsilon) - f(\varepsilon')) = \theta \lambda' d'
$$

$$
-x_{n+1,\Psi_{n+1}(\varepsilon)}^* \Pi_{n+1}(f(\varepsilon) - f(\varepsilon')) = \theta (1 - \lambda') d'.
$$

So,

$$
||f(\varepsilon) - f(\varepsilon')|| \ge \frac{\theta d'}{8}.
$$

Finally if we distinguish the cases $\frac{d}{2} \le d'$, and $d' < \frac{d}{2}$ we obtain:

$$
||f(\varepsilon) - f(\varepsilon')|| \ge \frac{\theta(d+d')}{24} = \frac{\theta}{24} \rho(\varepsilon, \varepsilon').
$$

_{n+1} ₀ ₂ ₂ ₀ ₁ ₀ ₀ ₀ ₀ ₂ ₀ ₀

2) if $2^n \le |\varepsilon| \le 2^{n+1} \le 2^{q+1} \le |\varepsilon'| \le 2^{q+2}$, or $2^n \leq |\varepsilon'| \leq 2^{n+1} \leq 2^{q+1} \leq |\varepsilon| \leq 2^{q+2}$.

If
$$
n < q
$$
,
\n
$$
|x_{q+1,\Psi_{q+1}(\delta)}^* \Pi_{q+1}(f(\varepsilon) - f(\varepsilon')) + x_{q+2,\Psi_{q+2}(\delta)}^* \Pi_{q+2}(f(\varepsilon) - f(\varepsilon'))| = \theta Max(d, d')
$$
\nHence,

$$
||f(\varepsilon) - f(\varepsilon')|| \ge \frac{\theta}{16} \rho(\varepsilon, \varepsilon').
$$

If $n = q$ and $|\varepsilon| \leq |\varepsilon'|$, $|x_{n+1,\Psi_{n+1}(\varepsilon)}^* \Pi_{n+1}(f(\varepsilon) - f(\varepsilon')) + x_{n+2,\Psi_{n+2}(\delta)}^* \Pi_{n+2}(f(\varepsilon) - f(\varepsilon'))| \geq \theta d'.$ So, $||f(\varepsilon) - f(\varepsilon')|| \ge \frac{\theta}{16} \rho(\varepsilon, \varepsilon').$

If
$$
n = q
$$
 and $|\varepsilon'| < |\varepsilon|$,
\n
$$
x_{n+1,\Psi_{n+1}(\delta)}^* \Pi_{n+1}(f(\varepsilon) - f(\varepsilon')) - x_{n+1,\Psi_{n+1}(\varepsilon)}^* \Pi_{n+1}(f(\varepsilon) - f(\varepsilon'))
$$
\n
$$
+ x_{n+2,\Psi_{n+2}(\delta)}^* \Pi_{n+2}(f(\varepsilon) - f(\varepsilon')) = \theta d.
$$
\nHence,

$$
||f(\varepsilon) - f(\varepsilon')|| \ge \frac{\theta}{24} \rho(\varepsilon, \varepsilon').
$$

Finally $T \stackrel{\frac{216}{\theta}}{\longleftrightarrow}$ $\stackrel{\theta}{\longrightarrow} X.$

Corollary 2.2. X *is non super-reflexive if and only if* (T, ρ) *embeds into* X.

Proof. It follows clearly from Bourgain's result [2] and Theorem 1.1. \Box

Remark 2.3. We deduce from the last corollary that the free group with two elements \mathbb{F}_2 viewed as a metric space through its Cayley graph equipped with the word metric embeds into any non super-reflexive space.

3. Metric characterization of the linear type. First we identify canonicaly $\{-1,1\}^n$ with $K_n = \{-1,1\}^n \times \prod_{k>n} \{0\}.$

Let $p \in [1,\infty)$.

Then we define an other metric on $T = |K_n|$ as follows : $\forall \varepsilon, \varepsilon' \in T,$

$$
d_p(\varepsilon,\varepsilon')=\left(\sum_{i=0}^\infty|\varepsilon_i-\varepsilon_i'|^p\right)^{\frac{1}{p}}.
$$

The length of $\varepsilon \in T$ can be viewed as $|\varepsilon| = (d_p(\varepsilon, 0))^p$. The norm $\|\cdot\|_p$ on ℓ_p coincides with d_p for the elements of T.

We recall now two classical definitions:

Let X and Y be two Banach spaces. If X and Y are linearly isomorphic, the *Banach-Mazur distance* between X and Y, denoted by $d_{BM}(X, Y)$, is the infimum of $||T|| ||T^{-1}||$, over all linear isomorphisms T from X onto Y.

For $p \in [1,\infty]$, we say that a Banach space X uniformly contains the ℓ_p^n 's if there is a constant $C \geq 1$ such that for every integer n, X admits an n-dimensional subspace Y so that $d_{BM}^{-}(\ell_{p}^{n}, Y) \leq C$.

We state and prove now the following result.

Theorem 3.1. *Let* $p \in [1, \infty)$ *.*

If X uniformly contains the ℓ_p^n 's then (T, d_p) embeds into X.

Proof. We first recall a fundamental result due to Krivine (for $1 < p < \infty$ in [8]) and James (for $p = 1$ and ∞ in [7]).

Theorem 3.2 (James-Krivine). Let $p \in [1,\infty]$ and X be a Banach space uniformly *containing the* ℓ_n^n 's. Then, for any finite codimensional subspace Y of X, any $\epsilon > 0$ and any $n \in \mathbb{N}$, there exists a subspace F of Y such that $d_{BM}(\ell_n^n, F) < 1 + \epsilon$.

Using Theorem 3.2 together with the fact that each ℓ_p^n is finite dimensional, we can build inductively finite dimensional subspaces $(F_n)_{n=0}^{\infty}$ of X and $(R_n)_{n=0}^{\infty}$ so that for every $n \geq 0$, R_n is a linear isomorphism from ℓ_n^n onto F_n satisfying

$$
\forall u \in \ell_p^n \quad \frac{1}{2} \|u\| \le \|R_n u\| \le \|u\|
$$

and also such that $(F_n)_{n=0}^{\infty}$ is a Schauder finite dimensional decomposition of its closed linear span Z. More precisely, if P_n is the projection from Z onto $F_0 \oplus ... \oplus F_n$ with kernel $\overline{\text{Span}}\left(\bigcup_{i=n+1}^{\infty} F_i\right)$, we will assume as we may, that $||P_n|| \leq 2$. We denote now $\Pi_0 = P_0$ and $\Pi_n = P_n - P_{n-1}$ for $n \ge 1$. We have that $\|\Pi_n\| \le 4$.

We now consider $\varphi_n: T_n \to \ell_n^n$ defined by

$$
\forall \varepsilon \in T_n, \ \varphi_n(\varepsilon) = \sum_{i=1}^{|\varepsilon|} \varepsilon_i e_i,
$$

where (e_i) is the canonical basis of ℓ_p^n . The map φ_n is clearly an isometric embedding of T_n into ℓ_p^n .

Then we set :

$$
\forall \varepsilon \in T_n, \quad f_n(\varepsilon) = R_n(\varphi_n(\varepsilon)) \in F_n.
$$

Finally we construct a map $f: T \to X$ as follows:

$$
f: T \to X
$$

 $\varepsilon \mapsto \lambda f_m(\varepsilon) + (1 - \lambda) f_{m+1}(\varepsilon)$, if $2^m \le |\varepsilon| < 2^{m+1}$,

where,

$$
\lambda=\frac{2^{m+1}-|\varepsilon|}{2^m}.
$$

Remark 3.3. We have $\frac{1}{16} |\varepsilon|^{\frac{1}{p}} \leq ||f(\varepsilon)|| \leq |\varepsilon|^{\frac{1}{p}}$.

Like in the proof of Theorem 1.1, we prove that f is 9-Lipschitz using exactly the same computations.

We shall now prove that f^{-1} is Lipschitz. We consider $\varepsilon, \varepsilon' \in T$ and assume again that $0 < |\varepsilon| \leq |\varepsilon'|$. We need to study two different cases. Again, whenever $|\varepsilon|$ (respectively $|\varepsilon'|$) will belong to $[2^m, 2^{m+1})$, for some integer m, we shall denote

$$
\lambda = \frac{2^{m+1} - |\varepsilon|}{2^m} \quad \text{(respectively} \quad \lambda' = \frac{2^{m+1} - |\varepsilon'|}{2^m}\text{)}.
$$

1) if $2^m \leq |\varepsilon|, |\varepsilon'| < 2^{m+1}$.

$$
d_p(\varepsilon, \varepsilon') \leq \|\lambda \sum_{i=1}^{|\varepsilon|} \varepsilon_i e_i - \lambda' \sum_{i=1}^{|\varepsilon'|} \varepsilon'_i e_i \|_p + \|(1 - \lambda) \sum_{i=1}^{|\varepsilon|} \varepsilon_i e_i
$$

$$
-(1 - \lambda') \sum_{i=1}^{|\varepsilon'|} \varepsilon'_i e_i \|_p
$$

$$
\leq 2 \|\Pi_m(f(\varepsilon) - f(\varepsilon'))\| + 2 \|\Pi_{m+1}(f(\varepsilon) - f(\varepsilon'))\|
$$

$$
\leq 16 \|f(\varepsilon) - f(\varepsilon')\|.
$$

2) if
$$
2^m \leq |\varepsilon| \leq 2^{m+1} \leq 2^{q+1} \leq |\varepsilon'| < 2^{q+2}
$$
.
\nif $m < q$,
\n $d_p(\varepsilon, \varepsilon') \leq 2d_p(\varepsilon', 0)$
\n $\leq 2((1 - \lambda')d_p(\varepsilon', 0) + \lambda'd_p(\varepsilon', 0))$
\n $\leq 2(2||\Pi_{q+2}(f(\varepsilon) - f(\varepsilon'))|| + 2||\Pi_{m+1}(f(\varepsilon) - f(\varepsilon'))||)$
\n $\leq 32||f(\varepsilon) - f(\varepsilon')||$.
\nif $m = q$,
\n $d_p(\varepsilon, \varepsilon') \leq \lambda d_p(\varepsilon, 0) + ||(1 - \lambda) \sum_{i=1}^{|\varepsilon|} \varepsilon_i e_i - \lambda' \sum_{i=1}^{|\varepsilon'|} \varepsilon'_i e_i ||_p + (1 - \lambda')d_p(\varepsilon', 0)$

$$
\leq 2\|\Pi_m(f(\varepsilon) - f(\varepsilon'))\| + 2\|\Pi_{m+1}(f(\varepsilon) - f(\varepsilon'))\|
$$

+2\|\Pi_{m+2}(f(\varepsilon) - f(\varepsilon'))\|

$$
\leq 24\|f(\varepsilon) - f(\varepsilon')\|.
$$

Finally we obtain that f^{-1} is 32-Lipschitz, and $T \stackrel{288}{\hookrightarrow} X$.

In the sequel a Banach space X is said to have *type* $p > 0$ if there exists a constant $T < \infty$ such that for every n and every $x_1, \ldots, x_n \in X$,

$$
\mathbb{E}_{\varepsilon} \|\sum_{j=1}^n \varepsilon_j x_j\|_X^p \le T^p \sum_{j=1}^n \|x_j\|_X^p,
$$

where the expectation \mathbb{E}_{ε} is with respect to a uniform choice of signs $\varepsilon_1,\ldots,\varepsilon_n \in$ $\{-1,1\}^n$.

The set of p's for which X contains ℓ_n^n 's uniformly is closely related to the type of X according to the following result due to Maurey, Pisier $[10]$ and Krivine $[8]$, which clarifies the meaning of these notions.

Theorem 3.4 (Maurey-Pisier-Krivine). *Let* X *be an infinite-dimensional Banach space. Let*

$$
p_X = \sup\{p \ ; X \text{ is of type } p\},
$$

Then X contains ℓ_p^n *'s uniformly for* $p = p_X$ *. Equivalently, we have*

 $p_X = \inf\{p : X \text{ contains } \ell_p^n\text{'s uniformly}\}.$

We deduce from Theorem 3.1 two corollaries.

Corollary 3.5. *Let* X *a Banach space and* $1 \leq p < 2$ *. The following assertions are equivalent :*

i) $p_X \leq p$.

428 F. BAUDIER Arch. Math.

ii) X uniformly contains the ℓ_p^n 's.

- iii) *the* (T_n, d_p) *'s uniformly embed into* X.
- iv) (T, d_p) *embeds into* X.

Proof. ii) implies *i*) is obvious.

i) implies ii) is due to Theorem 3.2 and the work of Bretagnolle, Dacunha-Castelle and Krivine [4].

For the equivalence between $ii)$ and $iii)$ see the work of Bourgain, Milman and Wolfson [3] and Krivine [8].

 $iv)$ implies $iii)$ is obvious.

And $ii)$ implies $iv)$ is Theorem 3.1.

Corollary 3.6. *Let* X *be an infinite dimensional Banach space, then* (T, d_2) *embeds into* X*.*

Proof. This corollary is a consequence of the Dvoretsky's Theorem [6] and Theorem 3.1. \Box

References

- [1] I. AHARONI, Every separable metric space is Lipschitz equivalent to a subset of c_0^+ . Israel J. Math. **19**, 284–291 (1974).
- [2] J. Bourgain, The metrical interpretation of super-reflexivity in Banach spaces. Israel J. Math. **56**, 221–230 (1986).
- [3] J. Bourgain, V. Milman, and H. Wolfson, On type of metric spaces. Trans. Amer. Math. Soc. **294**(1), 295–317 (March 1986).
- [4] J. Bretagnolle, D. Dacunha-Castelle, and J. L. Krivine, Lois stables et espaces L^p . Ann. Instit. H. Poincaré 2, 231–259 (1966).
- [5] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, 1984.
- [6] A. DVORETZKY, Some results on convex bodies and Banach spaces. Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) 123–160.
- [7] R. C. James, Super-reflexive spaces with bases. Pacific J. Math. **41**, 409–419 (1972).
- [8] J. L. KRIVINE, Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. of Math. **104**(2), 1–29 (1976).
- [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
- [10] B. Maurey and G. Pisier, S´eries de variables al´eatoires vectorielles ind´ependantes et propriétés géométriques des espaces de Banach. Studia Math. **58**, 45–90 (1976).
- [11] M. Mendel and A. Naor, Metric cotype, arXiv:math.FA/0506201 v3 29 Apr 2006.
- [12] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conference Series in Mathematics **60**.
- [13] M. RIBE, Existence of separable uniformly homeomorphic non isomorphic Banach spaces. Israel J. Math. **48**, 139–147 (1984).

FLORENT BAUDIER, Laboratoire de Mathématiques, UMR 6623, Université de Franche-Comté, 25030 Besançon, cedex, France e-mail: florent.baudier@univ-fcomte.fr

Received: 2 August 2006

Revised: 10 April 2007