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Metrical characterization of super-reflexivity and linear
type of Banach spaces

Florent Baudier

Abstract. We prove that a Banach space X is not super-reflexive if and only
if the hyperbolic infinite tree embeds metrically into X. We improve one im-
plication of J.Bourgain’s result who gave a metrical characterization of super-
reflexivity in Banach spaces in terms of uniform embeddings of the finite trees.
A characterization of the linear type for Banach spaces is given using the em-
bedding of the infinite tree equipped with the metrics dp induced by the �p

norms.
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1. Introduction and Notation. We fix some notation and recall basic results.

Let (M, d) and (N, δ) be two metric spaces and an injective map f : M → N .
Following [11], we define the distortion of f to be

dist(f) := ‖f‖Lip‖f−1‖Lip = sup
x�=y∈M

δ(f(x), f(y))
d(x, y)

. sup
x�=y∈M

d(x, y)
δ(f(x), f(y))

.

If dist(f) is finite, we say that f is a metric embedding, or simply an embedding
of M into N .
And if there exists an embedding f from M into N , with dist(f) ≤ C, we use the

notation M
C
↪→ N .

Denote Ω0 = {∅}, the root of the tree. Let Ωn = {−1, 1}n, Tn =
⋃n

i=0 Ωi and
T =

⋃∞
n=0 Ωn. Thus Tn is the finite tree with n levels and T the infinite tree.

For ε, ε′ ∈ T , we note ε ≤ ε′ if ε′ is an extension of ε.

Denote |ε| the length of ε; i.e the numbers of nodes of ε. We define the hyper-
bolic distance between ε and ε′ by ρ(ε, ε′) = |ε|+ |ε′|−2|δ|, where δ is the greatest
common ancestor of ε and ε′. The metric on Tn, is the restriction of ρ.
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For a Banach space X, we denote BX its closed unit ball, and X∗ its dual space.

T embeds isometrically into �1(N) in a trivial way. Actually, let (eε)ε∈T be
the canonical basis of �1(T ) (T is countable), then the embedding is given by
ε �→∑

s≤ε es.

Aharoni proved in [1] that every separable metric space embeds into c0, so T
does.

The main result of this article is an improvement of Bourgain’s metrical charac-
terization of super-reflexivity. Bourgain proved in [2] that X is not super-reflexive
if and only if the finite trees Tn uniformly embed into X (i.e with embedding
constants independent of n). Obviously if T embeds into X then the T ′

ns embed
uniformly into X and X is not super-reflexive, but if X is not super-reflexive we
did not know whether the infinite tree T embeds into X. In this paper, we prove
that it is indeed the case :

Theorem 1.1. Let X be a non super-reflexive Banach space, then (T, ρ) embeds
into X.

The proof of the direct part of Bourgain’s Theorem essentially uses James’
characterization of super-reflexivity (see [7]) and an enumeration of the finite trees
Tn. We recall James’ Theorem:

Theorem 1.2 (James). Let 0 < θ < 1 and X a non super-reflexive Banach space,
then: ∀ n ∈ N, ∃ x1, x2, . . . , xn ∈ BX , ∃ x∗

1, x
∗
2, . . . , x

∗
n ∈ BX∗ s.t:

x∗
k(xj) = θ ∀k < j

x∗
k(xj) = 0 ∀k ≥ j

2. Metrical characterization of super-reflexivity. The main obstruction to the em-
bedding of T into any non-super-reflexive Banach space X is the finiteness of the
sequences in James’ characterization. How, with a sequence of Bourgain’s type
embedding, can we construct a single embedding from T into X?

In [13], Ribe shows in particular, that
⊕

2 lpn and (
⊕

2 lpn)
⊕

l1 are uniformly
homeomorphic, where (pn)n is a sequence of numbers such that pn > 1, and pn

tends to 1. But T embeds into l1, hence via the uniform homeomorphism T embeds
into

⊕
2 lpn . However T does not embed into any lpn(they are super-reflexive).

The problem solved in the next theorem, inspired in part by Ribe’s proof, is to
construct a subspace with a Schauder decomposition

⊕
Fn where T2n+1 embeds

into Fn and to repast properly the embeddings in order to obtain the desired
embedding.

Proof of Theorem 1.1. Let (εi)i≥0, a sequence of positive real numbers such that∏
i≥0(1 + εi) ≤ 2, and fix 0 < θ < 1. Let kn = 22n+1+1 − 1.

First we construct inductively a sequence (Fn)n≥0 of subspaces of X, which is
a Schauder finite dimensional decomposition of a subspace of X s.t the projection
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from
⊕q

i=0 Fi onto
⊕p

i=0 Fi, with kernel
⊕q

i=p+1 Fi (with p < q) is of norm at
most

∏q−1
i=p (1 + εi), and sequences

xn,1, xn,2, . . . , xn,kn
∈ BFn

x∗
n,1, x

∗
n,2, . . . , x

∗
n,kn

∈ BX∗

s.t:
x∗

n,k(xn,j) = θ ∀k < j

x∗
n,k(xn,j) = 0 ∀k ≥ j.

Denote Φn : Tn → {1, 2, . . . , 2n+1 − 1} the enumeration of Tn following the
lexicographic order. It is an enumeration of Tn such that any pair of segments
in Tn starting at incomparable nodes (with respect to the tree ordering ≤) are
mapped inside disjoint intervals.

Let Ψn = Φ2n+1 and Γn = T2n+1 .

X is non super-reflexive, hence from James’ Theorem:
∃ x0,1, x0,2, . . . , x0,7 ∈ BX , ∃ x∗

0,1, x
∗
0,2, . . . , x

∗
0,7 ∈ BX∗ s.t:

x∗
0,k(x0,j) = θ ∀k < j

x∗
0,k(x0,j) = 0 ∀k ≥ j.

Γ0 = T2 embeds into X via the embedding f0(ε) =
∑

s≤ε x0,Ψ0(s) (see [2]).
Let F0 = Span{x0,1, . . . , x0,7}, then dim(F0) < ∞.

Suppose that Fp and
xp,1, xp,2, . . . , xp,kp

∈ BFp

x∗
p,1, x

∗
p,2, . . . , x

∗
p,kp

∈ BX∗

verifying the required conditions, are constructed for all p ≤ n.

We apply Mazur’s Lemma (see [9] page 4) to the finite dimensional subspace⊕n
i=0 Fi of X. Thus there exists Yn ⊂ X such that dim(X/Yn) < ∞ and:

‖x‖ ≤ (1 + εn)‖x + y‖,∀(x, y) ∈
n⊕

i=0

Fi × Yn.

But Yn is of finite codimension in X, hence is not super-reflexive. From James’
Theorem and Hahn-Banach Theorem:

∃ xn+1,1, xn+1,2, . . . , xn+1,kn+1 ∈ BYn ,

∃ x∗
n+1,1, x

∗
n+1,2, . . . , x

∗
n+1,kn+1

∈ BX∗ ,

s.t:
x∗

n+1,k(xn+1,j) = θ ∀k < j

x∗
n+1,k(xn+1,j) = 0 ∀k ≥ j.

Γn+1 embeds into Yn via the embedding fn+1(ε) =
∑

s≤ε xn+1,Ψn+1(s) .

Let Fn+1 = Span{xn+1,j ; 1 ≤ j ≤ kn+1}, then dim(Fn+1) < ∞, which achieves
the induction.
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Now define the following projections:

Let, Pn the projection from Span(
⋃∞

i=0 Fi) onto F0
⊕ · · ·⊕Fn with kernel

Span(
⋃∞

i=n+1 Fi).

It is easy to show that ‖Pn‖ ≤∏∞
i=n(1 + εi) ≤ 2.

We denote now Π0 = P0 and Πn = Pn − Pn−1 for n ≥ 1. We have that ‖Πn‖ ≤ 4.

From Bourgain’s construction, for all n:

θ

3
ρ(ε, ε′) ≤ ‖fn(ε) − fn(ε′)‖ ≤ ρ(ε, ε′),(1)

where fn denotes the Bourgain’s type embedding from Γn in Fn, i.e fn(ε) =∑
s≤ε xn,Ψn(s).

Note that:
∀ n, ∀ ε ∈ Γn ‖fn(ε)‖ ≤ |ε|.

Now we define our embedding.

Let

f : T → Y = Span(
⋃∞

i=0 Fi) ⊂ X

ε �→ λfn(ε) + (1 − λ)fn+1(ε) , if 2n ≤ |ε| ≤ 2n+1

where,

λ =
2n+1 − |ε|

2n

We will prove that:

∀ε, ε′ ∈ T
θ

24
ρ(ε, ε′) ≤ ‖f(ε) − f(ε′)‖ ≤ 9ρ(ε, ε′).(2)

Remark 2.1. We have θ
24 |ε| ≤ ‖f(ε)‖ ≤ |ε|.

First of all, we show that f is 9-Lipschitz.

We can suppose that 0 < |ε| ≤ |ε′| w.r.t remark 2.1.

If |ε| ≤ 1
2 |ε′| then:

ρ(ε, ε′) ≥ |ε′| − |ε| ≥ |ε| + |ε′|
3

Hence,
‖f(ε) − f(ε′)‖ ≤ 3ρ(ε, ε′).

If 1
2 |ε′| < |ε| ≤ |ε′|, we have two different cases to consider.
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1) if 2n ≤ |ε| ≤ |ε′| < 2n+1.
Then, let

λ =
2n+1 − |ε|

2n
and λ′ =

2n+1 − |ε′|
2n

.

‖f(ε) − f(ε′)‖ = ‖λfn(ε) − λ′fn(ε′) + (1 − λ)fn+1(ε) − (1 − λ′)fn+1(ε′)‖
≤ λ‖fn(ε) − fn(ε′)‖ + |λ − λ′|(‖fn(ε′)‖ + ‖fn+1(ε′)‖)

+(1 − λ)‖fn+1(ε) − fn+1(ε′)‖
≤ ρ(ε, ε′) + 2ρ(ε, ε′) + 2ρ(ε, ε′)

≤ 5ρ(ε, ε′),

because ‖fn(ε′)‖ < 2n+1, ‖fn+1(ε′)‖ < 2n+1 and,

|λ − λ′| =
|ε′| − |ε|

2n
≤ ρ(ε, ε′)

2n
.

2) if 2n ≤ |ε| ≤ 2n+1 ≤ |ε′| < 2n+2.
Then, let

λ =
2n+1 − |ε|

2n
and λ′ =

2n+2 − |ε′|
2n+1 .

‖f(ε) − f(ε′)‖ = ‖λfn(ε) + (1 − λ)fn+1(ε) − λ′fn+1(ε′) − (1 − λ′)fn+2(ε′)‖
≤ λ(‖fn(ε)‖ + ‖fn+1(ε)‖) + (1 − λ′)(‖fn+1(ε′)‖ + ‖fn+2(ε′)‖)

+‖fn+1(ε) − fn+1(ε′)‖
≤ ρ(ε, ε′) + 2λ|ε| + 2(1 − λ′)|ε′|
≤ 9ρ(ε, ε′),

because,

λ ≤ ρ(ε, ε′)
2n

, so λ|ε| ≤ 2ρ(ε, ε′).

Similarly

1 − λ′ =
|ε′| − 2n+1

2n+1 ≤ ρ(ε, ε′)
2n+1 and (1 − λ′)|ε′| ≤ 2ρ(ε, ε′).

Finally, f is 9-Lipschitz.

Now we deal with the minoration.

In our next discussion, whenever |ε| (respectively |ε′|) will belong to [2n, 2n+1), for
some integer n, we shall denote

λ =
2n+1 − |ε|

2n
(respectively λ′ =

2n+1 − |ε′|
2n

).

We can suppose that ε is smaller than ε′ in the lexicographic order. Denote δ
the greatest common ancestor of ε and ε′. And let d = |ε| − |δ| (respectively
d′ = |ε′| − |δ|).
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1) if 2n ≤ |ε|, |ε′| ≤ 2n+1.
We have,

x∗
n,Ψn(δ)Πn(f(ε) − f(ε′)) = θ(λd − λ′d′)

x∗
n+1,Ψn+1(δ)Πn+1(f(ε) − f(ε′)) = θ((1 − λ)d − (1 − λ′)d′).

Hence,

‖f(ε) − f(ε′)‖ ≥ θ(d − d′)
8

.

And,
−x∗

n,Ψn(ε)Πn(f(ε) − f(ε′)) = θλ′d′

−x∗
n+1,Ψn+1(ε)Πn+1(f(ε) − f(ε′)) = θ(1 − λ′)d′.

So,

‖f(ε) − f(ε′)‖ ≥ θd′

8
.

Finally if we distinguish the cases d
2 ≤ d′, and d′ < d

2 we obtain:

‖f(ε) − f(ε′)‖ ≥ θ(d + d′)
24

=
θ

24
ρ(ε, ε′).

2) if 2n ≤ |ε| ≤ 2n+1 ≤ 2q+1 ≤ |ε′| ≤ 2q+2,
or 2n ≤ |ε′| ≤ 2n+1 ≤ 2q+1 ≤ |ε| ≤ 2q+2.

If n < q,

|x∗
q+1,Ψq+1(δ)Πq+1(f(ε) − f(ε′)) + x∗

q+2,Ψq+2(δ)Πq+2(f(ε) − f(ε′))| = θMax(d, d′)

Hence,

‖f(ε) − f(ε′)‖ ≥ θ

16
ρ(ε, ε′).

If n = q and |ε| ≤ |ε′|,
|x∗

n+1,Ψn+1(ε)Πn+1(f(ε) − f(ε′)) + x∗
n+2,Ψn+2(δ)Πn+2(f(ε) − f(ε′))| ≥ θd′.

So,

‖f(ε) − f(ε′)‖ ≥ θ

16
ρ(ε, ε′).

If n = q and |ε′| < |ε|,
x∗

n+1,Ψn+1(δ)Πn+1(f(ε) − f(ε′)) − x∗
n+1,Ψn+1(ε)Πn+1(f(ε) − f(ε′))

+x∗
n+2,Ψn+2(δ)Πn+2(f(ε) − f(ε′)) = θd.

Hence,

‖f(ε) − f(ε′)‖ ≥ θ

24
ρ(ε, ε′).

Finally T
216
θ

↪→ X. �

Corollary 2.2. X is non super-reflexive if and only if (T, ρ) embeds into X.
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Proof. It follows clearly from Bourgain’s result [2] and Theorem 1.1. �

Remark 2.3. We deduce from the last corollary that the free group with two
elements F2 viewed as a metric space through its Cayley graph equipped with the
word metric embeds into any non super-reflexive space.

3. Metric characterization of the linear type. First we identify canonicaly
{−1, 1}n with Kn = {−1, 1}n ×∏k>n{0}.

Let p ∈ [1,∞).
Then we define an other metric on T =

⋃
Kn as follows :

∀ ε, ε′ ∈ T ,

dp(ε, ε′) =

( ∞∑
i=0

|εi − ε′
i|p
) 1

p

.

The length of ε ∈ T can be viewed as |ε| = (dp(ε, 0))p.
The norm ‖.‖p on �p coincides with dp for the elements of T .

We recall now two classical definitions:

Let X and Y be two Banach spaces. If X and Y are linearly isomorphic, the
Banach-Mazur distance between X and Y , denoted by dBM (X, Y ), is the infimum
of ‖T‖ ‖T−1‖, over all linear isomorphisms T from X onto Y .

For p ∈ [1,∞], we say that a Banach space X uniformly contains the �n
p ’s if

there is a constant C ≥ 1 such that for every integer n, X admits an n-dimensional
subspace Y so that dBM (�n

p , Y ) ≤ C.

We state and prove now the following result.

Theorem 3.1. Let p ∈ [1,∞).
If X uniformly contains the �n

p ’s then (T, dp) embeds into X.

Proof. We first recall a fundamental result due to Krivine (for 1 < p < ∞ in [8])
and James (for p = 1 and ∞ in [7]).

Theorem 3.2 (James-Krivine). Let p ∈ [1,∞] and X be a Banach space uniformly
containing the �n

p ’s. Then, for any finite codimensional subspace Y of X, any ε > 0
and any n ∈ N, there exists a subspace F of Y such that dBM (�n

p , F ) < 1 + ε.

Using Theorem 3.2 together with the fact that each �n
p is finite dimensional,

we can build inductively finite dimensional subspaces (Fn)∞
n=0 of X and (Rn)∞

n=0
so that for every n ≥ 0, Rn is a linear isomorphism from �n

p onto Fn satisfying

∀u ∈ �n
p

1
2
‖u‖ ≤ ‖Rnu‖ ≤ ‖u‖

and also such that (Fn)∞
n=0 is a Schauder finite dimensional decomposition of its

closed linear span Z. More precisely, if Pn is the projection from Z onto F0⊕...⊕Fn
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with kernel Span (
⋃∞

i=n+1 Fi), we will assume as we may, that ‖Pn‖ ≤ 2. We denote
now Π0 = P0 and Πn = Pn − Pn−1 for n ≥ 1. We have that ‖Πn‖ ≤ 4.

We now consider ϕn : Tn → �n
p defined by

∀ε ∈ Tn, ϕn(ε) =
|ε|∑
i=1

εiei,

where (ei) is the canonical basis of �n
p . The map ϕn is clearly an isometric embed-

ding of Tn into �n
p .

Then we set :

∀ε ∈ Tn, fn(ε) = Rn(ϕn(ε)) ∈ Fn.

Finally we construct a map f : T → X as follows:

f : T → X

ε �→ λfm(ε) + (1 − λ)fm+1(ε) , if 2m ≤ |ε| < 2m+1,

where,

λ =
2m+1 − |ε|

2m
.

Remark 3.3. We have 1
16 |ε| 1

p ≤ ‖f(ε)‖ ≤ |ε| 1
p .

Like in the proof of Theorem 1.1, we prove that f is 9-Lipschitz using exactly
the same computations.

We shall now prove that f−1 is Lipschitz. We consider ε, ε′ ∈ T and assume
again that 0 < |ε| ≤ |ε′|. We need to study two different cases. Again, whenever |ε|
(respectively |ε′|) will belong to [2m, 2m+1), for some integer m, we shall denote

λ =
2m+1 − |ε|

2m
(respectively λ′ =

2m+1 − |ε′|
2m

).

1) if 2m ≤ |ε|, |ε′| < 2m+1.

dp(ε, ε′) ≤ ‖λ
∑|ε|

i=1 εiei − λ′∑|ε′|
i=1 ε′

iei‖p + ‖(1 − λ)
∑|ε|

i=1 εiei

−(1 − λ′)
∑|ε′|

i=1 ε′
iei‖p

≤ 2‖Πm(f(ε) − f(ε′))‖ + 2‖Πm+1(f(ε) − f(ε′))‖

≤ 16‖f(ε) − f(ε′)‖.
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2) if 2m ≤ |ε| ≤ 2m+1 ≤ 2q+1 ≤ |ε′| < 2q+2.
if m < q,

dp(ε, ε′) ≤ 2dp(ε′, 0)

≤ 2((1 − λ′)dp(ε′, 0) + λ′dp(ε′, 0))

≤ 2(2‖Πq+2(f(ε) − f(ε′))‖ + 2‖Πm+1(f(ε) − f(ε′))‖)

≤ 32‖f(ε) − f(ε′)‖.

if m = q,

dp(ε, ε′) ≤ λdp(ε, 0) + ‖(1 − λ)
∑|ε|

i=1 εiei − λ′∑|ε′|
i=1 ε′

iei‖p + (1 − λ′)dp(ε′, 0)

≤ 2‖Πm(f(ε) − f(ε′))‖ + 2‖Πm+1(f(ε) − f(ε′))‖
+2‖Πm+2(f(ε) − f(ε′))‖

≤ 24‖f(ε) − f(ε′)‖.

Finally we obtain that f−1 is 32-Lipschitz, and T
288
↪→ X. �

In the sequel a Banach space X is said to have type p > 0 if there exists a
constant T < ∞ such that for every n and every x1, . . . , xn ∈ X,

Eε‖
n∑

j=1

εjxj‖p
X ≤ T p

n∑
j=1

‖xj‖p
X ,

where the expectation Eε is with respect to a uniform choice of signs ε1, . . . , εn ∈
{−1, 1}n.

The set of p’s for which X contains �n
p ’s uniformly is closely related to the type

of X according to the following result due to Maurey, Pisier [10] and Krivine [8],
which clarifies the meaning of these notions.

Theorem 3.4 (Maurey-Pisier-Krivine). Let X be an infinite-dimensional Banach
space. Let

pX = sup{p ; X is of type p},

Then X contains �n
p ’s uniformly for p = pX .

Equivalently, we have

pX = inf{p ; X contains �np’s uniformly}.

We deduce from Theorem 3.1 two corollaries.

Corollary 3.5. Let X a Banach space and 1 ≤ p < 2.
The following assertions are equivalent :

i) pX ≤ p.
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ii) X uniformly contains the �n
p ’s.

iii) the (Tn, dp)’s uniformly embed into X .
iv) (T, dp) embeds into X.

Proof. ii) implies i) is obvious.

i) implies ii) is due to Theorem 3.2 and the work of Bretagnolle, Dacunha-
Castelle and Krivine [4].

For the equivalence between ii) and iii) see the work of Bourgain, Milman and
Wolfson [3] and Krivine [8].

iv) implies iii) is obvious.

And ii) implies iv) is Theorem 3.1. �

Corollary 3.6. Let X be an infinite dimensional Banach space, then (T, d2) embeds
into X.

Proof. This corollary is a consequence of the Dvoretsky’s Theorem [6] and
Theorem 3.1. �
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