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© Birkhäuser Verlag, Basel, 2006 Archiv der Mathematik

A note on the stability of the Wulff shape

By

Sven Winklmann

Abstract. We give a new proof of Palmer’s result [6] that the Wulff shapes are the only closed,
oriented, stable hypersurfaces with constant anisotropic mean curvature. Our approach is based
on the construction of a suitable testfunction in the anisotropic index form, thus generalizing the
original proof of Barbosa, do Carmo [1].

1. Introduction. Let X : Mn → R
n+1 be a closed hypersurface smoothly immersed

in euclidean R
n+1. It is well-known that X has constant mean curvature if and only if X is

a critical point of the area functional

A(X) =
∫
M

dA

under a volume constraint. If additionally the second variation of area is non-negative for
all volume preserving variations of X, then X is called stable.

According to a celebrated result of Barbosa, do Carmo [1], the round sphere is – up
to translation and dilatation – the only closed, stable hypersurface with constant mean
curvature. Their proof is based on the construction of a suitable testfunction in the index
form of X, which they obtain from a systematic study of the Jacobi operator. Later, Wente
[8] gave a more direct proof, by showing that the particular testfunction can be obtained
from parallel translations of the hypersurface followed by a dilatation that fixes the enclosed
volume. On the other hand, it turns out that the method developed by Barbosa, do Carmo
is applicable to other important geometric situations, see for example Ritoré, Rosales [7]
for the discussion of a free boundary problem for constant mean curvature hypersurfaces.

In the present work we will focus on a variational problem related to elliptic parametric
functionals of the type

F(X) =
∫
M

F(N) dA.
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It is well-known, that critical points of F under a volume constraint can be characterized as
hypersurfaces with constant anisotropic mean curvature or F -mean curvature (see section 2
for details). Moreover, there is a natural hypersurface associated with F , the so called Wulff
shape, which has constant F -mean curvature and minimizes F , cf. Taylor [5]. According
to Palmer [6], the Wulff shape plays the same role for F as do the spheres for the area
functional. In fact, by adapting Wente’s [8] method to the anisotropic case, Palmer was
able to prove the following

Theorem 1.1 (6). If X : Mn → R
n+1 is a closed, oriented, F -stable hypersurface with

constant F -mean curvature, then up to scaling and translation X(M) is the Wulff shape.

It is the aim of this note to give a new proof of this result by a systematic investigation
of the anisotropic index form associated with the second variation of F . In particular, we
carefully study the F -analogue of the Jacobi operator (see Theorem 3.1). We hope that the
transparency and clarity of this approach will also be of importance in future investigations.
Moreover, we refer to the recent work of Clarenz [3], where it is shown that the Wulff shape
minimizes an anisotropic Willmore functional.

2. Preliminaries. In this section we set up our notation and collect the basic facts on
F -stationarity and F -stability of closed hypersurfaces.

Let X : Mn → R
n+1 be a smooth immersion of an n-dimensional, oriented, compact

manifold without boundary into euclidean R
n+1. We denote by N : M → Sn and dA

the corresponding Gauß mapping and induced measure, respectively, and consider elliptic
parametric functionals of the type

F(X) =
∫
M

F(N) dA.

The integrand

F : Sn → R
+

is a smooth, positive Lagrangian which we assume to be 1-homogeneously extended to
R

n+1 \ {0} by

F(tz) = tF(z) ∀t > 0, z ∈ Sn.(1)

Furthermore, we always assume F to be elliptic, i.e., the restriction of

Fzz(z) = (∂αβF (z))α,β=1,...,n+1

to z⊥ = {V ∈ R
n+1 : 〈V, z〉 = 0} is a positive definite endomorphism z⊥ → z⊥ for all

z ∈ Sn.
Geometrically speaking, the ellipticity of F implies that F is the support function of

some convex body⋂
z∈Sn

{y ∈ R
n+1 : 〈y, z〉 � F(z)},
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the boundary WF of which is the convex hypersurface parametrized by

� : Sn → R
n+1, �(z) := Fz(z).

In the terminology of Taylor [5], WF = �(Sn) is called the Wulff shape.
Let us now consider an arbitrary variation Xε of X = X0 with variation vector field

Y := dXε

dε
|ε=0. Decomposing Y = ϕN + tangential terms, it is well-known that the first

variation of F is given by

δF(X, Y ) := d

dε
F(Xε)|ε=0 = −

∫
M

HF ϕ dA,(2)

see e.g. [2]. Here, HF is the F -mean curvature or anisotropic mean curvature of X, which
is defined as follows: Let

NF : M → WF , NF := �(N)

denote the generalized Gauß mapping into the Wulff shape. Then

SF := −dX−1 ◦ dNF

is called F -Weingarten operator and

HF := tr(SF ).

We remark that for technical reasons it is convenient to write

SF = AF ◦ S,

where S := −dX−1◦dN denotes the classical Weingarten operator and AF is the symmetric
positive definite (1, 1)-tensor given by

AF := dX−1 ◦ Fzz(N) ◦ dX.

Clearly, these definitions coincide with their classical counterparts in case F(z) = |z| is
the area-integrand.

Let us now introduce the volume functional

V(X) = 1

n + 1

∫
M

〈X, N〉 dA.

It is well-known, that the first variation of V is given by

δV(X, Y ) := d

dε
V(Xε)|ε=0 =

∫
M

ϕ dA.(3)

We say that a variation Xε of X is volume preserving, if V(Xε) = const, and we say that
X is F -stationary, if δF(X, Y ) = 0 for all volume preserving variations. Due to a well-
known reasoning of Barbosa, do Carmo [1], it follows from (2) and (3) that X is F -stationary
if and only if X has constant F -mean curvature.
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An F -stationary immersion X is called F -stable, if the second variation δ2F(X, Y )

:= d2

dε2 F(Xε)|ε=0 is non-negative for all volume preserving variations. We recall from
Clarenz, von der Mosel [4], that for an arbitrary variation Xε the F -mean curvature HF (ε)

of Xε satisfies the equation

d

dε
HF (ε)|ε=0 = �F ϕ + tr(AF S2)ϕ,

where �F is the second order elliptic operator given by

�F ϕ := div(AF ∇ϕ).

Here, ∇ϕ denotes the gradient of ϕ with respect to the induced metric g. In particular, this
implies that the second variation of F is given by

δ2F(X, Y ) = −
∫
M

ϕ(�F ϕ + tr(AF S2)ϕ) dA.(4)

Let us now define the anisotropic index form I of X by

I [ϕ] := −
∫
M

ϕ(�F ϕ + tr(AF S2)ϕ) dA

=
∫
M

(g(AF ∇ϕ, ∇ϕ) − tr(AF S2)ϕ2) dA.(5)

We recall from Barbosa, do Carmo [1], that for any smooth function ϕ satisfying
∫
M

ϕ

dA = 0 there exists a volume preserving variation with variation vector field Y = ϕN .
Hence, on account of (4) we deduce the following characterization of F -stable immersions:

Lemma 2.1. X : M → R
n+1 is F -stable if and only if HF = const and

I [ϕ] � 0

for all ϕ ∈ C∞(M) satisfying∫
M

ϕ dA = 0.

3. Main results. Given X : M → R
n+1, we denote by g := 〈X, N〉 the support

function and we abbreviate F = F(N). In order to construct a suitable testfunction valid
in the anisotropic index form, we need the following identities, which in case of the area
integrand have been proved by Barbosa, do Carmo [1].
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Theorem 3.1. If X : M → R
n+1 has constant F -mean curvature, then the following

identities hold true:

�F N + tr(AF S2)N = 0,(6)

�F g + tr(AF S2)g = −HF and(7)

�F F + tr(AF S2)F = tr(S2
F ).(8)

P r o o f. The first identity was already derived in [4]. For the convenience of the reader,
we roughly sketch a proof using Ricci calculus:

First, note that for any smooth function ϕ we locally have

�F ϕ = ∇i (A
ij∇j ϕ).

Here, ∇ denotes the covariant derivative on (M, g), and Aij = gikAklg
kj, where Aij =

g(AF ∂i, ∂j ) denotes the coefficients of AF and gij, gij stands for the coefficients of the first
fundamental form and its inverse, respectively. Moreover, we employ Einstein’s summation
convention in that we sum over repeated latin indices from 1, . . . , n.

We now use one of the Gauß-Weingarten relations,

∇jN = −gklhlj∇kX,

where hij are the coefficients of the second fundamental form, and compute

�F N = ∇i (A
ij∇jN)

= −∇i (A
ijgklhlj∇kX)

= −∇iA
ijgklhlj∇kX − Aijgkl∇ihlj∇kX − Aijgklhlj∇i∇kX.

Here, ∇i∇kX = ∂ikX − 	m
ik∂mX denotes the second covariant derivative of X, and ∇ihlj

stands for the covariant derivative of the second fundamental form. By virtue of Gauß-
Weingarten and Codazzi, we have ∇i∇kX = hikN and ∇ihlj = ∇lhij , respectively. More-
over, HF = Aijhij. Thus, we obtain

�F N = −gkl∇lHF ∇kX + (∇lA
ijhij − ∇iA

ijhlj )g
lk∇kX − tr(AF S2)N.

Since HF is assumed to be constant, the first term on the right hand side vanishes and (6)
will follow, if we can show that

∇lA
ijhij = ∇iA

ijhlj .(9)

To accomplish this, we start with Aij = ∂αβF (N)∇iX
α∇jX

β , where α, β are summed over
1, . . . , n + 1, and obtain

∇kAij = −grshsk∂αβγ F (N)∇iX
α∇jX

β∇rX
γ .
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Note, that we have used the fact that Fzz(z)z = 0 for all z 
= 0, which is a consequence of
the homogeneity relation (1). Hence,

∇kAij = Tijrg
rshsk

with some tensor T which is symmetric in all of its indices, and from this the desired identity
(9) follows easily.

In order to prove the second identity, we note that ∂iX is tangential to X and obtain

�F g = ∇i (A
ij〈X, ∇jN〉)

= Aij〈∇iX, ∇jN〉 + 〈X, ∇i (A
ij∇jN)〉

= −Aijhij + 〈X, �F N〉
= −HF + 〈X, �F N〉.

Using (6), the identity (7) follows.
Finally, using (6) again, we compute

�F F = ∇i (A
ij〈Fz(N), ∇jN〉)

= Aij〈Fzz(N)∇iN, ∇jN〉 + 〈Fz(N), ∇i (A
ij∇jN)〉

= AijhjkA
klhli + 〈Fz(N), �F N〉

= tr(S2
F ) − tr(AF S2)〈Fz(N), N〉.

Since 〈Fz(z), z〉 = F(z) by homogeneity, (8) follows. �

P r o o f o f T h e o r e m 1.1. Define ϕ := F + HF

n
g. Then ϕ is admissible in the

anisotropic index form. In fact, choosing Y = X in the first variation formula (2) yields

δF(X, Y ) = −
∫
M

HF g dA.

On the other hand, the choice Y = X corresponds to the radial variation Xε = (1 + ε)X,
and since F(Xε) = (1 + ε)nF(X) by scaling, we find

δF(X, Y ) = nF(X).

Hence, we obtain

n

∫
M

F(N) dA = −
∫
M

HF g dA,

which is an analogue of Minkowski’s integral formula. In particular,∫
M

ϕ dA = 0.
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We now insert ϕ into (5) and apply Theorem 3.1. This gives

I [ϕ] = −
∫
M

ϕ

(
tr(S2

F ) − H 2
F

n

)
dA

= −
∫
M

ϕtr(S2
F ) dA,(10)

where the last line follows since ϕ has mean value zero.
Multiplying (7) and (8) by F and g, respectively, and performing a partial integration

yields ∫
M

HF

n
gtr(S2

F ) dA = −
∫
M

F(N)
H 2

F

n
dA.

Combining this with (10), we arrive at the identity

I [ϕ] =
∫
M

F(N)

(
H 2

F

n
− tr(S2

F )

)
dA.

From here we can proceed as in Palmer’s [6] paper. Choose an orthonormal basis
{ei}i=1,...,n such that AF (ei) = αiei for i = 1, . . . , n. Then, SF (ei) = ∑

j

hijαj ej , where

hij = g(Sei, ej ). Thus, by virtue of the Cauchy-Schwarz inequality we infer

H 2
F

n
− tr(S2

F ) �
∑

i

(αihii)
2 −

∑
i,j

αiαjh
2
ij

= −
∑
i 
=j

αiαjh
2
ij � 0,

and equality holds if and only if αihii = αjhjj for all i, j = 1, . . . , n and hij = 0 for all
i 
= j . Hence,

I [ϕ] � 0,

and equality holds if and only if

SF = cid with c = HF

n
.(11)

In particular, if X is F -stable, then I [ϕ] = 0 and (11) holds. Since M is compact, we
deduce that X(M) = − 1

c
WF + C for some vector C ∈ R

n+1, cf. [6], [3], and this is
precisely the statement of Theorem 1.1. �
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