Arch. Math. 81 (2003) 439–445 0003–889X/03/040439–07 DOI 10.1007/s00013-003-0508-7 © Birkhäuser Verlag, Basel, 2003

Archiv der Mathematik

Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces

By

SHIGEO OHSAWA and WATARU TAKAHASHI

Abstract. In this paper, we prove a strong convergence theorem for resolvents of maximal monotone operators in Banach spaces by the hybrid method in mathematical programming. Using this, we consider the problem of finding a minimizer of a convex function.

1. Introduction. Let *H* be a Hilbert space and let $T : H \to H$ be a maximal monotone operator. Then the problem of finding a solution $z \in H$ with $0 \in Tz$ has been investigated by many researchers; see, for example, Bruck [4], Rockafellar [16], Brézis and Lions [2], Reich [12, 13], Nevanlinna and Reich [11], Bruck and Reich [5, 6], Takahashi and Ueda [19], Jung and Takahashi [8], Khang [10], and others. One popular method of solving $0 \in Tz$ is the proximal point algorithm. The proximal point algorithm generates, for any starting point $x_1 = x \in H$, a sequence $\{x_n\}$ in *H* by the rule

$$(1.1) x_{n+1} = J_{r_n} x_n, n \in \mathbb{N},$$

where $J_{r_n} = (I + r_n T)^{-1}$ and $\{r_n\}$ is a sequence of positive real numbers. Some of them dealt with the weak convergence of the sequence $\{x_n\}$ generated by (1.1) and others proved strong convergence theorems by imposing strong assumptions on *T*. Recently Kamimura and Takahashi [9] introduced the following two iterative schemes:

(1.2)
$$x_{n+1} = \alpha_n x_1 + (1 - \alpha_n) J_{r_n} x_n, \quad n \in \mathbb{N}$$

and

(1.3)
$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) J_{r_n} x_n, \qquad n \in \mathbb{N},$$

where $x_1 = x \in H$, $\{\alpha_n\}$ is a sequence in [0, 1] and $\{r_n\}$ is a sequence of positive real numbers. They showed that the sequence $\{x_n\}$ generated by (1.2) converges strongly and the sequence $\{x_n\}$ generated by (1.3) converges weakly; see also [14]. On the other

Mathematics Subject Classification (2000): 47H05.

ARCH. MATH.

hand, Solodov and Svaiter [17] introduced the following hybrid method in mathematical programming:

(1.4)
$$\begin{cases} x_1 = x \in H, \\ y_n = J_{r_n} x_n, \\ C_n = \{z \in H : \langle y_n - z, x_n - y_n \rangle \ge 0\}, \\ D_n = \{z \in H : \langle x_n - z, x_1 - x_n \rangle \ge 0\}, \\ x_{n+1} = P_{C_n \cap D_n}(x_1) \end{cases}$$

...

.

for each $n \in \mathbb{N}$, where $J_{r_n} = (I + r_n T)^{-1}$ and $r_n > 0$. They showed that the sequence $\{x_n\}$ generated by (1.4) converges strongly to $P_{T^{-1}0}(x_1)$. The aim of this paper is to prove a strong convergence theorem for resolvents of maximal monotone operators in Banach spaces which generalizes the result by Solodov and Svaiter [17]. Using the result, we consider the problem of finding a minimizer of a convex function.

2. Preliminaries. A Banach space *E* is *uniformly convex* if for any two sequences $\{x_n\}$ and $\{y_n\}$ in *E* such that

$$||x_n|| = ||y_n|| = 1$$
 and $\lim_{n \to \infty} ||x_n + y_n|| = 2$,

 $\lim_{n \to \infty} ||x_n - y_n|| = 0$ holds. It is well known that a Banach space *E* is uniformly convex if and only if for any two sequences $\{x_n\}$ and $\{y_n\}$ in *E* such that

$$\lim_{n \to \infty} \|x_n\| = \lim_{n \to \infty} \|y_n\| = 1 \text{ and } \lim_{n \to \infty} \|x_n + y_n\| = 2,$$

 $\lim_{n \to \infty} ||x_n - y_n|| = 0 \text{ holds. We also know that if } E \text{ is a uniformly convex Banach space,} then <math>x_n \to x$ and $||x_n|| \to ||x||$ imply $x_n \to x$, where \to means the weak convergence. Let *C* be a nonempty closed convex subset of a uniformly convex Banach space *E* and let $x_1 \in E$. Then there exists a unique element $x \in C$ such that $||x_1 - x|| \leq ||x_1 - y||$ for all $y \in C$. Putting $x = P_C(x_1)$, we call P_C the metric projection on *C*; see [7, p.12].

Let *E* be a Banach space and let E^* be its dual. With each $x \in E$, we associate the set

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

By the Hahn-Banach theorem, J(x) is nonempty. The multivalued operator $J : E \to E^*$ is called the *duality mapping* of *E*. Let $S(E) = \{x \in E : ||x|| = 1\}$. Then a Banach space *E* is said to be *Gâteaux differentiable* provided the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each $x, y \in S(E)$. If E is Gâteaux differentiable, then the duality mapping J of E is single valued. We use the following theorem in the proof of our theorem.

Theorem 2.1 [18, p.196]. Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm. Let *C* be a nonempty closed convex subset of *E* and $x_1 \in E$. Then, $x = P_C(x_1)$ if and only if

$$\langle x-z, J(x_1-x)\rangle \ge 0$$
 for all $z \in C$,

where P_C is the metric projection on C and J is the duality mapping of E.

440

Vol. 81, 2003

This theorem is also a special case of Proposition 3.4 on p.13 of [7]. A mapping T of E into E^* is *monotone* if for each $(x, x^*), (y, y^*) \in T$, we have

$$\langle x - y, x^* - y^* \rangle \ge 0.$$

A monotone mapping *T* is said to be maximal if its graph $G(T) = \{(x, y) : y \in Tx\}$ is not properly contained in the graph of any other monotone mapping. The following theorem is due to Browder [3]; see also Barbu's book [1].

Theorem 2.2 [1, p. 39]. Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm and let *T* be a monotone operator from *E* into E^* . Then *T* is maximal if and only if for any r > 0,

$$R(J + rT) = E^*,$$

where R(J + rT) is the range of J + rT.

We also know the following theorem.

Theorem 2.3 [18, p. 102]. Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm and let $x, y \in E$. If

$$\langle x - y, J(x) - J(y) \rangle = 0,$$

then x = y.

3. A strong convergence theorem. Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm and let *T* be a maximal monotone operator from *E* into E^* such that $T^{-1}0 \neq \emptyset$. For all $x \in E$ and r > 0, we consider the following equation

$$J(x_r - x) + rTx_r \ni 0.$$

By Theorems 2.2 and 2.3, this equation has a unique solution x_r ; see also Corollary 1.1 in [1]. We define J_r by

$$x_r = J_r x$$

and such J_r , r > 0 are called *resolvents* of T. Now motivated by Solodov and Svaiter [17], we consider the sequence $\{x_n\}$ generated by

(3.1)
$$\begin{cases} x_1 = x \in E, \\ y_n = J_{r_n} x_n, \\ C_n = \{ z \in E : \langle y_n - z, J(x_n - y_n) \rangle \ge 0 \}, \\ D_n = \{ z \in E : \langle x_n - z, J(x_1 - x_n) \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap D_n}(x_1) \end{cases}$$

for each $n \in \mathbb{N}$, where $J(y_n - x_n) + r_n T y_n \ni 0$, and $r_n > 0$.

Theorem 3.1. Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm and let *T* be a maximal monotone operator from *E* into E^* such that $T^{-1}0 \neq \emptyset$. Suppose $\{x_n\}$ is the sequence generated by (3.1) and $\liminf_{n\to\infty} r_n > 0$. Then, $\{x_n\}$ converges strongly to $P_{T^{-1}0}(x_1)$ as $n \to \infty$.

Proof. We first show that $\{x_n\}$ is well defined. It is obvious that $C_n \cap D_n$ is a closed convex subset of *E* for every $n \in \mathbb{N}$. Let $(z, 0) \in T$. Since $(y_n, \frac{1}{r_n}J(x_n - y_n)) \in T$ and *T* is monotone, we have

$$\left\langle y_n-z,\frac{1}{r_n}J(x_n-y_n)\right\rangle \geq 0.$$

So, we get

$$\langle y_n - z, J(x_n - y_n) \rangle \ge 0$$

and hence $z \in C_n$. So we have $T^{-1}0 \subset C_n$ for every $n \in \mathbb{N}$.

We show by mathematical induction that $T^{-1}0 \subset C_n \cap D_n$ for each $n \in \mathbb{N}$. Since $T^{-1}0 \subset C_1$ and $D_1 = E$, we obtain $T^{-1}0 \subset C_1 \cap D_1$. Suppose $T^{-1}0 \subset C_k \cap D_k$ for $k \in \mathbb{N}$. Then, there exists a unique element $x_{k+1} \in C_k \cap D_k$ such that $x_{k+1} = P_{C_k \cap D_k}(x_1)$. From $x_{k+1} = P_{C_k \cap D_k}(x_1)$ and Theorem 2.1, we have

$$\langle x_{k+1}-z, J(x_1-x_{k+1})\rangle \geq 0$$

for each $z \in C_k \cap D_k$. Since $T^{-1}0 \subset C_k \cap D_k$, we get

$$\langle x_{k+1}-z, J(x_1-x_{k+1})\rangle \geq 0$$

for each $z \in T^{-1}0$ and hence $T^{-1}0 \subset D_{k+1}$. Therefore we have $T^{-1}0 \subset C_{k+1} \cap D_{k+1}$. This means that $\{x_n\}$ is well defined.

Since $T^{-1}0$ is a nonempty closed convex subset of E, there exists a unique element $z_1 \in T^{-1}0$ such that $z_1 = P_{T^{-1}0}(x_1)$. From $x_{n+1} = P_{C_n \cap D_n}(x_1)$, we have

$$||x_{n+1} - x_1|| \leq ||z - x_1||$$

for every $z \in C_n \cap D_n$. Since $z_1 \in T^{-1} \cup C_n \cap D_n$, we get

$$(3.2) ||x_{n+1} - x_1|| \le ||z_1 - x_1||$$

for each $n \in \mathbb{N}$. This means that $\{x_n\}$ is bounded.

Next we show $\lim_{n\to\infty} ||x_n - x_{n+1}|| = 0$. By (3.1) and Theorem 2.1, we get $x_n = P_{D_n}(x_1)$. From $x_{n+1} \in D_n$, we have

$$||x_1 - x_n|| \leq ||x_1 - x_{n+1}||$$

for every $n \in \mathbb{N}$. This implies that $\{\|x_1 - x_n\|\}$ is bounded and nondecreasing. So there exists the limit of $\{\|x_1 - x_n\|\}$. Put $\lim_{n \to \infty} \|x_1 - x_n\| = a$. Without loss of generality, we assume that a > 0. Since $x_n = P_{D_n}(x_1)$, $x_{n+1} \in D_n$ and $\frac{x_n + x_{n+1}}{2} \in D_n$, we have

$$||x_1 - x_n|| \le ||x_1 - \frac{x_n + x_{n+1}}{2}|| \le \frac{1}{2}(||x_1 - x_n|| + ||x_1 - x_{n+1}||)$$

Vol. 81, 2003

and hence

$$\lim_{n \to \infty} \left\| x_1 - \frac{x_n + x_{n+1}}{2} \right\| = a.$$

Since *E* is uniformly convex, we get $\lim_{n \to \infty} ||x_n - x_{n+1}|| = 0$.

By (3.1) and Theorem 2.1, we get $y_n = P_{C_n}(x_n)$. From $x_{n+1} \in C_n$, we also have

$$||x_n - y_n|| \leq ||x_n - x_{n+1}||.$$

So we get $\lim_{n\to\infty} ||x_n - y_n|| = 0$. Using $\liminf_{n\to\infty} r_n > 0$, we have

$$\lim_{n \to \infty} \left\| \frac{1}{r_n} J(x_n - y_n) \right\| = \lim_{n \to \infty} \frac{1}{r_n} \|x_n - y_n\| = 0.$$

On the other hand, since *E* is reflexive and $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converging weakly to *w*. Then $\{y_{n_i}\}$ also converges weakly to *w* because $\lim_{n\to\infty} ||x_n - y_n|| = 0$. Let $(u, v) \in T$. Since $(y_{n_i}, \frac{1}{r_{n_i}}J(x_{n_i} - y_{n_i})) \in T$ and *T* is monotone, we have

$$\left(y_{n_i}-u,\frac{1}{r_{n_i}}J(x_{n_i}-y_{n_i})-v\right)\geq 0.$$

Letting *i* tend to infinity, we get

$$\langle w-u, 0-v \rangle \ge 0.$$

Since T is maximal, we obtain

$$(w, 0) \in T$$
.

From $z_1 = P_{T^{-1}0}(x_1)$, lower semicontinuity of the norm and (3.2), we have

$$\|x_1 - z_1\| \leq \|x_1 - w\| \leq \liminf_{i \to \infty} \|x_1 - x_{n_i}\|$$
$$\leq \limsup_{i \to \infty} \|x_1 - x_{n_i}\| \leq \|x_1 - z_1\|.$$

So, we get

$$\lim_{i \to \infty} \|x_1 - x_{n_i}\| = \|x_1 - w\| = \|x_1 - z_1\|.$$

Since *E* is uniformly convex, we have $x_1 - x_{n_i} \rightarrow x_1 - w$ and hence

 $x_{n_i} \to w = z_1.$

Therefore, we obtain $x_n \rightarrow z_1$. \Box

443

4. Application. Using Theorem 3.1, we consider the problem of finding a minimizer of a convex function.

Theorem 4.1. Let *E* be a uniformly convex Banach space with a Gâteaux differentiable norm and let $f : E \to (-\infty, \infty]$ be a proper lower semicontinuous convex function. Assume $\liminf r_n > 0$ and let $\{x_n\}$ be the sequence generated by

$$\begin{cases} x_1 = x \in E, \\ y_n = \operatorname*{argmin}_{z \in E} \{ f(z) + \frac{1}{2r_n} \| z - x_n \|^2 \}, \\ C_n = \{ z \in E : \langle y_n - z, J(x_n - y_n) \rangle \ge 0 \}, \\ D_n = \{ z \in E : \langle x_n - z, J(x_1 - x_n) \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap D_n}(x_1) \end{cases}$$

for each $n \in \mathbb{N}$. If $(\partial f)^{-1} 0 \neq \emptyset$, then $\{x_n\}$ converges strongly to the minimizer of f nearest to x_1 .

Proof. Since $f : E \to (-\infty, \infty]$ is a proper lower semicontinuous convex function, by Rockafellar [15], the subdifferential ∂f of f defined by

$$\partial f(z) = \{x^* \in E^* : f(y) \ge f(z) + \langle y - z \rangle x^*, \forall y \in E\}, \quad \forall z \in E$$

is a maximal monotone operator. We also know that

$$y_n = \operatorname*{argmin}_{z \in E} \left\{ f(z) + \frac{1}{2r_n} \|z - x_n\|^2 \right\}$$

is equivalent to

$$(\partial f)y_n + \frac{1}{r_n}J(y_n - x_n) \ni 0.$$

So, we have

$$J(y_n - x_n) + r_n(\partial f)y_n \ge 0.$$

Using Theorem 3.1, we get the conclusion. \Box

References

- [1] V. BARBU, Nonlinear semigroups and differential equations in Banach spaces. Editura Acad. R. S. R., Bucuresti 1976.
- [2] H. BRÉZIS and P. L. LIONS, Produits infinis de resolvants. Israel J. Math. 29, 329–345 (1978).
- [3] F. E. BROWDER, Nonlinear maximal monotone operators in Banach spaces. Math. Ann. **175**, 89–113 (1968). [4] R. E. BRUCK, A strongly convergent iterative solution of $0 \in U(x)$ for a maximal monotone operator *U* in
- Hilbert space. J. Math. Anal. Appl. **48**, 114–126 (1974).
- [5] R. E. BRUCK and S. REICH, Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977).

- [6] R. E. BRUCK and S. REICH, A general convergence principle in nonlinear functional analysis. Nonlinear Anal. 5, 939–950 (1980).
- [7] K. GOEBEL and S. REICH, Uniform convexity, hyperbolic geometry, and nonexpansive mappings. New York-Basel 1984.
- [8] J. S. JUNG and W. TAKAHASHI, Dual convergence theorems for the infinite products of resolvents in Banach spaces. Kodai Math. J. 14, 358–364 (1991).
- [9] S. KAMIMURA and W. TAKAHASHI, Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000).
- [10] D. B. KHANG, On a class of accretive operators. Analysis 10, 1–16 (1990).
- [11] O. NEVANLINNA and S. REICH, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Israel J. Math. 32, 44–58 (1979).
- [12] S. REICH, Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979).
- [13] S. REICH, Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980).
- [14] S. REICH and A. J. ZASLAVSKI, Infinite products of resolvents of accretive operators. Topological Methods Nonlinear Anal. 15, 153–168 (2000).
- [15] R. T. ROCKAFELLAR, Characterization of the subdifferentials of convex functions. Pacific J. Math. 17, 497–510 (1966).
- [16] R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976).
- [17] M. V. SOLODOV and B. F. SVAITER, Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Programming Ser. A. 87, 189–202 (2000).
- [18] W. TAKAHASHI, Nonlinear Functional Analysis. Yokohama 2000.
- [19] W. TAKAHASHI and Y. UEDA, On Reich's strong convergence theorems for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984).

Received: 20 November 2001; revised manuscript accepted: 11 October 2002

S. Ohsawa and W. Takahashi Department of Mathematical and Computing Sciences Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo, 152-8552 Japan ohsawa8@is.titech.ac.jp wataru@is.titech.ac.jp