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Strong convergence theorems for resolvents of maximal monotone
operators in Banach spaces

By

Shigeo Ohsawa and Wataru Takahashi

Abstract. In this paper, we prove a strong convergence theorem for resolvents of maximal
monotone operators in Banach spaces by the hybrid method in mathematical programming. Using
this, we consider the problem of finding a minimizer of a convex function.

1. Introduction. Let H be a Hilbert space and let T : H → H be a maximal monotone
operator. Then the problem of finding a solution z ∈ H with 0 ∈ T z has been investigated
by many researchers; see, for example, Bruck [4], Rockafellar [16], Brézis and Lions [2],
Reich [12, 13], Nevanlinna and Reich [11], Bruck and Reich [5, 6], Takahashi and Ueda
[19], Jung and Takahashi [8], Khang [10], and others. One popular method of solving
0 ∈ T z is the proximal point algorithm. The proximal point algorithm generates, for any
starting point x1 = x ∈ H , a sequence {xn} in H by the rule

xn+1 = Jrnxn, n ∈ N,(1.1)

where Jrn = (I + rnT )−1 and {rn} is a sequence of positive real numbers. Some of them
dealt with the weak convergence of the sequence {xn} generated by (1.1) and others proved
strong convergence theorems by imposing strong assumptions on T . Recently Kamimura
and Takahashi [9] introduced the following two iterative schemes:

xn+1 = αnx1 + (1 − αn)Jrnxn, n ∈ N(1.2)

and

xn+1 = αnxn + (1 − αn)Jrnxn, n ∈ N,(1.3)

where x1 = x ∈ H , {αn} is a sequence in [0, 1] and {rn} is a sequence of positive real
numbers. They showed that the sequence {xn} generated by (1.2) converges strongly
and the sequence {xn} generated by (1.3) converges weakly; see also [14]. On the other
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hand, Solodov and Svaiter [17] introduced the following hybrid method in mathematical
programming:






x1 = x ∈ H,

yn = Jrnxn,

Cn = {z ∈ H : 〈yn − z, xn − yn〉 � 0},
Dn = {z ∈ H : 〈xn − z, x1 − xn〉 � 0},
xn+1 = PCn ∩ Dn(x1)

(1.4)

for each n ∈ N, where Jrn = (I + rnT )−1 and rn > 0. They showed that the sequence
{xn} generated by (1.4) converges strongly to PT −10(x1). The aim of this paper is to prove
a strong convergence theorem for resolvents of maximal monotone operators in Banach
spaces which generalizes the result by Solodov and Svaiter [17]. Using the result, we
consider the problem of finding a minimizer of a convex function.

2. Preliminaries. A Banach space E is uniformly convex if for any two sequences {xn}
and {yn} in E such that

‖xn‖ = ‖yn‖ = 1 and lim
n→∞ ‖xn + yn‖ = 2,

lim
n→∞ ‖xn − yn‖ = 0 holds. It is well known that a Banach space E is uniformly convex if

and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞ ‖xn‖ = lim

n→∞ ‖yn‖ = 1 and lim
n→∞ ‖xn + yn‖ = 2,

lim
n→∞ ‖xn − yn‖ = 0 holds. We also know that if E is a uniformly convex Banach space,

then xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x, where ⇀ means the weak convergence.
Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let
x1 ∈ E. Then there exists a unique element x ∈ C such that ‖x1 − x‖ � ‖x1 − y‖ for all
y ∈ C. Putting x = PC(x1), we call PC the metric projection on C; see [7, p.12].

Let E be a Banach space and let E∗ be its dual. With each x ∈ E, we associate the set

J (x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
By the Hahn-Banach theorem, J (x) is nonempty. The multivalued operator J : E → E∗
is called the duality mapping of E. Let S(E) = {x ∈ E : ‖x‖ = 1}. Then a Banach space
E is said to be Gâteaux differentiable provided the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S(E). If E is Gâteaux differentiable, then the duality mapping J of
E is single valued. We use the following theorem in the proof of our theorem.

Theorem 2.1 [18, p.196]. Let E be a uniformly convex Banach space with a Gâteaux
differentiable norm. Let C be a nonempty closed convex subset of E and x1 ∈ E. Then,
x = PC(x1) if and only if

〈x − z, J (x1 − x)〉 � 0 for all z ∈ C,

where PC is the metric projection on C and J is the duality mapping of E.
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This theorem is also a special case of Proposition 3.4 on p.13 of [7]. A mapping T of E

into E∗ is monotone if for each (x, x∗), (y, y∗) ∈ T , we have

〈x − y, x∗ − y∗〉 � 0.

A monotone mapping T is said to be maximal if its graph G(T ) = {(x, y) : y ∈ T x} is not
properly contained in the graph of any other monotone mapping. The following theorem is
due to Browder [3]; see also Barbu’s book [1].

Theorem 2.2 [1, p. 39]. Let E be a uniformly convex Banach space with a Gâteaux
differentiable norm and let T be a monotone operator from E into E∗. Then T is maximal
if and only if for any r > 0,

R(J + rT ) = E∗,

where R(J + rT ) is the range of J + rT .

We also know the following theorem.

Theorem 2.3 [18, p. 102]. Let E be a uniformly convex Banach space with a Gâteaux
differentiable norm and let x, y ∈ E. If

〈x − y, J (x) − J (y)〉 = 0,

then x = y.

3. A strong convergence theorem. Let E be a uniformly convex Banach space with
a Gâteaux differentiable norm and let T be a maximal monotone operator from E into E∗
such that T −10 	= ∅. For all x ∈ E and r > 0, we consider the following equation

J (xr − x) + rT xr � 0.

By Theorems 2.2 and 2.3, this equation has a unique solution xr ; see also Corollary 1.1
in [1]. We define Jr by

xr = Jrx

and such Jr , r > 0 are called resolvents of T . Now motivated by Solodov and Svaiter [17],
we consider the sequence {xn} generated by






x1 = x ∈ E,

yn = Jrnxn,

Cn = {z ∈ E : 〈yn − z, J (xn − yn)〉 � 0},
Dn = {z ∈ E : 〈xn − z, J (x1 − xn)〉 � 0},
xn+1 = PCn ∩ Dn(x1)

(3.1)

for each n ∈ N, where J (yn − xn) + rnT yn � 0, and rn > 0.
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Theorem 3.1. Let E be a uniformly convex Banach space with a Gâteaux differentiable
norm and let T be a maximal monotone operator from E into E∗ such that T −10 	= ∅.
Suppose {xn} is the sequence generated by (3.1) and lim inf

n→∞ rn > 0. Then, {xn} converges

strongly to PT −10(x1) as n → ∞.

P r o o f. We first show that {xn} is well defined. It is obvious that Cn ∩ Dn is a closed
convex subset of E for every n ∈ N. Let (z, 0) ∈ T . Since (yn,

1
rn

J (xn − yn)) ∈ T and T

is monotone, we have
〈

yn − z,
1

rn
J (xn − yn)

〉

� 0.

So, we get

〈yn − z, J (xn − yn)〉 � 0

and hence z ∈ Cn. So we have T −10 ⊂ Cn for every n ∈ N.
We show by mathematical induction that T −10 ⊂ Cn ∩ Dn for each n ∈ N. Since

T −10 ⊂ C1 and D1 = E, we obtain T −10 ⊂ C1 ∩ D1. Suppose T −10 ⊂ Ck ∩ Dk for
k ∈ N. Then, there exists a unique element xk+1 ∈ Ck ∩ Dk such that xk+1 = PCk∩Dk

(x1).
From xk+1 = PCk∩Dk

(x1) and Theorem 2.1, we have

〈xk+1 − z, J (x1 − xk+1)〉 � 0

for each z ∈ Ck ∩ Dk . Since T −10 ⊂ Ck ∩ Dk , we get

〈xk+1 − z, J (x1 − xk+1)〉 � 0

for each z ∈ T −10 and hence T −10 ⊂ Dk+1. Therefore we have T −10 ⊂ Ck+1 ∩ Dk+1.
This means that {xn} is well defined.

Since T −10 is a nonempty closed convex subset of E, there exists a unique element
z1 ∈ T −10 such that z1 = PT −10(x1). From xn+1 = PCn ∩ Dn(x1), we have

‖xn+1 − x1‖ � ‖z − x1‖
for every z ∈ Cn ∩ Dn. Since z1 ∈ T −10 ⊂ Cn ∩ Dn, we get

‖xn+1 − x1‖ � ‖z1 − x1‖(3.2)

for each n ∈ N. This means that {xn} is bounded.
Next we show lim

n→∞ ‖xn − xn+1‖ = 0. By (3.1) and Theorem 2.1, we get xn = PDn(x1).

From xn+1 ∈ Dn, we have

‖x1 − xn‖ � ‖x1 − xn+1‖
for every n ∈ N. This implies that {‖x1 − xn‖} is bounded and nondecreasing. So there
exists the limit of {‖x1 − xn‖}. Put lim

n→∞ ‖x1 − xn‖ = a. Without loss of generality, we

assume that a > 0. Since xn = PDn(x1), xn+1 ∈ Dn and xn+xn+1
2 ∈ Dn, we have

‖x1 − xn‖ �
∥
∥
∥x1 − xn + xn+1

2

∥
∥
∥ �

1

2
(‖x1 − xn‖ + ‖x1 − xn+1‖)
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and hence

lim
n→∞

∥
∥
∥x1 − xn + xn+1

2

∥
∥
∥ = a.

Since E is uniformly convex, we get lim
n→∞ ‖xn − xn+1‖ = 0.

By (3.1) and Theorem 2.1, we get yn = PCn(xn).
From xn+1 ∈ Cn, we also have

‖xn − yn‖ � ‖xn − xn+1‖.
So we get lim

n→∞ ‖xn − yn‖ = 0. Using lim inf
n→∞ rn > 0, we have

lim
n→∞

∥
∥
∥

1

rn
J (xn − yn)

∥
∥
∥ = lim

n→∞
1

rn
‖xn − yn‖ = 0.

On the other hand, since E is reflexive and {xn} is bounded, there exists a subsequence
{xni

} of {xn} converging weakly to w. Then {yni
} also converges weakly to w because

lim
n→∞ ‖xn − yn‖ = 0. Let (u, v) ∈ T . Since (yni

, 1
rni

J (xni
− yni

)) ∈ T and T is monotone,

we have
〈

yni
− u,

1

rni

J (xni
− yni

) − v

〉

� 0.

Letting i tend to infinity, we get

〈w − u, 0 − v〉 � 0.

Since T is maximal, we obtain

(w, 0) ∈ T .

From z1 = PT −10(x1), lower semicontinuity of the norm and (3.2), we have

‖x1 − z1‖ � ‖x1 − w‖ � lim inf
i→∞ ‖x1 − xni

‖
� lim sup

i→∞
‖x1 − xni

‖ � ‖x1 − z1‖.

So, we get

lim
i→∞ ‖x1 − xni

‖ = ‖x1 − w‖ = ‖x1 − z1‖.

Since E is uniformly convex, we have x1 − xni
→ x1 − w and hence

xni
→ w = z1.

Therefore, we obtain xn → z1. �
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4. Application. Using Theorem 3.1, we consider the problem of finding a minimizer
of a convex function.

Theorem 4.1. Let E be a uniformly convex Banach space with a Gâteaux differentiable
norm and let f : E → (−∞, ∞] be a proper lower semicontinuous convex function.
Assume lim inf

n→∞ rn > 0 and let {xn} be the sequence generated by






x1 = x ∈ E,

yn = argmin
z∈E

{f (z) + 1
2rn

‖z − xn‖2},
Cn = {z ∈ E : 〈yn − z, J (xn − yn)〉 � 0},
Dn = {z ∈ E : 〈xn − z, J (x1 − xn)〉 � 0},
xn+1 = PCn ∩ Dn(x1)

for each n ∈ N. If (∂f )−10 	= ∅, then {xn} converges strongly to the minimizer of f nearest
to x1.

P r o o f. Since f : E → (−∞, ∞] is a proper lower semicontinuous convex function,
by Rockafellar [15], the subdifferential ∂f of f defined by

∂f (z) = {x∗ ∈ E∗ : f (y) � f (z) + 〈y − z〉x∗, ∀y ∈ E}, ∀z ∈ E

is a maximal monotone operator. We also know that

yn = argmin
z∈E

{

f (z) + 1

2rn
‖z − xn‖2

}

is equivalent to

(∂f )yn + 1

rn
J (yn − xn) � 0.

So, we have

J (yn − xn) + rn(∂f )yn � 0.

Using Theorem 3.1, we get the conclusion. �
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