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Centrality and connectors in Maltsev categories

Dominique Bourn and Marino Gran

Abstract. We develop a new approach to the classical property of centrality of equivalence
relations. The internal notion of connector allows to clarify classical results in Maltsev
varieties and to extend them in the more general context of regular Maltsev categories,
hence including the important new examples of Maltsev quasivarieties and of topological
Maltsev algebras. We also prove that Maltsev categories can be characterized in terms of
a property of connectors.

Introduction

The notion of commutator of equivalence relations in Maltsev varieties was intro-
duced by Smith in his 1976 book [25]; his theory was later extended to congruence
modular varieties by Hagemann and Hermann [17]. Various interesting ways of de-
veloping commutator theory in congruence modular varieties are presented in the
works by Gumm [12] and Freese-McKenzie [11].

An alternative approach to commutator theory, of categorical nature, was de-
veloped by Pedicchio in exact Maltsev categories with coequalizers thanks to the
notion of internal pregroupoid [23]. This work was later generalized by Janelidze
and Pedicchio in [20] by introducing the notion of internal pseudogroupoid in gen-
eral categories.

The present paper further develops the categorical approach to centrality, and
emphasizes the role of the notion of connector between two equivalence relations
introduced in [7]. If R and S are two equivalence relations on the same object X ,
we denote by R ×X S the pullback

R ×X S
p1 ��

p0

��

S

d0

��
R

d1

�� X.
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A connector between R and S is an arrow p : R ×X S → X such that

1. xSp(x, y, z) 1.* zRp(x, y, z)
2. p(x, x, y) = y 2.* p(x, y, y) = x

3. p(x, y, p(y, u, v)) = p(x, u, v) 3.* p(p(x, y, u), u, v) = p(x, y, v)

The notion of connector coincides with the one of pregroupoid when equivalence
relations are effective. In the more general context of regular categories the main
difference between the notion of pregroupoid and the notion of connector consists
in the fact that the notion of pregroupoid is a global structure on a span

X
f

����
��

��
�

g

���
��

��
��

B C

while the notion of connector focuses on the link between the kernel equivalence
relations R[f ] and R[g] associated with each span projection. This viewpoint allows
to forget the projections f and g, and consequently resets the appropriate tool
uniquely at the level of the equivalence relations.

In the context of Maltsev categories the internal notion of connector can be
simplified and reduces to a partial ternary operation as above verifying only axioms
2. and 2.∗ in the previous list. An appropriate use of connectors allows us to get rid
of the requirement of the existence of coequalizers and, mainly, of the effectiveness
of equivalence relations (both conditions being usually required in order to define
the commutator). In this way our theory naturally includes also the important
examples of Maltsev quasivarieties and of topological groups. One of the main
interests of the notion of connector is that it enables us to understand centrality
even without defining the commutator of equivalence relations. Indeed, we can
prove the important basic centrality properties which correspond to the classical
properties of the commutator:

1. Symmetry: [R, S] = [S, R]
2. Inclusion of the commutator in the intersection: [R, S] ≤ R ∩ S

3. Monotonicity: if S1 ≤ S2, then [R, S1] ≤ [R, S2]
4. Stability with respect to products: [R1 × R2, S1 × S2] ≤ [R1, S1] × [R2, S2]
5. Stability with respect to restriction: if i : Y → X is a monomorphism, then

[R, S] = ∆X implies [i−1(R), i−1(S)] = ∆Y , where ∆X is the smallest equiva-
lence relation on X .

6. Stability with respect to regular images: if f : X → Y is a regular epimorphism,
then [R, S] = ∆X implies that [f(R), f(S)] = ∆Y

7. Stability with respect to joins: [R, S1 ∨ S2] = [R, S1] ∨ [R, S2]
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(where R, R1, R2, S, S1 and S2 are equivalence relations on a given object X). A
recent theorem in the categorical theory of central extensions shows that in any ex-
act Maltsev category there is an intrinsic notion of central extension, which agrees
with the one arising from commutator theory in universal algebra [14]. In the
present article we show that in exact Maltsev categories the category of central ex-
tensions is equivalent to the category of connected internal groupoids, clarifying the
well-known fact that any central extension can be considered as a crossed module.
Finally, in the last section, we show how the notion of connector can be used to
characterize Maltsev categories.

1. Connector

In this paper we shall always assume that C is a finitely complete category. If
f : X → Y is an arrow in C, R[f ] denotes its kernel pair. If R and S are two
equivalence relations on X , we denote by R ×X S the pullback

R ×X S
p1 ��

p0

��

S

d0

��
R

d1

�� X.

(1)

1.1. Definition. A left action of R on S is a map p : R ×X S → X such that

1. xSp(x, y, z)
2. p(x, x, y) = y

3. p(x, y, p(y, u, v)) = p(x, u, v)

1.2. Definition. A left action of R on S is a connector between R and S when
the map p : R ×X S → X also satisfies

1. zRp(x, y, z)
2. p(x, y, y) = x

3. p(p(x, y, u), u, v) = p(x, y, v)

A left action of R on S is equivalent to an action of the equivalence relation
(d0, d1) : R � X × X (thought of as an internal groupoid) on d0 : S → X . The
action π0 : R ×X S → S can be defined by π0(x, y, z) = (x, p(x, y, z)) (and, conse-
quently, we get back the connector by setting p = d1 ◦ π0).

This action determines a connector when the map π1(x, y, z) = (p(x, y, z), z)
also defines an action of (d0, d1) : S � X ×X on d1 : R → X . Remark that all the
commutative squares in the diagram below are pullbacks, and that the definition
of connector is symmetric in R and S.
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R ×X S

p0

��

π0 ��
p1

�� S
d1 ��

d0

��

X

R
d0 ��

d1

��

s0

��

X

s0

��

Let us point out the fact that when an arrow p : R ×X S → X satisfies the
conditions 1. and 2. in the Definitions 1.1 and 1.2, then it satisfies 3. if and only if
it satisfies the classical associativity p(x, y, p(z, u, v)) = p(p(x, y, z), u, v).

1.3. Example. If ∇X is the largest equivalence relation on an object X , then an
associative Maltsev operation p : X ×X ×X → X is precisely a connector between
∇X and ∇X .

1.4. Example. Let

X1

d1
��

d0 ��X0
e��

be a reflexive graph. The connectors between R[d0] and R[d1] are in bijection with
the groupoid structures on this reflexive graph [10].

1.5. Example. Given two objects X and Y , consider their product X ×Y . There
is a canonical connector between R[pX ] and R[pY ] (where the arrows pX and pY

are the product projections). Indeed, if we consider the following pullback

X × X × Y × Y
1X×1X×p1 ��

p0×1Y ×1Y

��

X × X × Y

p0×1Y

��
X × Y × Y

1X×p1

�� X × Y

then the canonical connector p : X × X × Y × Y → X × Y is defined by

p(x, x′, y, y′) = (x′, y).
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2. Connectors and centralizing relations

Let us denote by R � S the double relation on R and S given by the following
pullback:

R � S ��

��

R × R

(d0×d0,d1×d1)

��
S × S

(d0,d1)×(d0,d1)
�� X × X × X × X

R�S is the subobject of X4 consisting in the quadruples (x, y, z, u) with xSy, zSu,
xRz and yRu. It determines a double equivalence relation on R and S:

R � S

p1

��

p0

��

p0 ��
p1

�� S

d1

��

d0

��
R

d0 ��

d1

�� X

A double equivalence relation C on R and S is called a centralizing relation [10]

C

p1

��

p0

��

p0 ��
p1

�� S

d1

��

d0

��
R

d0 ��

d1

�� X

when the following square is a pullback:

C
p1 ��

p0

��

S

d0

��
R

d1

�� X.
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By the symmetry of the equivalence relations it follows that any of the commutative
squares in the definition of a centralizing relation is a pullback. The following lemma
gives the precise relationship between connectors and centralizing relations (for the
special case of Maltsev categories see also [10]).

2.1. Lemma. If C is a category with finite limits and R and S are two equivalence
relations on the same object X, then the following conditions are equivalent:

1. R and S are connected;
2. there exists a centralizing relation on R and S.

Proof. 1. ⇒ 2. If p : R ×X S → X is a connector between R and S, then by defining
π0(x, y, z) = (x, p(x, y, z)) and π1(x, y, z) = (p(x, y, z), z) one gets a centralizing
relation on R and S:

R ×X S

π1

��

p0

��

π0 ��
p1

�� S

d0

��

d1

��
R

d0 ��

d1

�� X

2. ⇒ 1. If

C

p1

��

p0

��

p0 ��
p1

�� S

d1

��

d0

��
R

d0 ��

d1

�� X

is a centralizing relation on R and S, then the arrow d1 ◦ p0 : C = R ×X S → X

defines a connector between R and S. �

3. Connectors in Maltsev categories

In this section we show how the Maltsev assumption allows us at the same time
to simplify the definitions and to strengthen the properties of connectors.

There are several equivalent properties which can be used to define Maltsev
categories [9]. We shall adopt the classical
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3.1. Definition. A category C is Maltsev if any reflexive relation in C is an equiv-
alence relation.

There are many important algebraic examples of Maltsev categories: indeed, by
a classical theorem [22], a variety of universal algebras has this property precisely
when there is a ternary term p(x, y, z) satisfying the identities p(x, y, y) = x and
p(x, x, y) = y. Accordingly, groups, abelian groups, modules over some fixed ring,
crossed modules, quasi-groups, rings, Lie algebras and also Heyting algebras are
all Maltsev categories. Any localization of a Maltsev variety is an exact Maltsev
category [15]; the quasivariety of torsion-free abelian groups provides an example
of a regular Maltsev category which is not exact.

Any protomodular category [2] is Maltsev, and then in particular any semi-
abelian, and any abelian category [19]. The dual category of the category of sets is
exact Maltsev, as is more generally the dual of any elementary topos. The category
of localic groups and of topological groups are regular Maltsev categories [21].

In the following we shall always assume that the category C has finite limits. We
denote by Pt(C) the category whose objects are the split epimorphisms in C and
morphisms the commutative squares between these data. The functor associating
its codomain with any split epimorphism is denoted by π : Pt(C) → C. This functor
π is a fibration, called the fibration of pointed objects. This fibration has many
important classification properties [3]: as many other kinds of categories, Maltsev
categories can be also characterized by a property of this fibration.

Before recalling this property, let us first fix some notations. A category C is
pointed when it has a zero object 0. In a pointed finitely complete category we
denote by iX : X → X × Y and by iY : Y → X × Y the arrows (1X , 0) and (0, 1Y )
respectively.

3.2. Definition. A pointed finitely complete category C is unital if, for each pair of

objects X and Y , the canonical pair of arrows X
iX �� X × Y X

iY�� is jointly
strongly epimorphic.

Now, any fiber of π : Pt(C) → C is clearly pointed and finitely complete.

3.3. Proposition. [3] A category with pullbacks is Maltsev if and only if the fibra-
tion π is unital, i.e., if and only if each fiber of π is unital.

This property has some strong consequences, as we shall see in the Lemma 3.5
here below.

3.4. Definition. A double zero sequence in a pointed category is a diagram

X
s ��

Z
g ��

f
�� Y

t
��

with f ◦ s = 1X , g ◦ t = 1Y , f ◦ t = 0 and g ◦ s = 0.
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In any unital category, the factorization (f, g) : Z → X ×Y induced by a double
zero sequence as above is a strong epi [5]: indeed, if j : R → X×Y is a mono whose
pullback along (f, g) is an isomorphism, then its pullbacks along (f, g)◦ s = iX and
(f, g) ◦ t = iY are isomorphisms and, consequently, the map j is an isomorphism.

3.5. Lemma. If C is Maltsev, then any split epimorphism (f, g) in the category
Pt(C) from (p0, s0) to (d0, s0)

A

p0

��

f
�� C

i��

d0

��
B

g
��

s0

��

D
j��

s0

��

has the property that the induced arrow α : A → B ×D C to the corresponding pull-
back is a strong epimorphism.

Proof. This is a consequence of the fact that any fiber of π is unital. �

When C is a Maltsev category, then the Definition 1.2 of connector can be sim-
plified. Indeed, if p : R ×X S → X is a map in a Maltsev category C satisfying
the Maltsev type axioms p(x, x, y) = y and p(x, y, y) = x, then p is necessarily a
connector [7]. Moreover, one has the following important

3.6. Lemma. [7] Let C be a Maltsev category. If there is a connector between R

and S, it is necessarily unique.

Proof. Let p, q be two connectors between R and S.

R ×X S
p1 ��

p0

��

p

		q
		

S

d0

��
R

d1

�� X.

Then, if s0 : R → R ×X S is the splitting of p0 induced by s0 : X → S, one certainly
has that p ◦ s0 = q ◦ s0. Similarly, if σ0 : S → R ×X S is the splitting of p1, one
has that p ◦ σ0 = q ◦ σ0. But the pair s0, σ0 is jointly epimorphic by the Maltsev
assumption, and then p = q. �

Accordingly, the existence of a connector between two equivalence relations R

and S on X becomes a property; if there is a connector p between R and S, we
shall then say that R and S are connected, or that R and S centralize each other.
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3.7. Remark. In the category of groups the existence of a connector between
the equivalence relations RH and RK on a group G is equivalent to the fact that
the normal subgroups H and K (canonically associated with RH and RK) cen-
tralize each other. Indeed, suppose RH and RK connected by the homomorphism
p : RH ×G RK → G, then the restriction homomorphism α : H ×K → G defined by
α(h, k) = p(h, 1, k) = h · k gives H · K = K · H , since we have

(h, 1) · (1, k) = (h, k) = (1, k) · (h, 1).

Conversely, suppose that H · K = K · H , then p : RH ×G RK → G defined by
p(h, k, l) = h · k−1 · l is easily seen to be a group homomorphism.

3.8. Lemma. If C is a Maltsev category and R and S are two equivalence relations
on the same object X, then the following conditions are equivalent:

1. R and S are connected,
2. there is an arrow β : R×X S → R � S of double zero sequences in PtX(C) that

splits the canonical arrow α : R � S → R ×X S.

Proof. 1. ⇒ 2. If there is a connector between R and S, let us denote by C the
associated centralizing double relation on R and S as in Lemma 2.1. Then, by the
universal property of the pullback R×X S = C and by definition of R � S there are
factorizations α and β as in the diagrams

R � S

p0





p1

��

α

		
R ×X S

p0

��

p1
�� S

d0

��
R

d1 �� X

R ×X S

p0

��

p1

��

β

		
R � S

p0

��

p1
�� S

d0

��
R

d1 �� X

where β(x, y, z) = (x, p(x, y, z), y, z) Accordingly, the equalities

p0 ◦ α ◦ β = p0 ◦ β = p0

and
p1 ◦ α ◦ β = p1 ◦ β = p1

show that α ◦ β = 1R×XS , as desired.
2. ⇒ 1. If β : R ×X S → R � S has the property that α ◦ β = 1R×XS , one can

define the connector p : R ×X S → X between R and S by taking the composite

p = d1 ◦ p0 ◦ β : R ×X S → R � S → S → X.

�
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We can now prove some basic centrality properties. From now on we shall always
assume that the category C is finitely complete and Maltsev.

We begin with the property corresponding to the fact that the commutator is
contained in the intersection:

3.9. Lemma. [5]

1. R ∩ S = ∆X if and only if R � S is a centralizing relation on R and S.
2. If R ∩ S = ∆X , then the equivalence relations R and S are connected.

Proof. 1. Let us denote by α : R � S → R ×X S the induced factorization from the
largest double equivalence relation R�S on R and S towards the corresponding
pullback R ×X S.

R � S

p0





p1

��

α

		
R ×X S

p0

��

p1
�� S

d0

��
R

d1 �� X

The category C being Maltsev, the fiber PtX(C) is unital and the factorization α is
then a strong epimorphism. It is a monomorphism precisely when R ∩ S = ∆X .
2. If R ∩ S = ∆X , then the square

R � S

p0
��

p1 �� S

d0

��
R

d1

�� X

is a pullback, and the arrow d1 ◦ p0 : R � S → S → X is the expected connector
between R and S. �

We then have the monotonicity of the centrality property:

3.10. Proposition. Let R, S1 and S2 be equivalence relations on X, with S1 ≤ S2.
If R and S2 are connected, then R and S1 are connected.

Proof. Let j : S1 → S2 denote the inclusion of S1 in S2. This arrow induces a
factorization k : R×X S1 → R×X S2 such that pS2

1 ◦ k = j ◦ pS1
1 and pS2

0 ◦ k = pS1
0 . If

p : R ×X S2 → X is the connector between R and S2, then it is easy to check that
p ◦ k : R ×X S1 → X is the connector between R and S1. �
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3.11. Corollary. Let (R1, S1) and (R2, S2) be pairs of connected equivalence rela-
tions on X. Then R1 ∩ R2 and S1 ∩ S2 are connected.

Stability with respect to products:

3.12. Proposition. Let R1, S1 and R2, S2 be connected equivalence relations on
X and Y respectively. Then the equivalence relations R1×R2 and S1×S2 on X×Y

are connected.

Proof. Let p1 : R1 ×X S1 → X be the connector between R1 and S1, let
p2 : R2 ×Y S2 → Y be the connector between R2 and S2. Then the arrow
p1 × p2 : (R1 × R2) ×X×Y (S1 × S2) → X × Y is the connector between R1 × R2

and S1 × S2. �

Stability by restriction:

3.13. Proposition. If R and S are two connected equivalence relations on Y and
i : X → Y is a monomorphism, then i−1(R) and i−1(S) are connected.

Proof. Let C be the centralizing relation on R and S:

C

p1

��

p0

��

p0 ��
p1

�� S

d1

��

d0

��
R

d0 ��

d1

�� Y

We write r : i−1(R) → R and s : i−1(S) → S for the induced arrows in the pullbacks

i−1(R)

(d0,d1)

��

r �� R

(d0,d1)

��
X × X

i×i
�� Y × Y

i−1(S)

(d0,d1)

��

s �� S

(d0,d1)

��
X × X

i×i
�� Y × Y

We want to prove that the equivalence relation r−1(C) determines a centralizing
relation on i−1(R) and i−1(S).
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r−1(C)
p̃0 ��

p̃1

��

t

����
��

��
��

��
��

�

p1

��

p0

��

i−1(S)

d1

��

d0

��

s

����
��

��
��

��
��

�

C
p0 ��
p1

��

p1

��

p0

��

S

d1

��

d0

��

i−1(R)
d0 ��

d1

��

r

����
��

��
��

��
��

�
X

i

����
��

��
��

��
��

�

R
d0 ��

d1

�� Y

There are clearly induced arrows p̃0, p̃1 and ε defining a reflexive relation on i−1(S):

r−1(C)

p̃0 ��

p̃1

��
i−1(S)

ε��

This reflexive relation actually is an equivalence relation on i−1(S). In order to
prove that r−1(C) is a centralizing relation on i−1(R) and i−1(S) the only condition
we still have to check is that the square

r−1(C)

p0

��

p̃1

�� i−1(S)

d0

��
i−1(R)

d1 �� X

is a pullback. This follows by the Maltsev assumption, by Lemma 3.5 and the fact
that r and s are monomorphisms. �

3.14. Corollary. Let R and S be two connected equivalence relations on Y and let
i : X → Y be a monomorphism. Then if (i, iR′) : R′ → R and (i, iS′) : S′ → S are
arrows in the category of equivalence relations in C, then R′ and S′ are connected.

Proof. It follows by Propositions 3.10 and 3.13. �
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4. Regular Maltsev categories

A finitely complete category is regular if kernel pairs have coequalizers and regu-
lar epimorphisms are stable under pullbacks. In this section C will always denote a
regular Maltsev category. In order to establish two important centrality properties
we first need to recall the following strong stability property of regular epimor-
phisms in regular Maltsev categories.

4.1. Lemma. [5] Given two commutative squares of vertical split epimorphisms

A

α

��

g
�� B

β

��
X

f
��

sA

��

Y

sB

�� C

γ

��

h
�� D

δ

��
X

f
��

sC

��

Y

sD

��

when the arrows f , g and h are regular epimorphisms, then the induced factorization
k : A ×X C → B ×Y D is a regular epimorphism.

Proof. The kernel pair R[k] of the induced factorization k is given by R[g]×R[f]R[h].
We write ρ : A ×X C → Q for the quotient of the equivalence relation R[k], and
i : Q → B ×Y D for the monomorphic factorization of k. When the arrows f , g and
h are regular epimorphisms, the double zero sequence in PtX(C)

A
��
A ×X C

��
�� C��

can be extended to a double sequence in PtY (C)

B
��
Q

��
�� D.��

The fiber PtY (C) is unital by the Maltsev assumption, so that the induced factor-
ization i : Q → B×Y D of this double zero sequence is a regular epimorphism. Thus
i is an isomorphism and k a regular epimorphism. �

We are now in the position to prove the stability with respect to regular images:

4.2. Proposition. Let R and S be equivalence relations on X, and let f : X → Y

be a regular epimorphism. If R and S are connected, then the images f(R) and
f(S) are connected.

Proof. We write fR : R → f(R) and fS : S → f(S) for the induced arrows. The
induced factorization φ : R ×X S → f(R) ×Y f(S) is a regular epimorphism by the
previous lemma. Let p denote the connector between R and S. We first prove that
f ◦ p : R ×X S → Y factorizes through the arrow φ. For this, we must show that
f ◦ p coequalizes the kernel pair (R[φ] = R[fR] ×R[f] R[fS], l0, l1) of φ. Now the
following commutative square is a pullback of split epimorphisms, and the Maltsev
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assumption implies that the induced sections σ and σ′ of R(p0) and R(p1) are
jointly strongly epimorphic:

R[fR] ×R[f] R[fS]

R(p0)

��

R(p1)
�� R(fS)

σ′
��

R(d0)

��
R[fR]

R(d1)
��

σ

��

R[f ]

It is then sufficient to check that (f ◦ p ◦ l0) ◦ σ = (f ◦ p ◦ l1) ◦ σ and
(f ◦ p ◦ l0) ◦ σ′ = (f ◦ p ◦ l1) ◦ σ′. One clearly has that f ◦ p ◦ l0 ◦ σ = f ◦ d0 ◦ p0

because (f ◦ p)(x, y, y) = f(x). Accordingly:

f ◦ p ◦ l0 ◦ σ = f ◦ d0 ◦ p0 = d0 ◦ fR ◦ p0 = d0 ◦ fR ◦ p1 = f ◦ d0 ◦ p1 = f ◦ p ◦ l1 ◦ σ.

Similarly, one has that (f ◦ p ◦ l0) ◦ σ′ = (f ◦ p ◦ l1) ◦ σ′. Let pf : f(R)×Y f(S) → Y

be the unique arrow induced by the universal property of the coequalizer φ, which
is such that pf ◦φ = f ◦p. It is not difficult to check that pf is a connector between
f(R) and f(S). �

Let us then recall that in any regular Maltsev category one has that the join
S1 ∨ S2 of two equivalence relations S1 and S2 on the same object X is given by
the composite S1 ◦ S2 [9]. This fact will be used to prove the stability with respect
to binary joins:

4.3. Proposition. If the equivalence relations R and S1 and the equivalence rela-
tions R and S2 are connected, then R and S1 ∨ S2 are connected.

Proof. Let ε1 : R ×X S1 → X and ε2 : R ×X S2 → X be the connectors on R, S1 and
R, S2 respectively. The composite equivalence relation S1 ◦ S2 is the regular image
factorization of the arrow (d0 ◦ p0, d1 ◦ p1) : S1 ×X S2 → X × X in the diagram

S1 ×X S2

p0
��

��
��

��
��

p1
		�

��
��

��
��

�

S1

d0����
��

��
�

d1 ���
��������� S2

d0������������

d1 ��	
		

		
		

X X X
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We write S1 ×X S2
τ �� S1 ◦ S2

(d0,d1)�� X × X for the regular epi-mono factoriza-
tion defining S1 ◦ S2. Let us then consider the following commutative diagram:

R ×X (S1 ×X S2)
v ��

u

����
��

��
��

��
��

��
��

��

θ

��

S1 ×X S2

τ

��

p0

����
��

��
��

��
��

��
��

��
�

R ×X S1
p1 ��

p0

��

S1

d0

��

R ×X (S1 ◦ S2)
p1 ��

p0

����
��

��
��

��
��

��
��

��
�

S1 ◦ S2

d0

����
��

��
��

��
��

��
��

��
�

R
d1 �� X

The universal property of the bottom pullback induces a unique arrow
θ : R ×X (S1 ×X S2) → R ×X (S1 ◦ S2), which is a regular epimorphism since τ

is a regular epi and the back vertical square is a pullback. Consider the kernel pairs
R[τ ] and R[θ] of τ and θ, respectively:

R[θ]
w

��

π0

��

π1

��

R[τ ]
β��

π0

��

π1

��
R ×X (S1 ×X S2)

σ0

��

v
��

θ

��

(S1 ×X S2)
α��

��

τ

��
R ×X (S1 ◦ S2)

p1
�� (S1 ◦ S2)

σ0��
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where α(x, y, z) = (x, x, y, z). We then define the arrow π : R ×X (S1 ×X S2) → X

as follows: π(x, y, z, t) = ε2(ε1(x, y, z), z, t). Let us first show that this arrow π

coequalizes π0, π1 : R[θ] → R ×X (S1 ×X S2). Since C is Maltsev, it is enough to
show that π ◦ π0 ◦ σ0 = π ◦ π1 ◦ σ0 and π ◦ π0 ◦ β = π ◦ π1 ◦ β. The first equality is
trivial, while the second one follows from

π ◦ π0 ◦ β = π ◦ α ◦ π0 = d1 ◦ p1 ◦ π0 = d1 ◦ p1 ◦ π1 = π ◦ α ◦ π1 = π ◦ π1 ◦ β,

where π ◦ α = d1 ◦ p1 is easy to check, and d1 ◦ p1 ◦ π0 = d1 ◦ p1 ◦ π1 follows from
R[τ ] = R[d0 ◦p0, d1 ◦p1]. By the universal property of the coequalizer θ there exists
a unique arrow p : R ×X (S1 ◦ S2) → X with p ◦ θ = π. This arrow is a connector
between R and S1 ◦ S2:

R ×X (S1 ◦ S2)

p0

��

p1
�� S1 ◦ S2

σ0��

d0

��
R

d1

��

s0

��

X
��

s0

��

on the one hand one has

p ◦ σ0 ◦ τ = p ◦ θ ◦ α = π ◦ α = d1 ◦ p1 = d1 ◦ τ

and then p ◦ σ0 = d1. On the other hand, if γ : R ×X S1 → R ×X (S1 ×X S2) is the
arrow defined by γ(x, y, z) = (x, y, z, z), one certainly has π ◦ γ = ε1. It follows
that

p ◦ s0 = p ◦ θ ◦ γ ◦ s0 = π ◦ γ ◦ s0 = ε1 ◦ s0 = d0. �

The previous result together with Proposition 3.10 immediately gives the follow-
ing

4.4. Corollary. The equivalence relations R, S1 and R, S2 are connected if and
only if R and S1 ◦ S2 are connected.

5. Exact Maltsev categories

A regular epimorphism f : A → B in a Maltsev category is a central extension
if there is a connector between its kernel equivalence R and the largest equivalence
relation ∇A on A [14]. We shall denote by Centr(B) the category of central exten-
sions of B. It turns out that in any exact Maltsev category with a zero object these
central extensions correspond to the normalizations (in the sense of [6]) of internal
connected groupoids.
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Let ConnGrpd(B) denote the category of internal connected groupoids in C with
B as object of objects. These are those internal groupoids

X1

d0 ��

d1

�� B

with the property that the induced arrow (d0, d1) : X1 → B×B is a regular epimor-
phism. Let us recall from [6] that there is a normalization functor N : ConnGrpd(B)
→ Centr(B) associating the arrow

K[d0]
Ker(d0)�� X1

d1 �� B,

with any internal groupoid as above (where Ker(d0) : K[d0] → X1 is the kernel of
d0). When the groupoid is connected, this normalization d1 ◦Ker(d0) of the given
internal connected groupoid is a regular epi; indeed, if s1 = (0, 1B) is the canonical
arrow (where 0 : B → B is the zero arrow), then d1 ◦Ker(d0) can be also obtained
by the pullback

K[d0] ��

d1◦Ker(d0)

��

X1

(d0,d1)

��
B s1

�� B × B.

It turns out that in any exact Maltsev categories, this functor actually gives rise to
an equivalence of categories:

5.1. Proposition. Let C be an exact Maltsev category with a zero object. The
categories ConnGrpd(B) and Centr(B) are equivalent.

Proof. To see that the normalization functor described above takes its values in the
category of central extensions consider the following diagram:

R[σ ◦ k]
π0 ��
π1

��

d1

��

d0

��

K[d0] × K[d0]
k ��

pr1

��

pr0

��

R[d0]

p0

��

p1

��

σ �� X1

d1

��

d0

��
R[d1 ◦ Ker(d0)]

p0 ��
p1

�� K[d0]
Ker(d0)

�� X1
d1

�� B.

The map σ corresponds to the operation which associates the arrow β ◦ α−1 with
any pair of arrows (α, β) with same domain in the groupoid X1. The equivalence
relations R[σ ◦ k] and R[d1 ◦ Ker(d0)] are determined by the obvious kernel pairs,
while d0, d1 : R[σ ◦ k] → R[d1 ◦ Ker(d0)] are induced by the universal property
of kernel pairs. The central and the right hand commutative squares are discrete
fibrations of internal groupoids: from this it easily follows that the R[σ ◦ k] is a
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centralizing relation on R[d1 ◦ Ker(d0)] and K[d0] × K[d0]. This shows that the
extension d1 ◦ Ker(d0) is central.

Conversely, there is a functor V : Centr(B) → ConnGrpd(B) associating with
any central extension f : A → B an internal connected groupoid: let C be the
centralizing relation associated with the kernel equivalence R of f and ∇A. By
taking the coequalizer q : A × A → Q of the projections π0 and π1 of C on A × A

one obtains a reflexive graph with B as objects of objects:

C
π0 ��
π1

��

d1

��

d0

��

A × A
q ��

a1

��

a0

��

Q

d0

��

d1

��
R

p0 ��
p1

�� A
f

�� B

the category C being regular Maltsev, this reflexive graph actually is an internal
groupoid in C [12]. It is connected, since (d0, d1) ◦ q = f × f , and f × f is a
regular epi. The functor V is naturally defined on arrows, the category of internal
groupoids in C being full in the category of internal reflexive graphs in C [10].

One then verifies that the functors N and V determine an equivalence of cate-
gories between Centr(B) and ConnGrpd(B). �

By analogy with the definition of normal monomorphism [2], one could say that

an extension f : A → B is normal to a groupoid X : X1

d0 ��

d1

�� B if there exists a

discrete fibration (q, f) from ∇A to X . A different way to state the previous result
consists in saying that an extension is normal to an internal groupoid if and only
if it is a central extension.

Remark also that if ConnGrpd(C) denotes the category of internal connected
groupoids in C and Centr(C) the category of central extensions, the argument
above also shows that

5.2. Corollary. ConnGrpd(C) and Centr(C) are equivalent.

An equivalence relation R on an object A is central when there is a connector
between R and ∇A. In any exact Maltsev category there is a nice presentation of
central relations:

5.3. Proposition. Let C be an exact Maltsev category. Any central equivalence R

on A is canonically isomorphic to a product Q × A, with Q an abelian object.
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Proof. Let C be the centralizing relation on R and ∇A:

C

π1

��

π0

��

p0 ��
p1

�� A × A

a1

��

a0

��
R

r0 ��
r1

�� A

Now, by taking the coequalizer q of π0 and π1 we obtain the commutative diagram

C
π0 ��
π1

��

p0

��

R

(1)

q ��

r0

��

Q

d0

��
A × A

a0 ��
a1

�� A �� 1

Since the category C is exact, the equivalence relation

C
π0 ��
π1

�� R

is the kernel pair of its coequalizer q, and this latter is a pullback stable regular
epi. By assumption the arrow (p0, r0) : (C, R) → (A × A, A) determines a discrete
fibration of internal equivalence relations, so that by Corollary 2 in [4], the square
(1) is a pullback; then R is isomorphic to Q × A. By Proposition 4.2 the fact that
the equivalences R[r0] and R[r1] are connected implies that ∇Q = q(R[r0]) and
∇Q = q(R[r1]) are connected. Accordingly, the object Q is abelian. �

6. Characterization of Maltsev categories

In this last section we prove that connectors have a property that characterizes
Maltsev categories. Let us first fix some notations. If C is a finitely complete
category, we write 2-Eq(C) for the category whose objects are pairs of equivalence
relations (R, S, X) on the same object X

R
d0

��
d1 ��

X S
d1��

d0

�� ,

and arrows in 2-Eq(C) are triples of arrows (fR, fS , f) making the following diagram
commutative:
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R

fR

��

d0

��
d1 ��

X

f

��

S

fS

��

d1��

d0

��

R
d0

��
d1 ��

Y S.
d1��

d0

��

Let Conn(C) be the category whose objects are pairs of connected equivalence
relations (R, S, X, p) with a given connector p : R×X S → X ; arrows in Conn(C) are
arrows in 2-Eq(C) with the property that they must respect the connectors. There
is a forgetful functor U : Conn(C) → 2-Eq(C) which simply associates (R, S, X)
with (R, S, X, p). We shall write V : Grpd(C) → RG(C) for the forgetful functor
from the category of internal grupoids in C to the category of internal reflexive
graphs in C. Clearly both functors U : Conn(C) → 2-Eq(C) and V : Grpd(C) →
RG(C) are faithful. We say that a faithful functor F : C → D is closed under
subobjects if, for any monomorphism j : X → FC in D, there exists a unique (up
to isomorphism) monomorphism i : C → C in C with F (i) = j. We can now state
our characterization of Maltsev categories (the equivalence between 1. and 3. is
already known and was proved in [3]):

6.1. Proposition. Let C be a finitely complete category. Then the following con-
ditions are equivalent:

1. C is a Maltsev category
2. U : Conn(C) → 2-Eq(C) is closed under subobjects
3. V : Grpd(C) → RG(C) is closed under subobjects

Proof. 1. ⇒ 2. If (R, S, X, p) and (R, S, Y, p) are objects in Conn(C), then it is
easy to check that in any Maltsev category an arrow (fR, fS , f) : (R, S, X, p) →
(R, S, Y, p) in 2-Eq(C) necessarily preserves the connector. The result then follows
by Corollary 3.14.
2. ⇒ 3. Let

X1

d0

��
d1

��

f1 �� Y1

d0

��
d1

��
X0

f0

�� Y0
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be a monomorphism in RG(C), with

Y1
d0

��
d1 ��

Y0

an internal groupoid in C. It determines a monomorphism (f, f̃ , f1) in 2-Eq(C)

R[d0]

f

��

��
��
X1

f1

��

R[d1]

f̃

��

��
��

R[d0] ��
��
Y1 R[d1]

��
��

where (R[d0], R[d1], Y1) belongs to Conn(C). It follows that (R[d0], R[d1], X1) also
belongs to Conn(C) and

X1
d0

��
d1 ��

X0

is an internal groupoid, as desired.
3. ⇒ 1. Any reflexive relation

R
d0

��
d1 ��

X

is a subobject of the largest equivalence relation

X × X
p0

��
p1 ��

X

on X . Accordingly, R is a groupoid, hence an equivalence relation. �

In order to show that connectors can be used to characterize regular Maltsev
categories, we first need the following

6.2. Lemma. Let D be a regular category. If C is a full subcategory of D closed in
D under finite limits and subobjects, then C is regular.

Proof. The regular epimorphism - monomorphism factorization in D of any arrow
in C is also the factorization in C (by the assumption that C is closed in D under
subobjects). Since finite limits in C are calculated as in D, regular epimorphisms
are stable under pullbacks and the proof is complete. �
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6.3. Proposition. Let C be a finitely complete category. Then the following con-
ditions are equivalent:

1. C is regular Maltsev
2. Conn(C) is regular Maltsev
3. Grpd(C) is regular Maltsev

Proof. The equivalence between 1. and 3. was proved in [12].
1. ⇒ 2. If C is regular Maltsev, then Grpd(C) is regular Maltsev; this implies that

Eq(C) is regular Maltsev, being a full subcategory of Grpd(C) closed under finite
limits and subobjects. It follows that 2-Eq(C) is regular Maltsev and, by Lemma
6.2, so is the category Conn(C).

2. ⇒ 1. There is a discrete functor D : C → Conn(C) associating the pair of
connected equivalences

X
1

��
1 ��

X X
1��

1
��

with any object X in C. This functor D : C → Conn(C) is fully faithful, so C is
Maltsev. The category C is closed in Conn(C) under finite limits and subobjects,
then by Lemma 6.2 the category C is regular since Conn(C) is so. �
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