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Axiomatizability of reducts of algebras of relations

Ian Hodkinson∗ and Szabolcs Mikulás†

Abstract. In this paper, we prove that any subreduct of the class of representable relation algebras whose similarity
type includes intersection, relation composition and converse is a non-finitely axiomatizable quasivariety and that
its equational theory is not finitely based. We show the same result for subreducts of the class of representable
cylindric algebras of dimension at least three whose similarity types include intersection and cylindrifications. A
similar result is proved for subreducts of the class of representable sequential algebras.

1. Introduction

The aim of this paper is to investigate algebras of relations from the finite axiomatizability
point of view. In algebraic logic, the most extensively investigated classes of algebras of
relations are the class of (representable) relation algebras and the class of (representable)
cylindric algebras, cf. [HMT]. These classes are Boolean algebras equipped with some
extra-Boolean operations arising from the nature of relations. In this paper we concentrate
on subreducts of these classes, i.e., on classes of algebras whose similarity types may not
contain all the operations available in relation and cylindric algebras. We will deal with
algebras with lower semilattice reducts instead of the whole Boolean structure, and show
that the interaction of intersection (the representation of meet) and some extra-Boolean
operations is already complex enough to cause non-finite axiomatizability.

Although our non-finite axiomatizability results in this paper do have a negative character,
none the less there is profit to be had in taking reducts of the classical algebras of relations to
smaller signatures. Andréka [And 90] has shown that the equational theory of many positive
reducts of representable algebras is decidable. Perhaps the more limited expressive power
of these algebras is also reflected in simpler inference systems for these equational theories.
Studying reducts may also help to advance the currently active programme of research
into the ‘dynamic paradigm’ in computer science, one aim of which is to select only those
operations that are relevant to the intended applications. See [Ben 96], for example.

Relation algebras: Monk showed in [Mon 64] that the varietyRRA of representable
relation algebras is not finitely axiomatizable. Several authors have investigated whether this
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negative result holds for various subreducts ofRRA (see the formal definition of subreduct
in Definition 2.1 below).

For instance, Andŕeka showed that any subreduct ofRRA whose operations include
union, intersection and composition is not finitely axiomatizable [And 91], and that the
{union, composition}-subreduct is a non-finitely axiomatizable quasivariety [And 88].
Bredikhin [Bre 77] showed that the{composition, converse}-subreduct is not finitely axiom-
atizable either.

On the other hand, some subreducts are finitely axiomatizable. For instance, Bredikhin
and Schein [BS 78] showed that the{intersection, composition}-subreduct coincides with
the class of semilattice-ordered semigroups. Another example is the generalized subreduct
with the similarity type of intersection, composition and its two residuals: see [AM 94].
See also [Bre 93] about the axiomatizability of the equational theories of reducts ofRRA.

In this paper, we give a relatively simple proof that any generalized subreduct ofRRA
in which intersection, composition and converse are term definable is not finitely axiom-
atizable (Theorem 2.3). We note that the non-finite axiomatizability of the{intersection,
composition, converse}-subreduct ofRRA follows from [Hai 91] (although this is not stated
in that paper).

Another non-finitely axiomatizable version of algebras of binary relations is the class of
representable sequential algebras; see, e.g., [Kar 94, JM 97]. As a corollary, we obtain that
the union-free subreduct of representable sequential algebras is not finitely axiomatizable
either (Corollary 2.5).

Cylindric algebras: Monk [Mon 69] showed that the varietyRCAα of α-dimensional
representable cylindric algebras is not finitely axiomatizable either, ifα is at least three.
Finite axiomatizability of subreducts ofRCAα has been investigated, cf. [Com 91] and
[Han 95]. See also [D̈un 93] for lattice-reducts of cylindric algebras and their connections to
databases. The problem whether intersection and cylindrifications are finitely axiomatizable
remained open. Here we answer the question negatively: see Corollary 2.8.

Techniques: We use games and colored graphs. Recently, Hirsch and Hodkinson have
applied a game-theoretic approach to various problems concerning relation algebras [HH 97,
HH 97a, HH 97b]. For instance, representability of algebras can be characterized by the
existence of winning strategies in certain two-player games. Representability can also be
approximated in this way, allowing us to prove non-finite axiomatizability. Note that games
can also be used to obtain (infinite) recursive axiomatizations of our classes of algebras,
by describing the existence of a winning strategy in first-order logic; we will not pursue
this here, but see [HH 97] for how it works. Similar techniques were used in [Jón 59]
to axiomatize the{intersection, composition, converse, identity}-subreduct of RRA. Using
graph colorings to prove non-finite axiomatizability is a standard technique in algebraic
logic — see, e.g., [HMT].
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In this paper, we will use colored graphs to define non-representable algebras and games
to prove the representability of their ultraproducts. Usually, graph-coloring techniques
assume that Boolean join is an available operation to ensure that every sequence in the
representation has a (unique) color. In our case, only Boolean meet is included into the
similarity type, so the construction is more delicate.

2. Basic definitions and main results

In this section we recall the basic definitions and formulate our main results. We will give
short proofs using some lemmas whose proofs are postponed to the subsequent sections.

First we define (generalized sub) reducts of (classes of) algebras.

DEFINITION 2.1. LetA = (A, o)o∈τ be an algebra of the similarity typeτ . Let τ ′ be
a set of operations whose elements are definable by fixed terms inτ . By theτ ′-reduct ofA
we mean the algebraRdτ ′A = (A, o)o∈τ ′ . We callRdτ ′ A a generalized reduct ofA, since
τ ′ may not be a subset ofτ .

If K is a class of algebras of the same similarity type,Rdτ ′K denotes the class ofτ ′-
reducts of elements ofK. Theτ ′-subreduct ofK is defined asSRdτ ′K : i.e., we closeRdτ ′K
under (isomorphic copies of) subalgebras. Again, we callSRdτ ′K a generalized subreduct
of K.

Next we recall the definition of (representable) relation algebras.

DEFINITION 2.2. 1. A relation algebra, anRA, is an algebra

A = (A, 0, 1, ·, +, −, ; ,^ , 1′)

such that(A, 0, 1, ·, +, −) is a Boolean algebra, and the following equations hold, for
everyx, y, z ∈ A:

(R1) x; (y; z) = (x; y); z

(R2) (x + y); z = (x; z) + (y; z)

(R3) x; 1′ = x

(R4) x^^ = x

(R5) (x + y)^ = x^ + y^

(R6) (x; y)^ = y^; x^

(R7) x^; (−(x; y)) ≤ −y.

We denote the class of all relation algebras byRA.
2. By a relation set algebra, anRs, we mean an algebraA = (A, 0, 1, ·, +, −, ; ,^ , 1′)such

thatA ⊆ P(W) (the powerset ofW ) for some setW of the formU ×U, 0 = ∅, 1 = W, ·
is intersection,+ is union,− is complement w.r.t.W , ; is relation composition,^ is



130 ian hodkinson and szabolcs mikulás algebra univers.

relation converse, and 1′ is the identity relation onU . More formally, for all elements
x, y ∈ A,

x; y = {(u, v) ∈ W : (u, w) ∈ x and(w, v) ∈ y for somew}
x^ = {(u, v) ∈ W : (v, u) ∈ x}

1′ = {(u, v) ∈ W : u = v}.
We denote the class of relation set algebras byRs.1 Given anA ∈ Rs, W andU as

above, we callW the unit ofA andU the base ofA.
The classRRA of representable relation algebras is defined as

RRA = SPRs

— i.e., we close the classRs under products and isomorphic copies of subalgebras.

It is well known thatRRA is a variety, and hence a quasivariety. It follows that any
generalized subreduct ofRRA is a quasivariety:

SRdτ ′RRA = SRdτ ′PUpRRA = SPUpRdτ ′RRA.

The same observations hold forRCAα (see below) in place ofRRA.
Our first main result concerns the finite axiomatizability of such quasivarieties.

THEOREM 2.3. LetK be a generalized subreduct ofRRA such that intersection, rela-
tion composition, and converse are term definable inK. Then

1. K is not axiomatizable by any finite set of first-order sentences and
2. the equational theory ofK is not finitely based.

Proof. We will define finite, integral and symmetric relation algebrasAn (n ∈ ω) and
show that their{·, ; ,^ }-reducts are not representable (Lemma 3.1), while a non-trivial ultra-
product of them is representable (Lemma 3.4). By Łoś’ theorem [Hod 93, Theorem 9.5.1],
this is enough to show thatK is not finitely axiomatizable in first-order logic. Further,
we will show that, for all finiten, there is a valid equation that fails inAn (Lemma 3.1),
establishing that the equational theory is not finitely axiomatizable either. ¨

Our next aim is to show a corollary about non-finite axiomatizability of representable
sequential algebras.

DEFINITION 2.4. An algebraA = (A, 0, 1, ·, +, −, ; , G, F, 1′) is a representable sequen-
tial algebra, if

1We will also consider set algebras of relations in smaller signatures than this, but by default the signature will
be as above.
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• (A, 0, 1, ·, +, −) is a a Boolean set algebra with unitW for some transitive and reflex-
ive relationW on some setU ,

• ; is relation composition,
• 1′ is the identity relation onU ,
• and for allx, y ∈ A,

x F y = {(u, v) ∈ W : (w, u) ∈ x, (w, v) ∈ y for somew}
x G y = {(u, v) ∈ W : (v, w) ∈ y, (u, w) ∈ x for somew}.

The class of representable sequential algebras is a variety, [JM 97], but it is not finitely
axiomatizable (a result of Andréka and van Karger, [Kar 94]). We show that non-finite
axiomatizability holds already for a fragment of the language.

COROLLARY 2.5. The{·, ; , 1′, F}-subreduct of the class of representable sequential
algebras is not finitely axiomatizable.

Proof. We show that the{·, ; , 1′, F}-reducts of the non-representable relation algebras
An (n ∈ ω) from the proof of Theorem 2.3 are not representable. Here, we definex F y as
x^; y andx G y asx; y^. Note that for everyx ∈ An, x = x^ = x^; 1′ = x F 1′.

Now assume that there is an isomorphismh from (An, ·, ; , 1′, F) into the{·, ; , 1′, F}-
reduct of a representable sequential algebra with unitW (for some transitive and reflexive
W ). Sincex = x F 1′ for everyx, if (u, v) ∈ h(x), then(v, u) ∈ h(x). Now if we define
x^ asx F 1′, we get a representation for(An, ·, ; ,^ ) as well — a contradiction.

On the other hand, the sequential-reduct of the ultraproduct ofAn(n ∈ ω) is repre-
sentable, sincex F y andx G y are definable asx^; y andx; y^, respectively. ¨

Next we recall the definition of (representable) cylindric algebras.

DEFINITION 2.6. Letα be a finite ordinal.2

1. A cylindric algebra of dimensionα, aCAα, is an algebra

A = (A, 0, 1, ·, +, −, ci , dij )i,j<α

such that(A, 0, 1, ·, +, −) is a Boolean algebra, and the following equations hold,
for everyx, y ∈ A andi, j, k < α:

(C1) ci (x + y) = cix + ciy

(C2) x ≤ cix

2We will use the convention thatα = {0, 1, . . . , α − 1}.
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(C3) ci − cix = −cix

(C4) cicj x = cj cix

(C5) dii = 1 anddij = dji

(C6) dik = cj (dij · djk) if j /∈ {i, k}
(C7) dij · ci (dij · x) ≤ x.

We denote the class of all cylindric algebras of dimensionα by CAα.
2. By a cylindric set algebra of dimensionα, aCsα, we mean an algebraA = (A, 0, 1, ·,

+, −, ci , dij )i,j<α such thatA ⊆ P(αU) for some base setU, 0 = ∅, 1 = αU , · is
intersection,+ is union,− is complement w.r.t.αU, ci is theith cylindrification, anddij is
the diagonal element identifying theith andjth coordinates. That is, the unitαU of a Csα

is the set ofα-long sequences of elements ofU , and the extra-Boolean operations have the
following interpretations. Lets ≡i t iff (∀j 6= i)s(j) = t (j). Then, for each element
x ∈ A andi, j < α,

cix = {s ∈ αU : s ≡i t for somet ∈ x}
dij = {s ∈ αU : s(i) = s(j)}.

The classRCAα of representable cylindric algebras of dimensionα is defined as

RCAα = SPCsα,

i.e., we close the classCsα under products and isomorphic copies of subalgebras.

We define the operationsubstitutionsi
j as follows:

si
j x =

{
ci (x · dij ) if i 6= j

x if i = j.

Note that, in a cylindric set algebra with baseU ,

si
j x = {s ∈ αU : s ≡i t for somet ∈ x such thatt (i) = t (j)}

for distincti, j .
Our main result about cylindric algebras is Corollary 2.8 below. First we state an appar-

ently weaker theorem.

THEOREM 2.7. Letα ≥ 3 be finite and letK be a generalized subreduct ofRCAα such
that intersection, cylindrifications and substitutions are term definable inK. Then

1. K is not finitely axiomatizable by first-order sentences and
2. the equational theory ofK is not finitely based.
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Proof. Let the dimension setα ≥ 3 be fixed. First we will define a class of colored graphs.
Using these graphs we will define finite cylindric algebras: roughly speaking, an atom will
be a surjective map fromα to a graph. We will show in Lemma 4.3 that the{intersection,
cylindrifications, substitutions}-reducts of these algebras are not representable, and similarly
to theRA-case, one can construct valid equations witnessing the non-representability of
these algebras. On the other hand, using games will show in Lemma 4.6 that any non-trivial
ultraproduct of the algebras is a representable cylindric algebra. ¨

Finally, we formulate the stronger result about cylindric algebras.

COROLLARY 2.8. The{intersection, cylindrifications}-subreduct ofRCAα (for finite
α ≥ 3) is not finitely axiomatizable.

We will show how to prove the above corollary at the end of Section 4.

3. Relation algebras

This section is devoted to making the proof of Theorem 2.3 complete.

3.1. The rainbow construction

First we define relation algebrasAn(n ∈ ω), and show that their{·, ; ,^ }-reduct is not
representable.

Let n be any natural number. We defineAn to be the finite relation algebra (inRA) with
the following atoms:

• identity: 1′,
• greens:gi (0 ≤ i ≤ 2n),
• whites:w, wij (0 ≤ i ≤ j ≤ 2n),
• yellow: y,
• black: b,
• reds:ri (0 < i < 2n).

All the atoms are self-converse. Given this, a triple(x, y, z) of atoms is said to be an
inconsistent triangleif x · (y; z) = y · (z; x) = z · (x; y) = 0. Conversely, using additivity,
composition is determined by the set of inconsistent triangles. We will define composition
by specifying that the inconsistent triangles are precisely the following:

(green, green, green)
(yellow, yellow, yellow)
(green, green, white)
(yellow, yellow, black)
(ri , rj , rk) unlessi + j = k or i + k = j or j + k = i

(gi , gi+1, rj ) unlessj = 1
(gi , y, wjk) unlessi ∈ {j, k},
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where, e.g., (green, green, white) stands for:g; g′ · w = g; w · g′ = w; g · g′ = 0 for all
green atomsg, g′ and any white atomw. We also require that(x, y, 1′) is inconsistent for
all distinct atomsx, y.

It is not difficult to check thatAn is a relation algebra. In fact, all the axioms but(R1)

are straightforward to check. An easy way to prove that(R1) is satisfied as well is to show
that the existential player can survive one round in the game played using atomic networks
onAn (see Definition 3.2, and cf. [Lyn 50, pp. 711–712]), and Claim 3.5 below shows that
she can do this.

Next we show that the{·, ; ,^ }-reductBn of An is not representable as a set algebra of
binary relations.

LEMMA 3.1. For anyn ∈ ω, An is not inRRA. In fact, the{·, ; ,^ }-reductBn of An

is not representable either. Moreover, for everyn ∈ ω, there is an equation valid in set
algebras that fails inBn.

Proof. Towards a contradiction, let us assume that there is an isomorphismh from Bn

to a set algebra of relations of similarity type{·, ; ,^ }. We let 0 denote the zero element of
An; of course, as 0 is not in the signature ofBn, we may haveh(0) 6= ∅.

Sincew 6≤ 0, there is(u, v) ∈ h(w) such that(u, v) /∈ h(0). Becausew ≤ gi; y, we
see that, for every 0≤ i ≤ 2n, there existsui such that(u, ui) ∈ h(gi ) and(ui, v) ∈ h(y).
Sinceg^

i = gi in Bn, (ui, u) ∈ h(gi ), and similarly,(v, ui) ∈ h(y).
Now (ui, ui+1) ∈ h(gi; gi+1 · y; y) = h(r1) for every 0 ≤ i < 2n. By gi; gi+2 ·

y; y · r1; r1 = r2, for every i < 2n − 1, (ui, ui+2) ∈ h(r2). In particular,(u0, u2) ∈
h(r2) and (u2n−2, u2n) ∈ h(r2). By induction, we get that(u0, u2n−1) ∈ h(r2n−1) and
(u2n−1, u2n) ∈ h(r2n−1). Then we have(u0, u2n) ∈ h(g0; g2n · y; y · r2n−1; r2n−1) = h(0).
Since(u, u0) ∈ h(g0) and(u2n , v) ∈ h(y), we get that(u, v) ∈ h(g0; 0; y) = h(0). But
we assumed that(u, v) /∈ h(0). We have our contradiction. See Figure 1 for a sketch of the
argument.

The non-representability ofBn is witnessed by the following equation. For 0≤ i <

j ≤ 2n, letρi,j stand forgi; gj ·y; y. We defineρ(k, k+2l ), for each 0≤ k < k+2l ≤ 2n,
by induction onl:

ρ(k, k + 1) = ρk,k+1

ρ(k, k + 2l+1) = ρ(k, k + 2l ); ρ(k + 2l , k + 2l+1) · ρk,k+2l+1.

Let σn bew · ∏{(gi · g^
i ); (y · y^) : 0 ≤ i ≤ 2n} andτn equalw· g0; ρ(0, 2n);y. The

equationen is defined as the result of replacing atoms by distinct variables inσn = σn · τn.
It is easy to check thaten is valid in set algebras. On the other hand, the argument we used
above to prove thatBn is not representable shows thaten fails in Bn. ¨

It remains to show that any non-trivial ultraproduct of theAn(n ∈ ω) is representable.
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Figure 1 The reason for non-representability

3.2. The game

We recall from [HH 97b] the definition of a game connected to representability.

DEFINITION 3.2. LetA be a relation-type algebra.

1. A pre-network is a complete directed finite graph with edges labeled by elements ofA:
i.e.,N = (EN, `N), whereEN = UN ×UN for some finite non-empty setUN , the base
of N , and`N : EN → A is a map assigning an element ofA to each edge.
A pre-network is a network if it also satisfies, for everyx, y, z ∈ UN ,

(a) `N(x, y) ≤ 1′ iff x = y,

(b) `N(x, y); `N(y, z) · `N(x, z) 6= 0.

A pre-network is called atomic if all the edges are labeled by atoms ofA. If no confusion
is likely, we will omit the subscriptN .

Given two pre-networksN, N ′, we writeN ⊆ N ′ if every edge ofN is an edge of
N ′ and, for every edge(x, y) of N, `N ′(x, y) ≤ `N(x, y).

2. Let n ∈ ω. We define a gameGn(A) between two players,∀ (male), and∃ (female).
They build a finite chainN0 ⊆ N1 ⊆ . . . ⊆ Nn of pre-networks in the following way.
N0 is any consistent triangle, i.e., a network such that|UN0| ≤ 3. We regardN0 as being
chosen by∀ before the game starts. In each roundi(0 ≤ i < n),

• ∀ chooses an edge(x, y) from Ni and elementsr, s ∈ A,
• ∃ responds with a pre-networkNi+1 ⊇ Ni such that one of the following holds:

– ∃ rejects:Ni+1 is the same asNi except that̀ Ni+1(x, y) = `Ni
(x, y) · −(r; s),
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– ∃ accepts: the nodes ofNi+1 are those ofNi , plus a possibly new one,z, and the
labels on edges ofNi+1 satisfy the following:
– `Ni+1(x, z) = r,
– `Ni+1(z, y) = s,
– `Ni+1(x, y) = `Ni

(x, y) · r; s.

∃ wins a match of the gameGn(A) if everyNi(0 ≤ i ≤ n) is a network. We say that∃
has a winning strategy if she can win all matches.

The atomic gameGa
n(A) is defined by requiring that all the elementsr, s chosen by∀

are atoms, and that eachNi is an atomic pre-network.

The following proposition [HH 97b, Proposition 15] provides us with a sufficient con-
dition for representability of atomic relation algebras.

PROPOSITION 3.3.LetA be an atomic relation algebra. Then∃ has a winning strategy
in Ga

n(A) for all n ∈ ω iff A is elementarily equivalent to a completely representable relation
algebra.3 Hence, becauseRRA is elementary, if∃ has a winning strategy inGa

n(A) for all
n ∈ ω, thenA is representable.

3.3. The ultraproduct

We will now show that an ultraproduct of theAn(n ∈ ω) is representable.

LEMMA 3.4. Any non-trivial ultraproductA of An(n ∈ ω) overω is in RRA. Hence
the ultraproduct of the{·, ; ,^ }-reducts ofAn(n ∈ ω) is representable as well.

Proof. First we show that∃ can survive arbitrarily long games on a “large” set (occurring
in the ultrafilter) of algebras. The “ultraproduct” of these strategies will enable her to win
arbitrarily long (in fact,ω-long) games on the ultraproduct. Thus, by Proposition 3.3, the
ultraproduct will be representable.

CLAIM 3.5. Letl ∈ ω. ∃has a winning strategy forGa
l (An) for cofinitely many algebras

An(n ∈ ω).

Proof. Let n be large enough — say,n ≥ l. We show that∃ can winGa
l (An).

The idea is very roughly that∀’s best strategy leads to what is in effect a new game,
played on two irreflexive linear orders. One consists of the indices of green atoms and is

3A complete representation of a relation algebraB is an isomorphism fromB to a representable relation
algebra that preserves arbitrary meets and joins whenever they exist inB. However, we will not need this notion
in this paper.
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of length 2l + 1; the other is of length 2l , and the intervals in it correspond to indices of red
atoms. In each round,∀ chooses an element of the first, longer order, and∃ must respond
by choosing an element of the other. For her to win, the choices made during the game must
induce a partial isomorphism (an order-preserving partial map) between the orders. As∀’s
linear order is longer than∃’s, he can certainly win if he is given enough time. However,
the game here is of length at mostl − 1, and this does not quite leave him sufficient time to
expose the difference in length of the orders.

We now proceed to the formal proof. Let us assume that we are in thepth (0 ≤ p < l)

round and that an atomic networkNp = (UNp × UNp, `Np) is already constructed.
We define the important notion of ared block. Suppose thatu, v are distinct nodes of

Np and that̀ Np(u, v) 6= wij for anyi, j . Let

W = {w : w a node ofNp, `Np(u, w) is green, and`Np(v, w) = y}.

Assume that|W | ≥ 2. Also assume thatW can be linearly ordered(w1 < . . . < wq)

in the following way: the mapf from {1, . . . , q} into the set 2n + 1 of indices of green
atoms given bỳ Np(u, wi) = gf (i) for every 1≤ i ≤ q, satisfiesf (i) < f (j) for every
1 ≤ i < j ≤ q. Note that the color of every(wi, wj ) in Np must be red.

In such a situation, we will call the subnetworkN ′ of Np with base{u, v} ∪ W a red
blockwith center(u, v). See Figure 2. Usually we will denote this red block by the ordered
tuple(u, v, w1, . . . , wq). We will say thatwi andwi+1 areneighbors, and that thedistance
of wi from wj is |f (j) − f (i)|.

Figure 2 A red block (u, v, w1, w2, . . . , wq )

We now state the following induction hypothesis (withp, the round number, as a param-
eter), that∃ will maintain in each round of the game.
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Induction hypothesis: For every red block(u, v, w1, . . . , wq) of Np in the above notation,
and for every 1≤ i < j ≤ k ≤ q,

1. `Np(wi, wj ) = rf (j)−f (i) if f (j) − f (i) ≤ 2l−p,
2. `Np(wi, wj ) = rt for somet ≤ 2l−1 + · · · + 2l−(j−i),

3. `Np(wi, wj ) = rt and`Np(wj , wk) = rs imply `Np(wi, wk) = rt+s .

Note thatq ≤ p + 1, since|UN0| ≤ 3 and, in each round, at most one new point is created.
The induction hypothesis now implies that the largest index on a red atom (to label(w1, wq))
is at most 2l−1 + · · · + 2l−p. ClearlyN0 satisfies the induction hypothesis.

Let us assume that in thepth round player∀ plays(u, v, y, z) for some edge(u, v) of
Np and atomsy, z of An and that̀ Np(u, v) = x.

If x · y ; z = 0, then∃ rejects∀’s proposal — i.e., she definesNp+1 = Np. If x ≤ y; z

and there is a pointw in Np such that̀ Np(u, w) = y and`Np(w, v) = z, then again∃ lets
Np+1 = Np. Note that this covers the case when eithery or z is the identity 1′.

Otherwise∃ extendsNp by a new pointw and lets`Np+1(u, w) = `Np+1(w, u) =
y, `Np+1(w, v) = `Np+1(v, w) = z and`Np+1(w, w) = 1′ — note that this is well defined,
sinceu = v implies thatx = 1′, whencey = z. She defines the labels for the remaining
edges(w, w′), for w′ ∈ UNp\{u, v}, as follows (she will label an edge with the same atom
as the atom labelling its converse edge; we will not bother to mention this from now on).
See Figure 3.

y

w

u v

Np

Np+1

w'

x

z

Figure 3 Extending the network

∃’s strategy is to choose a whitewij whenever it is possible: i.e., if labelling(w, w′)
by wij ensures that the triangles(w, w′, u) and(w, w′, v), or strictly, the triples consisting
of the labels on the edges of these triangles, are consistent inAn. If this fails, she tries
to use black,b. If this is impossible, too, then she uses a red colorri . She chooses the
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index i carefully to maintain the induction hypothesis so that∀ will not be able to create
a contradiction during thel rounds of the game. Note that she never chooses a yellow or
green label. We have the following cases.

CASE 1. {y, z} 6= {gi , y} for anyi. An easy argument using case distinction shows that,
for anyw′, ∃ can choosèNp+1(w

′, w) to be eitherwjj ; or, if this creates an inconsistent
triangle among(w, w′, u) and(w, w′, v), wjk for some distinct,j, k; or if this creates an
inconsistent triangle too,b. It is easy to check that this yields an atomic network, since no
triangle that involves either two white edges, or two black edges, or a white and a black
edge, can be inconsistent. Further, no new red block has been created. For, any new red
block must containw and one other pointw′ 6= u, v; since the label on(w, w′) is white
or black,(w, w′) is the center of the new block; because∃ did not use green or yellow
labels the other points of the block areu, v; hence,y andz are both green and̀Np(u, w′)
and`Np(v, w′) are both yellow, or vice versa; but then,∃ would use awij to label(w, w′),
contradicting the definition of red block. Because a red block has only one edge labeled
other than yellow, green, or red, and∃ used only white or black here, it follows that no
point has been added to any red block. So the red blocks ofNp+1 are precisely those of
Np. It can be seen that any red block inNp that satisfied the inductive hypothesis forp still
satisfies it inNp+1 for p + 1. SoNp+1 satisfies the induction hypothesis.

CASE 2. y = gi andz = y. If w′ ∈ UNp\{u, v} and(u, w′) is not green, she can let
`Np+1(w

′, w) = wii provided(w′, v) is not green, or̀ Np+1(w
′, w) = wij in case(w′, v)

has colorgj . Otherwise, if(w′, v) is not yellow, she plays̀Np+1(w
′, w) = b.

The hard case is for thosew′ such that̀ Np(w′, v) = y and`Np(u, w′) = gj for some
j . (We can assume thati 6= j , otherwise∃ did not extendNp.) ∃ will label all such edges
(w, w′) in a co-ordinated fashion. Let

W = {w′ : w′ a node ofNp, (u, w′) is green, and(w′, v) is yellow}.

Note that|W | ≤ p + 1. LetW be enumerated in an orderw1 < w2 < · · · < wq so that
the mapf defined bỳ Np(u, wj ) = gf (j) satisfiesf (j) ≤ f (k) wheneverj < k (cf. the
definition of red block).

We claim that if|W | ≥ 2, the subnetwork with baseW ∪ {u, v} forms a red block with
center(u, v). We have to show thatf is one-one and that̀Np(u, v) is not anywjk.

So letj, k ≤ q be distinct; we requiref (j) 6= f (k). As the game starts with a three-point
network and at most one point is added in any round, one of the four pointsu, v, wj , wk was
added after the other three. We will show that it waswj or wk. Assume for a contradiction
that, say,u was added afterwj , wk, andv. (The case wherev was added afterwj , wk, u

is similar.) Since∃ never chooses a green atom,`Np(u, wj ) and`Np(u, wk) were chosen
by ∀. Thus, in the round whenu was created, he played(wj , wk, gf (j), gf (k)) (or possibly
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its mirror image(wk, wj , gf (k), gf (j))). Since`Np(v, wj ) and `Np(v, wk) are yellow,
wf (j)f (k) (or wf (k)f (j)) was a possible choice for∃ as a color for(u, v). Then, according
to her strategy, she chosewf (j)f (k) (or wf (k)f (j)). Now consider the current,pth round
again. We assumed that the greengi played by∀ in this round is distinct from the greens
gf (j), gf (k) on(u, wj ) and(u, wk) (otherwise∃ did not have to extendNp). But(u, v, gi , y)

would have been rejected by∃ (since the triangle (gi , y, wf (j)f (k)) is inconsistent), which
is a contradiction.

So without loss of generality we may assume thatwk was added to the network after
u, v, wj . Now let us consider again the round, say roundt , whenwk was created. Since∃
never plays green or yellow, the reason for addingwk to the network was that in roundt ,
∀ played(u, v, gf (k), y) or its mirror image, and that, inNt , there was no points such that
(u, s) has colorgf (k) and(s, v) is yellow (otherwise∃ would not have extendedNt ). In
particular, takings = wj , we obtainf (j) 6= f (k), so thatf is one-one as required.

Thus, the green colors on(u, wj ) (1 ≤ j ≤ q) are all different. We assumed they are
also different fromy = gi . So there are least three consistent triangles of the form (green,
y, `Np(u, v)), and it follows that̀ Np(u, v) is not anywjk. Hence,(u, v, w1, . . . , wq) is
indeed a red block, as claimed. Clearly,(wj , wk) must be red for every distinctj, k ≤ q.

So the network{u, v, w1, . . . , wq} must satisfy the induction hypothesis. We claim next
that∃ can find appropriate red colors for each(w, wj ) (1 ≤ j ≤ q) such that conditions
1–3 of the induction hypothesis hold (when we replacep by p + 1).

Indeed, letwj ∈ W be such that|i −f (j)| is minimal. If |i −f (j)| ≤ 2l−p−1, then she
lets`Np+1(wj , w) = r|i−f (j)|. If |i−f (j)| > 2l−p−1, then she lets̀Np+1(wj , w) = r2l−p−1.
∃ labels the other edges(wk, w) by using a red atom indexed by the sum (ifwk < wj and
f (j) < i, or wj < wk and i < f (j)) or the difference (ifwj < wk andf (j) < i,
or wk < wj and i < f (j)) of the indices of the reds on(wk, wj ) and(wj , w). It can
be checked that these red colors exist, and conditions 1–3 above hold for the red block
(u, v, w1, . . . , w, . . . , wq). This ends our proof of the claim.

It remains to show that the induction hypothesis holds foranyred blockN ′ ofNp+1. First,
note that if a red block satisfied the induction hypothesis forp (in the previous round) then it
satisfies the induction hypothesis forp+1 as well. We make the following observation about
“new” red blocks that are not red blocks ofNp (cf. above):∃ plays a red color on an edge
(w, w′) only if there is an edge(u, v) such that(u, w′) is green,(w′, v) is yellow, and∀ plays
(u, v, gi , y) so that∃ is forced to extend the network withw and label(u, w) with gi and
(w, v) with y. This implies that if we have a new red block, then its center must be the edge
(u, v) played by∀. Thus, the only possible new red block has one of the following forms:

• (u, v, w1, . . . , w, . . . , wq), if (u, v, w1, . . . , wq)was a red block inNp, and if∀played
(u, v, gi , y),

• (u, v, w, w′) or (u, v, w′, w), if `Np(u, v) 6= wjk for any j, k, W = {w′}, and if ∀
played(u, v, gi , y).
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By the coloring defined in the previous paragraph, both types of red block satisfy the
induction hypothesis.

It is immediate now that all triangles inNp+1 are consistent, so thatNp+1 is a network.
All triangles ofNp are known to be consistent. The remaining triangles are of the form
(w, u, w′), (w, v, w′), and(w, w′, w′′), for w′, w′′ ∈ UNp\{u, v}. The first two kinds were
all made consistent by∃’s choice of either white, black, or red to label(w, w′). For the
third kind, since two sides(w, w′), (w, w′′) were labeled by∃ as above, the only danger
is when both of them are red. But in this case,w, w′, andw′′ are part of a red block with
center(u, v), and the strategy above guarantees that(w, w′, w′′) is consistent.

CASE 3. y = y andz = gi . This case is completely analogous to case 2, and we omit
the details.

The largest index on red colors used by∃ so far is at most 2l−1+2l−2+· · ·+2l−p−1 < 2l ,
since, in thekth round, she labeled an edge(w, w′) of neighboring pointsw, w′ with rj
such thatj ≤ 2l−k−1. Thus, in the remaining rounds of the game,∀ cannot force her to
use a non-existing redri (i ≥ 2n). In any red block, if the distance|f (j) − f (k)| between
two pointswj andwk is “small”, i.e., smaller than 2l−p−1, then she usedr|f (j)−f (k)| to
label (wj , wk). Thus, in the remaining rounds, she has enough indices between 1 and
|f (j)− f (k)| to label any edge(wj , w) and(w, wk) “inserted” into(wj , wk). This shows
that she can survivel rounds without arriving at the impossible task of using a non-existing
red color. Claim 3.5 is proved. ¨

We now finish the proof of the lemma. Since∃ can survive arbitrarily long games on
a large set (i.e., included in the non-principal ultrafilter) of algebras, she can achieve this
in the ultraproduct as well. Indeed, the winning strategies inGa

l (An) provide her with a
winning strategy inGa

l (A), as follows. We give an outline only; see [HH 97b, Lemma 16]
for more details.

Assume that a finite atomicA-networkN is already defined and∀ plays an edge(x, y)

with labela (for some atoma ∈ A) and atomsb, c of A. Note that every atomd of the
ultraproductA is an equivalence class of anω-sequence(di : i ∈ ω), with eachdi an atom
of Ai . For everyi ∈ ω, one can define a pre-networkN(i) in the following way. The base
of N(i) is that ofN , and the label of every edge ofN(i) is an atomdi of Ai such that the
labeld of this edge inN is the equivalence class of(di : i ∈ ω). It is easy to check that

{i ∈ ω : N(i) is a network}
is contained in the ultrafilter.

Now ∃ considers those particular matches in the gamesGa
l (Ai ) (i ∈ ω) where∀ plays

(x, y) ∈ N(i) andbi, ci ∈ Ai such thatb, c are the equivalence classes of(bi : i ∈ ω), (ci :
i ∈ ω). If the set

S0 = {i ∈ ω : ∃ rejects∀′s proposal}
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is in the ultrafilter, then she rejects in the gameGa
l (A) as well. If the complementω\S0 of

this set is in the ultrafilter, then she considers two of its subsets:S1 is the set of those indices
where she is not forced to extend the network, andS2 is the set of those indices where she is
forced to extend the network. IfS1 is in the ultrafilter, then she does not have to extend the
networkN , as inN , there are(x, z) and(z, y) such thatb = `N(x, z) andc = `N(z, y).
If S2 is contained in the ultrafilter, then she can extend the network by using the atoms of
A determined by the equivalence classes of the elements she uses in the gamesGa

l (An).
This completes her move in reponse to∀ in this round. Her move in the next round (and in
subsequent rounds) is decided in much the same way, but note that she will becontinuing
with her winning strategy already in progress in the gamesGa

l (An) for a large set (in the
ultrafilter) of indicesn: eitherS0, S1, or S2. The (finitely many) algebras with indices not
in this set can be discarded. ¨

4. Cylindric algebras

In this section we prove the necessary lemmas for Theorem 2.7. These lemmas are the
cylindric counterparts of the lemmas for theRA-case. The proofs also use similar ideas,
though usually they require more computation. If the transition fromRA to CA is obvious,
we will omit the technical details.

First we recall that the operationsubstitutionsi
j is defined as follows: for every distinct

i, j < α, si
j x = ci (x · dij ), while si

ix = x. The operation ofcomposition; is defined as

x; y = c2(s1
2c2x · s0

2c2y).

4.1. Rainbows and graphs

Let α ≥ 3 be a fixed natural number. First, for every natural numbern, we define a class
of colored graphs, from which we will later define the algebrasCn ∈ CAα. The colors
will have a similar role to that in the case of relation algebras. White had two roles, and
this is reflected here by introducing a new shade of white: ivory. Ann-colored graphis
an undirected irreflexive graph0 (i.e., if (u, v) is an edge of0 then (i) so is(v, u), and
(ii) u 6= v), such that every edge of0 is colored by a unique edge color and some(α − 1)-
tuples have a unique color, too. (In the case whereα = 3, this means that(u, v) can carry
both an edge color and a 2-tuple color.) The edge colors are:

• greens:gi (0 ≤ i ≤ 2n),
• yellows: yi (1 ≤ i ≤ α − 2),
• blacks:bi (1 ≤ i ≤ α − 2),
• reds:ri (1 ≤ i < 2n),
• ivory: i.
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The colors for(α − 1)-tuples are:

• whites:wS (S ⊆ 2n + 1).

We will write 0(x, y) and0(a1, . . . , aα−1) for the colors of the edge(x, y) and of the
(α−1)-tuple(a1, . . . , aα−1), respectively. This will not cause confusion in the caseα = 3,
since we will always write0(a1, . . . , aα−1) for the tuple color, withα explicitly mentioned.
We usually identify a colored graph with its base (set of nodes), but sometimes we write
‘nodes(0)’ for the underlying base.

We definecolored graph embeddingin the obvious way: an injective map from a colored
graph into another that preserves all edges and colors, where defined, in both directions.

DEFINITION 4.1. Let 0 ≤ i ≤ 2n and let0 be ann-colored graph consisting of
α nodes,x0, x1, . . . , xα−2 andy. We call 0 an i-cone if 0(x0, y) = gi , and for every
1 ≤ j ≤ α − 2, 0(xj , y) = yj , and no other edge of0 is colored green or yellow. The
apex of the cone isy, its center is the ordered(α − 1)-tuple(x0, . . . , xα−2) and the tint of
the cone isi. We will use the notation(x0, . . . , xα−2, y) for a cone. See Figure 4.

We will consider specialn-colored graphs.

Figure 4 Ani-cone

DEFINITION 4.2. The classGn consists of alln-colored graphs0 with the following
properties.

1. 0 is a complete graph.
2. 0 contains no triangles of the following types (called inconsistent triangles):

• (green, green, green)
• (yellow, yellow, yellow)
• (green, green, ivory)
• (yi , yi , bi ) (1 ≤ i ≤ α − 2)

• (ri , rj , rk) unlessi + j = k or i + k = j or j + k = i

• (gi , gi+1, rj ) unlessj = 1.
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3. For everyi-cone(0 ≤ i ≤ 2n) in0 with center(x0, . . . , xα−2), the tuple(x0, . . . , xα−2)

is colored by a unique shadews of white such thati ∈ S.

Clearly,Gn is closed under isomorphism (denoted as∼=) and under induced subgraphs.
We are ready to define the cylindric algebrasCn for everyn ∈ ω. Let

Kn = {a : a is a surjective map fromα onto some0 ∈ Gn with nodes(0) ⊆ ω}.
Givena ∈ Kn, we will denote by0a that element ofGn for whicha : α → 0a . We define

an equivalence relation∼ on surjective maps to identify maps with isomorphic ranges. Let
a, b ∈ Kn: say,a : α → 0a andb : α → 0b. Then

a ∼ b ⇐⇒ a(i) = a(j) iff b(i) = b(j),

and0a(a(i), a(j)) = 0b(b(i), b(j)), if defined,

and0a(a(k0), . . . , a(kα−2)) = 0b(b(k0), . . . , b(kα−2)), if defined,

for all i, j, k0, . . . , kα−2 ∈ α. It is straightforward to check that∼ is indeed an equivalence
relation. Write [a] for the∼-equivalence class ofa:

[a] = {b ∈ Kn : a ∼ b}.
We defineC

′
n = {[a] : a ∈ Kn}. For everyi, j ∈ α and [a], [b] ∈ C

′
n, we defineEij ⊆ C

′
n

andTi ⊆ 2C
′
n by:

[a] ∈ Eij iff a(i) = a(j)

and

[a]Ti [b] iff ad(α\{i}) ∼ bd(α\{i}),
that is, if the mapsa andb restricted toα\{i} are equivalent in the sense defined above. We
note that

[a]Ti [b] ⇐⇒ for somec ∈ [a], b(j) = c(j) for all j 6= i.

It is not hard to check that the structure(C
′
n, Eij , Ti)i,j∈α is a cylindric atom structure,

cf. [HMT, 2.7.38, 2.7.40]. We define the cylindric algebraCn as the full complex algebra
of (C

′
n, Eij , Ti)i,j∈α: Cn is the full Boolean set algebra with unitC

′
n and extra-Boolean

operations

dij = Eij = {[a] : a(i) = a(j)}
and

cix = {[b] : for some [a] ∈ x, [b]Ti [a]}.
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We note that an atom ofCn is any{[a]} for some mapa ∈ Kn. We will call Cn the cylindric
algebra associated with the classGn of graphs.

Next we show that the{intersection, cylindrifications, substitutions}-reductBn of Cn is
not representable. The idea of the proof is the same as in theRA-case (Lemma 3.1), though
the details are more complicated.

LEMMA 4.3. For anyn ∈ ω, Cn is not in RCAα. Further, its{·, ci , si
j : i, j < α}-

reductBn is not representable either.

Proof. To derive a contradiction assume that there is an isomorphismh from Bn onto a
set algebra ofα-ary relations.

Let 0i be the following element ofGn for eachi ≤ 2n : 0i(0, 1) = gi , 0i(0, j) = yj−1

(for 2 ≤ j ≤ α−1), 0i(j, k) = i (for 1 ≤ j < k ≤ α−1) and0i(1, 2, . . . , α−1) = w2n+1.
Let ai be the mapα −→ 0i such thatai(j) = j for each 0≤ j < α, and letAi = {[ai ]}.
See Figure 5.

Figure 5 The mapai : α → 0i

Let 0i
j be the following element ofGn for each 0≤ i < j ≤ 2n such thatj − i <

2n : 0i
j (0, 1) = r j−i , 0

i
j (0, 2) = gi , 0

i
j (1, 2) = gj , 0

i
j (k, l) = yl−1 (for 0 ≤ k ≤ 1 and

3 ≤ l ≤ α − 1), and0i
j (k, l) = i (for 2 ≤ k < l ≤ α − 1). Letai

j be the mapα −→ 0i
j

such thatai
j (k) = k for each 0≤ k < α. See Figure 6.

SinceA0 6= 0 in Cn, there is(v0, u1, . . . , uα−1) ∈ h(A0)\h(0). For everyi ≤ 2n, A0 ≤
c0Ai , hence we have elementsvi(i ≤ 2n) such that(vi, u1, . . . , uα−1) ∈ h(Ai). For any
0 ≤ i < j ≤ 2n such thatj − i is a power of 2, we defineAi

j by recursion onj − i:

Ai
i+1 = s1

2c2Ai · s0
1s1

2c2Ai+1 · c2(c1Ai · s0
1c1Ai)

and forl < n,

Ai

i+2l+1 = s1
2c2Ai · s0

1s1
2c2Ai+2l+1 · c2(c1Ai · s0

1c1Ai) · Ai

i+2l ; Ai

i+2l .
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Figure 6 The mapai
j

: α → 0i
j

CLAIM 4.4. For anyi, j such that0 ≤ i < j ≤ 2n andj − i = 2l for somel < n,

1. Ai
j ≤ {[ai

j ]}
2. (vi, vj , u1, u3, . . . , uα−1) ∈ h(Ai

j ).

Proof. The proof is by induction onj − i. First, letj = i + 1. Leta : α → 0 be a map
such thata(k) = k for eachk < α and assume that [a] ∈ Ai

i+1. By Ai
i+1 ≤ s1

2c2Ai , we
get that0(0, 2) = gi and0(0, k) = yk−1 (for 3 ≤ k ≤ α − 1). By Ai

i+1 ≤ s0
1s1

2c2Ai+1,
we have that0(1, 2) = gi+1 and0(1, k) = yk−1 (for 3 ≤ k ≤ α − 1). Thus0(0, 1)

cannot be green, ivory, yellow orbk (for any 2 ≤ k ≤ α − 2). Also 0(p, q) = i (for
2 ≤ p < q ≤ α − 1). SinceAi

i+1 ≤ c2(c1Ai · s0
1c1Ai), 0(0, 1) cannot beb1 either. We

have already seen that0(0, 2) = gi and that0(1, 2) = gi+1. Thus the only possible (red)
color for (0,1) isr1. Hencea must beai

i+1.
Note that(vi, u1, . . . , uα−1) ∈ h(Ai) and(vi+1, u1, . . . , uα−1) ∈ h(Ai+1). Then, by

the definition of the operations in set algebras, we get that(vi, vi+1, u1, u3, . . . , uα−1) ∈
h(Ai

i+1).
Now assume the claim for alli, j such thatj − i = 2k for somek ≤ l. Let a : α → 0

be such thata(p) = p for eachp < α and [a] ∈ Ai

i+2l+1. By

Ai

i+2l+1 ≤ s1
2c2Ai · s0

1s1
2c2Ai+2l+1 · c2(c1Ai · s0

1c1Ai),

we get that0(0, 2) = gi , 0(1, 2) = gi+2l+1, 0(p, q) = yq−1 (for 0 ≤ p ≤ 1 and
3 ≤ q ≤ α − 1), 0(p, q) = i (for 2 ≤ p < q ≤ α − 1) and0(0, 1) must be red (cf.
the argument above). For any mapb : α → 1 such thatb(p) = p for everyp < α and
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[b] ∈ s1
2c2A

i

i+2l · s0
2c2A

i

i+2l , we have inductively that1(0, 2) = 1(1, 2) = r2l . Hence
the only possible red color for (0,1) in1 is r2l+1. By [b]T2[a], 1(0, 1) = 0(0, 1), i.e.,
0(0, 1) = r2l+1. Thusa = ai

i+2l+1.

Finally, (2) forj = i + 2l+1 follows from (1) and the definition of the operations in set
algebras. ¨

Then (v0, v2n−1, u1, u3, . . . , uα−1) ∈ h(A0
2n−1), A0

2n−1 ≤ {[a0
2n−1]}, (v2n−1, v2n , u1,

u3, . . . , uα−1) ∈ h(A2n−1

2n ), andA2n−1

2n ≤ {[a2n−1

2n ]} by the claim above. By the proof
of the above claim, we get that(v0, v2n , u1, u3, . . . , uα−1) ∈ h(A0

2n) and that the color
of (v0, v2n) should ber2n . But there is no red colorrk for k ≥ 2n, henceA0

2n = 0 in Cn.
Thus(v0, v2n , u1, u3, . . . , uα−1) ∈ h(0), whence(v0, u1, u2, u3, . . . , uα−1) ∈ c1c2h(0) =
h(c1c20) = h(0) — contradiction. Lemma 4.3 has been proved. ¨

We note that one can define valid equations witnessing the non-representability of the
Cn(n ∈ ω) as in theRA-case — we omit the details.

4.2. Games and ultraproduct

It remains to show that any non-trivial ultraproduct of theCn(n ∈ ω) is representable.
In [HH 97b], two kinds of game are defined. The first type of game is formulated

using colored graphs (see Definition 4.5 below), and the second is played on (networks for)
cylindric algebras (the obvious modification of the game on relation algebras for cylindric
algebras). The two games are equivalent in the sense that the existential player∃ has a
winning strategy in then-colored graph game iff she has a winning strategy in the network
game played on the associated cylindric algebraCn. Further, it is stated that an atomic
cylindric algebra has a complete representation iff the existential player has a winning
strategy in theω-long game (on networks).

We will show representability of the ultraproduct by proving that the existential player
can survive longer and longer games onGn asn increases. By the equivalence of the two
types of game, she can achieve this in the network games as well. Then the combination of
these winning strategies provide her with a winning strategy in the network game played
on the ultraproduct. Hence the ultraproduct is a representable algebra.

Next we recall the definition of then-colored graph game from [HH 97b].

DEFINITION 4.5. LetGn be the class ofn-colored graphs defined above.
The gameGn

l (l ≤ ω) is defined as follows. The two players,∀ and∃, build a chain of
elements ofGn : 00 ⊆ 01 ⊆ . . . ⊆ 0l if l is finite, or00 ⊆ 01 ⊆ . . . if l = ω.

00 ∈ Gn is arbitrary with|00| = α. In each subsequent roundi (0 ≤ i < l),

• ∀ chooses a graph8 from Gn with |8| = α, a single nodeβ ∈ 8 and a colored graph
embeddingλ : 8\{β} → 0i .
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• ∃ responds, if she can, with a finite colored graph0i+1 ∈ Gn and embeddingsµ :
0i → 0i+1 andν : 8 → 0i+1 such thatµ ◦ λ andν agree on8\{β}.

∃ wins a match of the gameGn
l if she survives each round. We say that∃ has a winning

strategy if she can win all matches.
If λ is an embedding, we denote theλ-image of8 by λ∗(8).

LEMMA 4.6. Any non-trivial ultraproductC of theCn(n ∈ ω) over ω is in RCAα.
Hence its{intersection, cylindrifications, substitutions}-reduct is representable as well.

Proof. First we prove that∃ can survive arbitrarily long matches in cofinitely many
n-colored graph games.

CLAIM 4.7. Let l ≤ n be arbitrary fixed elements ofω. ∃ has a winning strategy inGn
l .

Proof. The proof below is a modification of the proof of the corresponding claim for the
RA-case. Let us assume that we are in thepth round(p < l) and that0p ∈ Gn has been
already constructed.

Again we define the notion of ared block. Suppose thatu1, . . . , uα−1 are distinct nodes
of 0p and that0p(ui, uj ) is not green or yellow for anyi, j . Let

W = {w ∈ 0p : 0p(w, u1) is green, and0p(w, ui) = yi−1 for each 2≤ i < α}.

Suppose that

1. if 0p(u1, . . . , uα−1) = ws thenS ⊃ {i ≤ 2n : (∃w ∈ W)0p(u1, w) = gi},
2. W can be linearly ordered(w1 < . . . < wq) in the following way: the mapf from

{1, . . . , q} into the set 2n + 1 of indices of green atoms given by0p(wi, u1) = gf (i)

for every 1≤ i ≤ q, satisfiesf (i) < f (j) whenever 1≤ i < j ≤ q.

Note that the color of every(wi, wj ) must be red (since(wi, wj ) occurs in triangles with
two green edges and twoyl (1 ≤ l ≤ α − 2) edges). In such a situation, we will call the
subgraph0 of 0p with base{u1, . . . , uα−1}∪W ared blockwith center(u1, . . . , uα−1). We
will say thatwi andwi+1 areneighbors, and that thedistanceof wi fromwj is |f (j)−f (i)|.
We use the notation(u1, . . . , uα−1, w1, . . . , wq) for such a red block. See Figure 7.

We note that a red block is a union of cones with the same center and pairwise distinct
tints such that the edges between the apexes are colored with reds.

We now state the following induction hypothesis.

Induction hypothesis: For every red block0p with base set{u1, . . . , uα−1, w1, . . . , wq}
and center(u1, . . . , uα−1) in the above notation, and for every 1≤ i < j ≤ k ≤ q,

1. 0p(wi, wj ) = rf (j)−f (i) if f (j) − f (i) ≤ 2l−p,
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Figure 7 A red block

2. 0p(wi, wj ) = rt for somet ≤ 2l−1 + · · · + 2l−(j−i),
3. 0p(wi, wj ) = rt and0p(wj , wk) = rs imply 0p(wi, wk) = rt+s .

Note thatq ≤ p + 1, since, in each round of the game, at most one new point is created.
The induction hypothesis implies that the largest index on a red atom (to label(w1, wq)) is
at most 2l−1 + · · · + 2l−p. The initial graph00 trivially satisfies the induction hypothesis.

Assume that in this round,∀ plays8 ∈ Gn with |8| = α, a single nodeβ ∈ 8, and
a colored graph embeddingλ : 8\{β} → 0p. As Gn is closed under isomorphism, we
may assume that the base of8 is α = {0, 1, . . . , α − 1} and thatβ = 0. We may also
assume that if8 is a cone with apex 0, then its center is(1, 2, . . . , α − 1). We note that,
for any y1, . . . , yα−1 ∈ 8, if 8 is a cone with apex 0 and center(y1, . . . , yα−1), then
(y1, . . . , yα−1) = (1, 2, . . . , α − 1).

∃ has to respond with a finite0p+1 ∈ Gn and embeddingsµ : 0p → 0p+1 and
ν : 8 → 0p+1 such thatµ(λ(i)) = ν(i) for each 1≤ i ≤ α − 1.

We can assume that

(*) there is no nodeγ ∈ 0p such that the colored graph induced by0p on nodes{γ } ∪
rng(λ) is isomorphic to8 by an isomorphism extendingλ,

because otherwise∃ can respond with0p = 0p+1, µ the identity, andν(0) = γ, ν(i) =
λ(i) (1 ≤ i ≤ α − 1).

∃ defines0p+1 by extending0p with a single new nodew, and lettingµ be the identity
map on0p, ν(i) = λ(i) (1 ≤ i ≤ α − 1), andν(0) = w. She then colors the new edges
of the graph (those edges(w, u) for u ∈ 0p\rng(λ)); she also colors some(α − 1)-tuples.
Her strategy in the coloring is as follows:∃ tries to color the edges first using ivory; then,
if this fails, black; and finally, if all else fails, red with a carefully chosen index. She colors
“new” (α − 1)-tuples — those includingw and at least one node of0p\rng(λ), and not
involving green or yellow edges — by whites whose indices are minimal (in the sense that
she useswS only if there is ani-cone in the graph with the above(α − 1)-tuple as its center
andi ∈ S).
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Let λ(i) = vi (1 ≤ i ≤ α − 1). The colors of(w, vi) are defined as8(0, i), i.e., these
colors are determined by∀’s choice of8 andλ. Similarly, any(α −1)-tuple of points from
rng(ν) is colored by the same white color (if any) as its pre-image underν.

We show how∃ chooses the remaining edge colors(w′, w) with w′ ∈ 0p\rng(λ). First,
she colors those edges(w′, w) such that either(w, v1, . . . , vα−1) or (w′, v1, . . . , vα−1) is
not a cone. She colors(w, w′) using ivory if there is noi such that(w, vi) and(w′, vi) are
both green. Otherwise she lets(w, w′) havebl for the smallest 1≤ l ≤ α − 1 such that
there is noi for which both(w, vi) and(w′, vi) have coloryl . It is easy to check that one
of the above cases holds, and that no inconsistent triangle is created involving the nodes
w, w′, v1, . . . , vα−1. Further, no inconsistent triangle is created onw, w′, w′′(w′, w′′ with
the above property), since all triangles with two sides ivory and/or black are consistent.

Now ∃ colors those edges(w′, w) (if any) such that both (w, v1, . . . ,

vα−1) and(w′, v1, . . . , vα−1) are cones. Assume there are some. Thenw is the apex of an
m-cone (say) with center(v1, . . . , vα−1). As8 ∈ Gn, there are no green or yellow edges in
the graph induced on{v1, . . . , vα−1}; so0p(v1, . . . , vα−1) = 8(1, . . . , α − 1) = wS for
someS ⊆ 2n + 1 with m ∈ S. Let

W = {u ∈ 0p : u is the apex of a cone with center(v1, . . . , vα−1)} 6= ∅.

We claim thatW ∪ {v1, . . . , vα−1} is the base of a red block in0p. Suppose thatW =
{w1, . . . , wq}. Let the tint of the cone(wi, v1, . . . , vα−1) be denoted byf (i): i.e.,(wi, v1)

has colorgf (i) (1 ≤ i ≤ q). By enumeratingW appropriately, we may assume that ifi < j

thenf (i) ≤ f (j).
We first show thatS ⊃ {f (1), . . . , f (q)}. Certainly,S ⊇ {f (1), . . . , f (q)}, since

0p ∈ Gn. Since0p, 8 ∈ Gn, the only(α − 1)-tuples of elements of{v1, . . . , vα−1, wi}
(any i), and of{v1, . . . , vα−1, w}, with a white color are permutations of(v1, . . . , vα−1).
Thus, ifm = f (i) for somei, the colored graphs induced on{v1, . . . , vα−1, w} (∼= 8) and
{v1, . . . , vα−1, wi} are isomorphic. So by (*), we can assume that the tintm of the cone
with apexw is different fromf (i) for any 1≤ i ≤ q. As m ∈ S, we are done.

Now we show thatf is one-one. Suppose not. Letwi, wj ∈ W be distinct such that
f (i) = f (j), and letX = {wi, wj , v1, . . . , vα−1}. Now |X| = α + 1. Hence, not all of
the nodes in this set were built in a single round. Since only one node is added in each
non-initial round, some nodex (say) in this set was constructed most recently in the game.
Clearly, whenx was added,∃ must have chosen the color of some edge(x, y) for some
y ∈ X\{x}. Choose such ay.

Suppose thatx = vk for somek. Now0p(vk, wi), 0p(vk, wj ) are both yellow or green,
and∃ never uses these colors. Soy ∈ {v1, . . . , vα−1}. It follows that∃ chose the white
color 0p(v1, . . . , vα−1) = wS . Since there was evidently nom-cone at that stage with
center(v1, . . . , vα−1), she would have chosenS with m /∈ S — a contradiction, since we
knowm ∈ S.
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Suppose alternatively thatx = wi (the casex = wj is symmetrical). The graph induced
on {wi, v1, . . . , vα−1} involvesα − 1 distinct edges containingwi and labeled green or
yellow; because∃ never chooses these colors, we see that in the round whenwi was added,
∀ chose as his move a colored graph inGn with nodes{z, v′

1, . . . , v
′
α−1}, say, isomorphic

to that induced on{wi, v1, . . . , vα−1}, the distinguished nodez, and the embeddingλ′ :
v′
k 7→ vk (1 ≤ k < α). But asf (i) = f (j) and only(α − 1)-tuples without yellow or

green edges are labeled with white colors, the cones on the bases{wi, v1, . . . , vα−1} and
{wj , v1, . . . , vα−1} are isomorphic. So the extension ofλ′ that mapsz to wj is a colored
graph embedding. Hence,∃ would not have needed to extend the graph by addingx. By
her strategy, she would not have done so — another contradiction.

Therefore,f is indeed one-one, and the claim is proved:W ∪ {v1, . . . , vα−1} is a red
block. So it must satisfy the induction hypothesis.

We claim next that∃ can find appropriate red colors for each(w, wj ) (1 ≤ j ≤ q) such
that conditions 1–3 of the induction hypothesis hold (when we replacep by p + 1).

Indeed, the same construction as in theRA-case works. Letwj ∈ W be such that
|m−f (j)| is minimal. If |m−f (j)| ≤ 2l−p−1, then she lets0p+1(wj , w) = r|m−f (j)|. If
|m−f (j)| > 2l−p−1, then she lets0p+1(wj , w) = r2l−p−1. ∃ labels the other edges(wk, w)

by using a red atom indexed by the sum (ifwk < wj andf (j) < m, or wj < wk and
m < f (j)) or the difference (ifwj < wk andf (j) < m, orwk < wj andm < f (j)) of the
indices of the reds on(wk, wj ) and(wj , w). It can be checked that these red colors exist, and
conditions 1–3 of the induction hypothesis hold for(v1, . . . , vα−1, w1, . . . , w, . . . , wq).

Finally,∃ colors those (new)(α −1)-tuples which do not include green or yellow edges.
Let (u1, . . . , uα−1) be such a sequence. She colors it bywS , where

S = {i ≤ 2n : (∃v ∈ 0p+1)(u1, . . . , uα−1, v) is ani-cone with center(u1, . . . , uα−1)}.
It remains to show that the induction hypothesis holds foranyred block0 of 0p+1. First,

note that if a red block satisfied the induction hypothesis forp (in the previous round) and
it is still a red block in0p+1, then it satisfies the induction hypothesis forp +1 as well. We
make the following observation about “new” red blocks that are not red blocks of0p (cf.
above): any new red block must contain the new node,w; w cannot be in thecenterof such a
block, since in that case∃ would have labeled the center in this round (roundp) with a white
wS for “minimal” S, and the minimality violates the first condition defining ‘red block’; so
w is theapexof the new red block; and its center must be(v1, . . . , vα−1) because all apex-
base edges must be yellow or green and∃ never uses these colors. Thus, the only possible
new red block is(v1, . . . , vα−1, w1, . . . , w, . . . , wq), where(v1, . . . , vα−1, w1, . . . , wq)

was a red block. We have already seen that this red block satisfies the induction hypothesis.
Similarly to theRA-case, one can easily check that the coloring is consistent, i.e., that

0p+1 ∈ Gn.
We can finish the proof as in theRA-case. The largest index on red colors used by

∃ so far is at most 2l−1 + 2l−2 + · · · + 2l−p−1 < 2l , since, in thekth round, she
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labeled an edge(w, w′) of neighboring pointsw, w′ with rj such thatj ≤ 2l−k−1.
Thus, in the remaining rounds of the game,∀ cannot force her to use a non-existing red
ri (i ≥ 2n). In any red block, if the distance|f (i)−f (j)| between two pointswi andwj is
“small”, i.e., smaller than 2l−p−1, then she usedr|f (i)−f (j)| to label(wi, wj ). Thus, in the
remaining rounds, she has enough indices between 1 and|f (i) − f (j)| to label any edge
(wi, w) and(w, wj ) “inserted” into(wi, wj ). This shows that she can survivel rounds
without arriving at the impossible task of using a non-existing red color. This finishes the
proof of Claim 4.7. ¨

By the equivalence of network and graph games, the above claim ensures that∃ has
winning strategies for thel-round games on cofinitely many algebras. These winning
strategies provide her with a winning strategy in the game played on the ultraproduct. The
argument here is much the same as in theRA-case; we omit the details. ¨

4.3. Diagonal-free reducts

In this section we strengthen Theorem 2.7 by showing that the{intersection,
cylindrifications}-subreduct of representable cylindric algebras of dimension at least three
is not finitely axiomatizable.

We already mentioned thatRCAα is not finitely axiomatizable wheneverα ≥ 3. Non-
finite axiomatizability holds for the diagonal-free fragment ofRCAα as well, a result of
Johnson [Joh 69]. We will give a similar proof below.

Let A be anα-dimensional cylindric algebra anda be an element ofA. Thedimension
set1a of a is defined as

1a = {i < α : cia 6= a}.

[HMT, Theorem 5.1.51] states that anα-dimensional cylindric algebra is representable iff
its diagonal-free reduct is representable, provided that the algebra is generated by (α − 1)-
dimensional elements. Below we will show that a similar theorem holds for the appropriate
reducts.

Let α ≥ 3 be fixed. First we define the algebrasB′
n ∈ SRd{·,ci ,dij :i,j<α}RCAα (n ∈ ω)

as follows. Let us recall that we defined atomic cylindric algebrasCn in Section 4, and that
Bn is the{·, ci , si

j : i, j < α}-reduct ofCn. Now letB′
n be that subalgebra (of similarity

type{·, ci , dij : i, j < α}) of the{·, ci , dij : i, j < α}-reduct ofCn that is generated by the
atoms ofCn.

CLAIM 4.8. The algebrasB
′
n(n ∈ ω) have the following properties:

1. they are generated by(α − 1)-dimensional elements,
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2. they are not representable as set algebras and
3. any non-trivial ultraproduct ofB

′
n(n ∈ ω) is representable as a set algebra.

Proof1. It suffices to show that

{[a]} =
∏

{ci{[a]} : i < α}
for anya ∈ Kn. Say,a : α → 0 with 0 ∈ Gn.
Clearly,≤ holds. For the other direction assume thatb : α → 1 and [a] 6= [b].
We show that [b] cannot be an element of the right hand side. Sincea andb

are not equivalent, we can assume that

1. (∃i, j < α)1(b(i), b(j)) 6= 0(a(i), a(j)) or
2. (∃i1, . . . , iα−1 < α)1(b(i1), . . . , b(iα−1)) 6= 0(a(i1), . . . , a(iα−1)).

In the first case, letk /∈ {i, j}. We claim that [b] /∈ ck{[a]}. Assume to
the contrary that(∀i, j ∈ α\{k})1(b(i), b(j)) = 0(a(i), a(j)). But, by the
choice ofk and the assumption,(∃i, j ∈ α\{k})1(b(i), b(j)) 6= 0(a(i), a(j)),
contradiction. In the second case, choosek /∈ {i1, . . . , iα−1} and derive a
contradiction in the same way.

2. Recall that the substitutionssi
j are defined using·, ci anddij (i, j < α). Thus

all the elements ofBn that we defined and used in the non-representability
proof ofBn are in fact elements ofB

′
n, cf. the proof of Lemma 4.3. Hence the

same argument works for the non-representability ofB′
n.

3. The ultraproduct of theB
′
n(n ∈ ω) is clearly representable, since it is a subal-

gebra of a reduct of the ultraproduct of theCn(n ∈ ω), which is representable
by Lemma 4.6. ¨

Now we claim the following variant of [HMT, Theorem 5.1.51].

THEOREM 4.9. Let A ∈ CAα. Let B ⊆ Rd{·,ci ,dij :i,j<α}A and assume thatB is
generated by(α − 1)-dimensional elements. LetC be the diagonal-free reduct ofB and
suppose thatC is representable as a set algebra. ThenB is representable as well.

Proof. The easiest way to prove the above theorem is to repeat the proof of [HMT,
Theorem 5.1.51] with minimal and straightforward modifications. Since this proof is rather
technical and long, we just give a sketch (and give the numbers of the corresponding lemmas
from [HMT] in brackets).

Assume thatC is representable, via the isomorphismh, as a set algebraD ⊆ (P(
∏{Ui :

i < α}), ·, ci )i<α. We can assume thatU0 = · · · = Uα−1 = U and thath(dij ) ⊇ {s ∈
αU : s(i) = s(j)} (cf. 5.1.48).

We define the relationR onU as follows: leti, j < α be distinct indices, then

R = {(u, v) ∈ U × U : s(i) = u ands(j) = v for somes ∈ h(dij )}.
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It can be shown that the definition ofR is independent of the choice ofi andj and thatR
is an equivalence relation onU (see 5.1.49).

Next we let

E = {x ∈ C : (∀s, t ∈ αU)[(∀i < α)(s(i), t (i)) ∈ R → (s ∈ h(x) ↔ t ∈ h(x))]},
that is,E consists of those elements ofC which cannot “distinguish” between equivalent
sequencess andt . It can be shown that{x ∈ C : 1x 6= α} ⊆ E, and thatE is a subuniverse
of B (cf. 5.1.50). ThusE contains the generators ofB, whenceE = B = C. Then
we can factorizeU by R so thatC can be embedded into(P(α(U/R)), ·, ci )i<α via the
isomorphismf given by

f (x) = {(s(i)/R : i < α) ∈ α(U/R) : s ∈ h(x)}
(see 5.1.39). Moreover, the diagonals are preserved:

f (dij ) = {s ∈ α(U/R) : s(i) = s(j)}
because of the definition ofR andf .

HenceB can be embedded into(P(α(U/R)), ·, ci , dij )i,j<α as desired. ¨

Finally we prove Corollary 2.8.
Proof of Corollary2.8: By Claim 4.8, the algebrasB

′
n(n ∈ ω) are not representable

and are generated by(α − 1)-dimensional elements. Then by Theorem 4.9, their diagonal-
free reductsC

′
n (n ∈ ω) are not representable either. On the other hand, the ultraproduct

of C
′
n (n ∈ ω) is representable, since it is the diagonal-free reduct of the ultraproduct of

B
′
n (n ∈ ω) which is a representable algebra by Claim 4.8. ¨

5. Conclusions

Let us mention some open problems.

1. Is the{·, ; , 1′}-subreduct ofRRA finitely axiomatizable?
2. Bredikhin [Bre 77] showed that the{; ,^}-subreduct ofRRA is not finitely axiom-

atizable. Is it true for any generalized subreduct ofRRA in which composition and
converse are definable?

3. Find (quasi)equations witnessing the non-finitizability ofSRd{·,ci :i<α}RCAα (for
α ≥ 3).

4. Investigate (non-)finite axiomatizability of subreducts of the classesRAn and
SRa∗CAn. These classes can be viewed asn-dimensional analogues ofRRA. See,
e.g., [Mad 83, Mad 89]. For example, we conjecture that the argument for subreducts
of RRA in the current paper can be generalized to prove that for all finiten ≥ 5, if
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K is a generalized subreduct ofRAn or of SRa∗CAn in which intersection, relation
composition, and converse are term definable, thenK is not axiomatizable by any
finite set of first-order sentences, and the equational theory ofK is not finitely based.
It would suffice to show thatAn /∈ RA5, for each finiten, whereAn is the relation
algebra constructed in Section 3.
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