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Axiomatizability of reducts of algebras of relations

IAN HODKINSON* AND SZABOLCS MIKULAS

Abstract. Inthis paper, we prove that any subreduct of the class of representable relation algebras whose similarity
type includes intersection, relation composition and converse is a non-finitely axiomatizable quasivariety and that
its equational theory is not finitely based. We show the same result for subreducts of the class of representable
cylindric algebras of dimension at least three whose similarity types include intersection and cylindrifications. A
similar result is proved for subreducts of the class of representable sequential algebras.

1. Introduction

The aim of this paper is to investigate algebras of relations from the finite axiomatizability
point of view. In algebraic logic, the most extensively investigated classes of algebras of
relations are the class of (representable) relation algebras and the class of (representable)
cylindric algebras, cf. [HMT]. These classes are Boolean algebras equipped with some
extra-Boolean operations arising from the nature of relations. In this paper we concentrate
on subreducts of these classes, i.e., on classes of algebras whose similarity types may not
contain all the operations available in relation and cylindric algebras. We will deal with
algebras with lower semilattice reducts instead of the whole Boolean structure, and show
that the interaction of intersection (the representation of meet) and some extra-Boolean
operations is already complex enough to cause non-finite axiomatizability.

Although our non-finite axiomatizability results in this paper do have a negative character,
none the less there is profit to be had in taking reducts of the classical algebras of relations to
smaller signatures. Andka [And 90] has shown that the equational theory of many positive
reducts of representable algebras is decidable. Perhaps the more limited expressive power
of these algebras is also reflected in simpler inference systems for these equational theories.
Studying reducts may also help to advance the currently active programme of research
into the ‘dynamic paradigm’ in computer science, one aim of which is to select only those
operations that are relevant to the intended applications. See [Ben 96], for example.

Relation algebras: Monk showed in [Mon 64] that the varietRRA of representable
relation algebrasis not finitely axiomatizable. Several authors have investigated whether this
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negative result holds for various subreductR&A (see the formal definition of subreduct
in Definition 2.1 below).

For instance, Andrka showed that any subreductRRA whose operations include
union, intersection and composition is not finitely axiomatizable [And 91], and that the
{union, compositiofsubreduct is a non-finitely axiomatizable quasivariety [And 88].
Bredikhin [Bre 77] showed that tHeomposition, convergesubreduct is not finitely axiom-
atizable either.

On the other hand, some subreducts are finitely axiomatizable. For instance, Bredikhin
and Schein [BS 78] showed that thiatersection, compositigrsubreduct coincides with
the class of semilattice-ordered semigroups. Another example is the generalized subreduct
with the similarity type of intersection, composition and its two residuals: see [AM 94].
See also [Bre 93] about the axiomatizability of the equational theories of reduRRAf

In this paper, we give a relatively simple proof that any generalized subredR&RAf
in which intersection, composition and converse are term definable is not finitely axiom-
atizable (Theorem 2.3). We note that the non-finite axiomatizability ofititersection,
composition, convergesubreduct oRRA follows from [Hai 91] (although this is not stated
in that paper).

Another non-finitely axiomatizable version of algebras of binary relations is the class of
representable sequential algebras; see, e.g., [Kar 94, JM 97]. As a corollary, we obtain that
the union-free subreduct of representable sequential algebras is not finitely axiomatizable
either (Corollary 2.5).

Cylindric algebras: Monk [Mon 69] showed that the varietR CA,, of a-dimensional
representable cylindric algebras is not finitely axiomatizable either,isf at least three.
Finite axiomatizability of subreducts &CA, has been investigated, cf. [Com 91] and
[Han 95]. See also [Dn 93] for lattice-reducts of cylindric algebras and their connections to
databases. The problem whether intersection and cylindrifications are finitely axiomatizable
remained open. Here we answer the question negatively: see Corollary 2.8.

Techniques: We use games and colored graphs. Recently, Hirsch and Hodkinson have
applied agame-theoretic approach to various problems concerning relation algebras [HH 97,
HH 97a, HH 97b]. For instance, representability of algebras can be characterized by the
existence of winning strategies in certain two-player games. Representability can also be
approximated in this way, allowing us to prove non-finite axiomatizability. Note that games
can also be used to obtain (infinite) recursive axiomatizations of our classes of algebras,
by describing the existence of a winning strategy in first-order logic; we will not pursue
this here, but see [HH 97] for how it works. Similar techniques were usedoim $9]

to axiomatize thdintersection, compaosition, converse, identispbreduct of RRA. Using
graph colorings to prove non-finite axiomatizability is a standard technique in algebraic
logic — see, e.g., [HMT].
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In this paper, we will use colored graphs to define non-representable algebras and games
to prove the representability of their ultraproducts. Usually, graph-coloring techniques
assume that Boolean join is an available operation to ensure that every sequence in the
representation has a (unique) color. In our case, only Boolean meet is included into the
similarity type, so the construction is more delicate.

2. Basic definitions and main results

In this section we recall the basic definitions and formulate our main results. We will give
short proofs using some lemmas whose proofs are postponed to the subsequent sections.
First we define (generalized sub) reducts of (classes of) algebras.

DEFINITION 2.1. Let = (A, 0),e; be an algebra of the similarity type Letz’ be
a set of operations whose elements are definable by fixed term®Binthe’-reduct ofd
we mean the algebfB0,/2l = (A, 0),e.- We callRo,r 2 a generalized reduct &f, since
7’ may not be a subset of

If K is a class of algebras of the same similarity tyRd, K denotes the class af-
reducts of elements &f. Thez’-subreduct oK is defined a$SRd, /K :i.e., we closRd,/ K
under (isomorphic copies of) subalgebras. Again, weSRBll,'K a generalized subreduct
of K.

Next we recall the definition of (representable) relation algebras.

DEFINITION 2.2. 1. Arelation algebra, dRA, is an algebra
QlZ(A,O,l,',—’—,—,;,v,l/)

such that(A4, 0, 1, -, +, —) is a Boolean algebra, and the following equations hold, for
everyx, y, z € A:

R1) x;(:2) =)z

R2) (x+ysz=x2+(:2)
(R3) x;1 =x

(R4) x> =x

(RS (x4+y)"=x"+y~
(R6) (x;y)~" =y7s;x~

R7) x5 (=(x;y) < —.

We denote the class of all relation algebrad_ay.

2. Byarelationsetalgebra, &s, we meananalgebfh= (A,0,1, -, +, —,;,~, I)such
thatA C P (W) (the powerset o) for some set oftheformU xU,0=¢,1=W, -
is intersection;+ is union,— is complement w.r.t.W, ; is relation composition;” is
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relation converse, and I the identity relation o/. More formally, for all elements
X,y €A,

x;y = {(u,v) € W:(u,w) €xand(w, v) €y for somew}

x~ = {(u,v) e W:(v,u) € x}

U = {(u,v) e W:u=nv).

We denote the class of relation set algebragsy* Given an2 € Rs, W andU as
above, we calW the unit of2l andU the base ofl.
The clasRRA of representable relation algebras is defined as

RRA = SPRs

—i.e., we close the clag’®s under products and isomorphic copies of subalgebras.

It is well known thatRRA is a variety, and hence a quasivariety. It follows that any
generalized subreduct 8RA is a quasivariety:

SRd,/RRA = SRd,/PU,RRA = SPU,Rd, RRA.

The same observations hold lRCA,, (see below) in place dRRA.
Our first main result concerns the finite axiomatizability of such quasivarieties.

THEOREM 2.3. LetK be a generalized subreductRRA such that intersection, rela-
tion composition, and converse are term definablK.iThen

1. Kis not axiomatizable by any finite set of first-order sentences and
2. the equational theory df is not finitely based.

Proof. We will define finite, integral and symmetric relation algeb®?gs(n € w) and
showthattheif-, ; ,~ }-reducts are not representable (Lemma 3.1), while a non-trivial ultra-
product of them is representable (Lemma 3.4). Bg'ttbeorem [Hod 93, Theorem 9.5.1],
this is enough to show thadt is not finitely axiomatizable in first-order logic. Further,
we will show that, for all finiten, there is a valid equation that fails #,, (Lemma 3.1),
establishing that the equational theory is not finitely axiomatizable either. O

Our next aim is to show a corollary about non-finite axiomatizability of representable
sequential algebras.

DEFINITION 2.4. Analgebral = (A,0,1, -, +, —,;, <, >, 1) isarepresentable sequen-
tial algebra, if

1we will also consider set algebras of relations in smaller signatures than this, but by default the signature will
be as above.
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e (A,0,1,-, +, —)isaaBoolean set algebra with uiitfor some transitive and reflex-
ive relationW on some set/,

e ; is relation composition,

¢ 1 is the identity relation o/,

e and forallx, y € A,

x>y = {(u,v) e W: (w,u) €x, (w,v) € yfor somew}
{(w,v) e W: (v,w) €y, (u, w) € x for somew}.

X<y

The class of representable sequential algebras is a variety, [JM 97], but it is not finitely
axiomatizable (a result of Andka and van Karger, [Kar 94]). We show that non-finite
axiomatizability holds already for a fragment of the language.

COROLLARY 2.5. The{.,;, 1, »}-subreduct of the class of representable sequential
algebras is not finitely axiomatizable.

Proof. We show that thg-, ; , 1’, »}-reducts of the non-representable relation algebras
2, (n € w) from the proof of Theorem 2.3 are not representable. Here, we defineas
x7;yandx <yasx; y~. Notethatforevery c A,,, x =x" =x";1 =x 1.

Now assume that there is an isomorphigrfrom (4,, -, ; , 1, ) into the{-,; , 1, >}-
reduct of a representable sequential algebra with Whffor some transitive and reflexive
W). Sincex = x » 1’ for everyx, if (u, v) € h(x), then(v, u) € h(x). Now if we define
x~ asx > 1/, we get a representation foA,,, -, ; ,~ ) as well — a contradiction.

On the other hand, the sequential-reduct of the ultraprodu@t,¢f € w) is repre-
sentable, since > y andx <« y are definable as™—; y andx; y™~, respectively. O

Next we recall the definition of (representable) cylindric algebras.

DEFINITION 2.6. Leta be a finite ordinaf.
1. Acylindric algebra of dimension, aCA,, is an algebra
A=(A,0,1,-, 4+, —,¢,dij)i j<a
such that(A, 0, 1, -, +, —) is a Boolean algebra, and the following equations hold,

foreveryx,y € Aandi, j, k < «:

(C1) ci(x+y)=cix+c;y
(C2) x <cix

2\We will use the convention that = {0, 1, . . ., o — 1.
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(C3) C; —Cix = —C;x

(C4) CiCjx =C;Cix

(CS) di=1 anddij = dj,'

(C6) dix =c;(d;; -dj)if j ¢ {i, k}
(C7) dij-ci(dij-x) <x.

We denote the class of all cylindric algebras of dimensidiyy CA,,.

2. By acylindric set algebra of dimensianaCs,, we mean an algebfh= (4,0, 1, -,
+, —,Ci, d;5)i j<o SUch thatdA € P(*U) for some base sd/,0 = #,1 = °U, - is
intersection is union,— is complement w.r.t* U, ¢; is theith cylindrification, and;; is
the diagonal element identifying tlih andjth coordinates. That is, the ufitV of aCs,
is the set ofv-long sequences of elementsidf and the extra-Boolean operations have the
following interpretations. Let =; ¢ iff (Vj # i)s(j) = #(j). Then, for each element
x e Aandi, j < «a,

Cix = {s e :s =; tfor somer € x}
dij = {s €U :s()=s()}

The clasRCA,, of representable cylindric algebras of dimensiois defined as
RCA, = SPCs,,

i.e., we close the clas3s, under products and isomorphic copies of subalgebras.
We define the operatiosubstitutiorsj. as follows:

i
ij

_ {Ci(x-di.,') ifi#j

X ifi =j.
Note that, in a cylindric set algebra with base
sfjx = {s € “U : s =; t for somer € x such that (i) = 7(j)}

for distincti, j.
Our main result about cylindric algebras is Corollary 2.8 below. First we state an appar-
ently weaker theorem.

THEOREM 2.7. Leta > 3be finite and leK be a generalized subreductRCA,, such
that intersection, cylindrifications and substitutions are term definable ifihen

1. Kis not finitely axiomatizable by first-order sentences and
2. the equational theory df is not finitely based.
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Proof. Letthe dimension set > 3 be fixed. Firstwe will define a class of colored graphs.
Using these graphs we will define finite cylindric algebras: roughly speaking, an atom will
be a surjective map from to a graph. We will show in Lemma 4.3 that thiatersection,
cylindrifications, substitutiorjsreducts of these algebras are notrepresentable, and similarly
to theRA-case, one can construct valid equations witnessing the non-representability of
these algebras. On the other hand, using games will show in Lemma 4.6 that any non-trivial
ultraproduct of the algebras is a representable cylindric algebra. O

Finally, we formulate the stronger result about cylindric algebras.

COROLLARY 2.8. The{intersection, cylindrificationssubreduct oRCA,, (for finite
a > 3) is not finitely axiomatizable.

We will show how to prove the above corollary at the end of Section 4.
3. Relation algebras

This section is devoted to making the proof of Theorem 2.3 complete.
3.1. The rainbow construction

First we define relation algebr&,(n € w), and show that theif-, ; ,~ }-reduct is not
representable.

Letn be any natural number. We defiflg to be the finite relation algebra (RA) with
the following atoms:
e identity: 1,
e greensyg; (0 <i <27,
e whites:w,w;; (0<i < j<2",
e yellow: y,
e black: b,
e reds:r; (0 <i <2M).

All the atoms are self-converse. Given this, a tripgte y, z) of atoms is said to be an
inconsistent triangléf x - (y; z) = y - (z; x) = z- (x; y) = 0. Conversely, using additivity,
composition is determined by the set of inconsistent triangles. We will define composition
by specifying that the inconsistent triangles are precisely the following:

(green, green, green)

(yellow, yellow, yellow)

(green, green, white)

(yellow, yellow, black)

(ri,rj,yunless + j=kori+k=jorj+k=i
(9i, gi+1,Tj) unlessj = 1

(9i, Y, Wjp) unless € {j, k},
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where, e.g., (green, green, white) stands fary’ - w = g; w - g’ = w; g - ¢’ = 0 for all
green atomg, g’ and any white atonw. We also require thatc, y, 1') is inconsistent for
all distinct atoms, y.

It is not difficult to check tha®l, is a relation algebra. In fact, all the axioms &tl)
are straightforward to check. An easy way to prove (&) is satisfied as well is to show
that the existential player can survive one round in the game played using atomic networks
on%l, (see Definition 3.2, and cf. [Lyn 50, pp. 711-712]), and Claim 3.5 below shows that
she can do this.

Next we show that thé, ; ,~ }-reduct®,, of 2, is not representable as a set algebra of
binary relations.

LEMMA 3.1. Foranyn € w, 2, is not inRRA. In fact, the{-, ; ,~ }-reduct®5,, of 2,
is not representable either. Moreover, for every o, there is an equation valid in set
algebras that fails in3,,.

Proof. Towards a contradiction, let us assume that there is an isomorghiszm 95,
to a set algebra of relations of similarity type; ,~ }. We let 0 denote the zero element of
2A,; of course, as 0 is not in the signature®jf, we may havé:(0) # @.

Sincew % 0, there is(u, v) € h(w) such that(u, v) ¢ h(0). Becausev < g;;y, we
see that, for every & i < 2", there exists; such thatu, u;) € h(g;) and(u;, v) € h(y).
Sinceg;” = g; in By, (u;, u) € h(g;), and similarly,(v, u;) € h(y).

Now (u;, u;j+1) € h(Qi;Qiv1-Y;y) = h(ry) forevery 0<i < 2'. By Q;;0is2 -
y;y - ry;rp = ro, for everyi < 2" — 1, (u;, u;42) € h(r2). In particular, (1o, uz) €
h(rp) and (upn_p, up) € h(rz). By induction, we get thafug, us-1) € h(ro-1) and
(on-1, upn) € h(rym-1). Then we haveug, ux) € h(do; 92n - Y; Y - Ion-1; Ion-1) = h(0).
Since(u, ug) € h(go) and(uz:, v) € h(y), we get that(u, v) € h(go; 0;y) = h(0). But
we assumed that:, v) ¢ #(0). We have our contradiction. See Figure 1 for a sketch of the
argument.

The non-representability ¢B,, is witnessed by the following equation. For<0i <
Jj < 2% letp; ; standforg;; g;-y; y. We defineo (k, k+2), foreachO< k < k+2' < 2",
by induction or:

pk, k+1) = pri+1
plk k+ 27 = pk, k+2); p(k + 2 k + 241 - g o

Leto, bew - []{(g; -g;): (y-y™) : 0 <i < 2"} andt, equalw- go; p(0, 2");y. The
equatiore,, is defined as the result of replacing atoms by distinct variables ia o, - 7,,.
Itis easy to check tha, is valid in set algebras. On the other hand, the argument we used
above to prove thdB,, is not representable shows tlegtfails in 95,,. O

It remains to show that any non-trivial ultraproduct of #g(n € w) is representable.
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?

fon_q fon-1

T

Figure 1 The reason for non-representability

3.2. The game

We recall from [HH 97b] the definition of a game connected to representability.
DEFINITION 3.2. Let2( be a relation-type algebra.

1. A pre-network is a complete directed finite graph with edges labeled by eleméits of
i.e.,N = (Ey, ¢y), WhereEy = Uy x Uy for some finite non-empty séty, the base
of N,and¢y : Exy — A is a map assigning an elementto each edge.
A pre-network is a network if it also satisfies, for everyy, z € Uy,

(@) tn(x,y) <Tiff x =y,
() ey (x, y)in(y,2) - €n(x,2) #0.

A pre-network is called atomic if all the edges are labeled by atorfis bho confusion
is likely, we will omit the subscripiv.

Given two pre-network®v, N’, we write N C N’ if every edge ofN is an edge of
N’ and, for every edgeér, y) of N, £y/(x, y) < €n(x, y).

2. Letn € w. We define a gamé&,, (1) between two players, (male), and (female).
They build a finite chainVg € N1 € ... € N, of pre-networks in the following way.
Nois any consistent triangle, i.e., a network such thaf,| < 3. We regardvg as being
chosen by before the game starts. In each rout@ < i < n),

e V chooses an edge, y) from N; and elements, s € A,
e Jresponds with a pre-networ¥; .1 2 N; such that one of the following holds:
—3rejects:N; ;1 is the same a®/; exceptthatly,,, (x, y) = €y, (x, y) - —=(r; 5),
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— 3 accepts: the nodes af; ., are those ofV;, plus a possibly new one, and the
labels on edges a@¥; 1 satisfy the following:
=N (X, 2) =T,
—in 4 (2, ) =5,
N (x,y) = LN (x, y) -1y s.
3 wins a match of the gam@,, () if every N; (0 < i < n) is a network. We say that
has a winning strategy if she can win all matches.
The atomic gam& ¢ () is defined by requiring that all the elements chosen by
are atoms, and that eadh is an atomic pre-network.

The following proposition [HH 97b, Proposition 15] provides us with a sufficient con-
dition for representability of atomic relation algebras.

PROPOSITION 3.3.Let2 be an atomic relation algebra. Théras a winning strategy
in G4 () forall n € wiff Ais elementarily equivalent to a completely representable relation
algebra® Hence, becausBRA is elementary, il has a winning strategy iG¢ () for all
n € w, then2l is representable.

3.3. The ultraproduct

We will now show that an ultraproduct of i, (n € w) is representable.

LEMMA 3.4. Any non-trivial ultraproductl of 2, (n € w) overw is in RRA. Hence
the ultraproduct of thg-, ; ,~ }-reducts ofl,, (n € w) is representable as well.

Proof. First we show thall can survive arbitrarily long games on a “large” set (occurring
in the ultrafilter) of algebras. The “ultraproduct” of these strategies will enable her to win
arbitrarily long (in fact,w-long) games on the ultraproduct. Thus, by Proposition 3.3, the
ultraproduct will be representable.

CLAIM 3.5. Letl/ € w. Ihasawinning strategy fat{ (A,) for cofinitely many algebras
A, (n € w).

Proof. Letn be large enough — say,> /. We show thaB can winGy (2l,,).
The idea is very roughly that's best strategy leads to what is in effect a new game,
played on two irreflexive linear orders. One consists of the indices of green atoms and is

3A complete representation of a relation algeBas an isomorphism fron to a representable relation
algebra that preserves arbitrary meets and joins whenever they eisHowever, we will not need this notion
in this paper.
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of length 2 + 1; the other is of length/2and the intervals in it correspond to indices of red
atoms. In each round, chooses an element of the first, longer order, Zntlist respond
by choosing an element of the other. For her to win, the choices made during the game must
induce a partial isomorphism (an order-preserving partial map) between the ordsfs. As
linear order is longer thaf's, he can certainly win if he is given enough time. However,
the game here is of length at mast 1, and this does not quite leave him sufficient time to
expose the difference in length of the orders.

We now proceed to the formal proof. Let us assume that we are iptth@® < p < 1)
round and that an atomic netwolk, = (Un, x Uy, tn,) is already constructed.

We define the important notion ofrad block Suppose that, v are distinct nodes of
Np and thatty, (u, v) # w;; for anyi, j. Let

W = {w:wanode ofN,, {y,(u, w) is green and{y, (v, w) = y}.

Assume thafW| > 2. Also assume tha/ can be linearly orderetw; < ... < wy)
in the following way: the magy from {1, ..., ¢} into the set 2 + 1 of indices of green
atoms given by n, (u, w;) = gy for every 1< i < ¢, satisfiesf (i) < f(j) for every
1 <i < j <gq. Note that the color of evergw;, w;) in N, must be red.

In such a situation, we will call the subnetwolK of N, with base{u, v} U W ared
blockwith center(u, v). See Figure 2. Usually we will denote this red block by the ordered
tuple(u, v, wy, ..., wy). We will say thatw; andw; 1 areneighborsand that thelistance
of w; fromw; is|f(j) — f(@)I.

red

( red
red f \
wy wy .

9ray

b (say)

Figure 2 A red block ¢, v, wy, wo, ..., wq)

We now state the following induction hypothesis (wjththe round number, as a param-
eter), tha8 will maintain in each round of the game.
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Induction hypothesis For every red blocku, v, ws, ..., w,) of N, in the above notation,
andforeveryI<i < j <k <gq,

1w, (wi,wj) =rrih—ri if ) — fG) < Zz—p" |
2. Uy, (wi, wy) =T, for somer < 271 4 ... 4 217U,
3. eNp(wl'y w/) =1y andng(wj, wk) =1 |mp|y ng (wi’ wk) =Tt

Note thaty < p + 1, sincelUn,| < 3 and, in each round, at most one new point is created.
The induction hypothesis now implies that the largestindex on a red atom (tgdabe,, ))
isatmost 271 4 ... + 2/~ Clearly Ny satisfies the induction hypothesis.

Let us assume that in theth round playeV plays(u, v, y, z) for some edgéu, v) of
N, and atoms, z of 2, and thatENp (u,v) = x.

If x - y; z=0, thend rejectsv’s proposal —i.e., she defin@, 1 = N,. Ifx < y;z
and there is a poinb in N, such thaty, (u, w) = y andéy, (w, v) = z, then agair lets
N,+1 = N,,. Note that this covers the case when either z is the identity 1

Otherwised extendsN, by a new pointw and IetsﬂNHl(u, w) = Ly, (w,u) =
Yy AN, (w,v) =Ly, (v, w) =zandly, , (w, w) = 1’ — note that this is well defined,
sinceu = v implies thatx = 1/, whencey = z. She defines the labels for the remaining
edgesw, w'), forw’ € Uy, \{u, v}, as follows (she will label an edge with the same atom
as the atom labelling its converse edge; we will not bother to mention this from now on).
See Figure 3.

Figure 3  Extending the network

I's strategy is to choose a white;; whenever it is possible: i.e., if labellingv, w’)
by w;; ensures that the trianglés, w’, u) and(w, w’, v), or strictly, the triples consisting
of the labels on the edges of these triangles, are consistéht.irlf this fails, she tries
to use blackp. If this is impossible, too, then she uses a red cglorShe chooses the
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index i carefully to maintain the induction hypothesis so thatill not be able to create
a contradiction during therounds of the game. Note that she never chooses a yellow or
green label. We have the following cases.

CASE 1. {y, z} # {g;, y} foranyi. An easy argument using case distinction shows that,
for anyw’, 3 can chooséNp+l(w’, w) to be eithew ;; or, if this creates an inconsistent
triangle amongw, w’, u) and(w, w’, v), wj; for some distinct,, k; or if this creates an
inconsistent triangle tody. It is easy to check that this yields an atomic network, since no
triangle that involves either two white edges, or two black edges, or a white and a black
edge, can be inconsistent. Further, no new red block has been created. For, any new red
block must containv and one other poink’ # u, v; since the label oriw, w’) is white
or black, (w, w’) is the center of the new block; becauselid not use green or yellow
labels the other points of the block argv; hence,y andz are both green andly, (u, w’)
andly, (v, w’) are both yellow, or vice versa; but théhwould use av;; to label(w, w’),
contradicting the definition of red block. Because a red block has only one edge labeled
other than yellow, green, or red, aAdused only white or black here, it follows that no
point has been added to any red block. So the red blocké,qf are precisely those of
N,. It can be seen that any red blocknf, that satisfied the inductive hypothesis fostill
satisfies it inN, ;1 for p + 1. SoN 1 satisfies the induction hypothesis.

CASE2.y =g; andz =y. If w’ € Uy,\{«, v} and(u, w’) is not green, she can let
ZNPH(w’, w) = w;; provided(w’, v) is not green, oprH(w’, w) = W;; in case(w’, v)
has colorg;. Otherwise, if(w’, v) is not yellow, she pIayt%NpH(w’, w) =b.

The hard case is for those’ such thaty,(w’, v) = y andéy, (u, w') = g; for some
Jj. (We can assume that~ j, otherwised did not extendV,,.) 3 will label all such edges
(w, w’) in a co-ordinated fashion. Let

W = {w': w" anode ofN,, (u, w') is green and(w’, v) is yellow}.

Note thatjW| < p + 1. LetW be enumerated in an orden < wy < --- < wy, So that
the mapf defined byly, (u, w;) = gy(;) satisfiesf (j) < f (k) wheneverj < k (cf. the
definition of red block).

We claim that iff W| > 2, the subnetwork with bas& U {u, v} forms a red block with
center(u, v). We have to show thaf is one-one and thdty, (4, v) is not anyw j.

Soletj, k < g bedistinct; we requirg (j) # f (k). Asthe game starts with athree-point
network and at most one point is added in any round, one of the four pointsv ;, wy was
added after the other three. We will show that it wigsor wy. Assume for a contradiction
that, sayu was added aftew;, wi, andv. (The case where was added aftew;, wy, u
is similar.) Sinced never chooses a green atotw,, (u, w;) andENp (u, wr) were chosen
by V. Thus, in the round whemwas created, he play&d ;, wi, 9¢(;), 9rx)) (Or possibly
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its mirror image(w, w;, k), 9r()))- Sincely, (v, w;) and Ly, (v, w) are yellow,
Wy ro (OrWru £(jy) was a possible choice faras a color foru, v). Then, according
to her strategy, she cho®e ;) r«) (Or Wrw) r(jy). Now consider the currenpth round
again. We assumed that the gregrplayed byV in this round is distinct from the greens
97 9fx ON(u, w;) and(u, wy) (otherwised did not have to extend ). But(u, v, g, Y)
would have been rejected By(since the triangleq;, y, W) 7)) is inconsistent), which
is a contradiction.

So without loss of generality we may assume thatwas added to the network after
u, v, wj. Now let us consider again the round, say rounagthenw; was created. Since
never plays green or yellow, the reason for addingto the network was that in round
v played(u, v, k), ¥) or its mirror image, and that, iN;, there was no point such that
(u, s) has colorg rx) and(s, v) is yellow (otherwised would not have extended;). In
particular, taking = w;, we obtainf (j) # f(k), so thatf is one-one as required.

Thus, the green colors dm, w;) (1 < j < g) are all different. We assumed they are
also different fromy = g;. So there are least three consistent triangles of the form (green,
Y, €N, (u, v)), and it follows thatly, (u, v) is not anyw ;x. Hence,(u, v, wi, ..., w,) is
indeed a red block, as claimed. Cleally,;, wi) must be red for every distingt k < g.

So the networKu, v, wy, ..., w,} must satisfy the induction hypothesis. We claim next
that3 can find appropriate red colors for eagh, w;) (1 < j < ¢) such that conditions
1-3 of the induction hypothesis hold (when we repladey p + 1).

Indeed, letw; € W be such thali — f(j)| is minimal. If|i — £(j)| < 2=P~1, then she
letsey,,,(wj, w) = ri_ gy fli—f()] > 2771, thensheletéy, ., (w;, w) = ry-p-1.

d labels the other edgé&s),, w) by using a red atom indexed by the sumuif < w; and

f() <i,orw; < wgandi < f(j)) or the difference (ifw; < wy and f(j) < i,

orwy < w; andi < f(j)) of the indices of the reds ofwy, w;) and(w;, w). It can

be checked that these red colors exist, and conditions 1-3 above hold for the red block
(u,v,wy, ..., w,...,wy). This ends our proof of the claim.

Itremains to show that the induction hypothesis holdafyred blockV’ of N, 1. First,
note that if a red block satisfied the induction hypothesigffin the previous round) then it
satisfies the induction hypothesis fot 1 as well. We make the following observation about
“new” red blocks that are not red blocks &, (cf. above):3 plays a red color on an edge
(w, w") onlyifthereis an edgé:, v) suchthatu, w’) is green(w’, v) is yellow, andv plays
(u, v, g;,Y) so thatd is forced to extend the network with and label(x, w) with g; and
(w, v) with y. This implies that if we have a new red block, then its center must be the edge
(u, v) played byv. Thus, the only possible new red block has one of the following forms:

o (u,v,wy, ..., w,...,wy),if (u,v,wy, ..., wy)wasaredblockiwv,, andifV played
(u,v,0i,Y),

o (u,v,w,w) or (u,v,w,w), if en, (u,v) # Wik forany j, k, W = {w'}, and ifV
played(u, v, 9;, y).
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By the coloring defined in the previous paragraph, both types of red block satisfy the
induction hypothesis.

Itis immediate now that all triangles iN,1 are consistent, so that,1 is a network.
All triangles of N, are known to be consistent. The remaining triangles are of the form
(w, u, w"), (w, v, w), and(w, w’, w"), forw’, w” € Uy, \{u, v}. The first two kinds were
all made consistent by's choice of either white, black, or red to lab@d, w’). For the
third kind, since two sidesw, w’), (w, w”) were labeled by as above, the only danger
is when both of them are red. But in this casew’, andw” are part of a red block with
center(u, v), and the strategy above guarantees thatw’, w”) is consistent.

CASE 3. y =y andz = g;. This case is completely analogous to case 2, and we omit
the details.

The largestindex on red colors useddso faris at most’2 1+ 2/ =2 .. .4 21=r=1 < 2
since, in thekth round, she labeled an edge, w’) of neighboring pointsy, w” with r;
such thatj < 2=%=1, Thus, in the remaining rounds of the gardesannot force her to
use a non-existing red(; > 2"). In any red block, if the distande (j) — f (k)| between
two pointsw; andwy is “small”, i.e., smaller than’27~1, then she useds(;)— s« to
label (w;, wi). Thus, in the remaining rounds, she has enough indices between 1 and
| f(j)— f(k)| to label any edgéw;, w) and(w, wy) “inserted” into(w, wy). This shows
that she can survivierounds without arriving at the impossible task of using a non-existing
red color. Claim 3.5 is proved. O

We now finish the proof of the lemma. Sin8ecan survive arbitrarily long games on
a large set (i.e., included in the non-principal ultrafilter) of algebras, she can achieve this
in the ultraproduct as well. Indeed, the winning strategie&ie2(,) provide her with a
winning strategy inG{ (), as follows. We give an outline only; see [HH 97b, Lemma 16]
for more details.

Assume that a finite atomit-network N is already defined and plays an edgéx, y)
with labela (for some atonu € A) and atom, ¢ of 2. Note that every atord of the
ultraproductl is an equivalence class of ansequencéd; : i € w), with eachd; an atom
of 21;. For everyi € w, one can define a pre-netwoN<” in the following way. The base
of N@ is that of N, and the label of every edge &f") is an atomd; of 2; such that the
labeld of this edge inV is the equivalence class @f; : i € w). Itis easy to check that

{i € w: NY is anetwork

is contained in the ultrafilter.

Now 3 considers those particular matches in the gaGg@l;) (i € w) wherev plays
(x,y) € N andb;, ¢; € A; such thab, c are the equivalence classesbf: i € w), (c; :
[ € w). Ifthe set

So = {i € w: 3 rejectsy’s proposal
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is in the ultrafilter, then she rejects in the gaGE(A) as well. If the complemenb\ So of

this setis in the ultrafilter, then she considers two of its subs$gts: the set of those indices
where she is not forced to extend the network, &nis the set of those indices where she is
forced to extend the network. 8 is in the ultrafilter, then she does not have to extend the
network N, as inN, there arglx, z) and(z, y) such thatr = £y (x, z) andc = €y (z, y).

If S> is contained in the ultrafilter, then she can extend the network by using the atoms of
2 determined by the equivalence classes of the elements she uses in theGfdRigs
This completes her move in reponsevtm this round. Her move in the next round (and in
subsequent rounds) is decided in much the same way, but note that she euitithaiing
with her winning strategy already in progress in the ga@ge,,) for a large set (in the
ultrafilter) of indicesn: eitherSg, S1, or S2. The (finitely many) algebras with indices not
in this set can be discarded. O

4. Cylindric algebras

In this section we prove the necessary lemmas for Theorem 2.7. These lemmas are the
cylindric counterparts of the lemmas for tR&-case. The proofs also use similar ideas,
though usually they require more computation. If the transition fRto CA is obvious,
we will omit the technical details.

First we recall that the operaticsmbstitutiors; is defined as follows: for every distinct

i,j <a, s’}x = C;(x - d;;), while sfx = x. The operation o€omposition is defined as
X;y= CZ(S%CZx . Sgczy).

4.1. Rainbows and graphs

Leta > 3 be a fixed natural number. First, for every natural numbere define a class
of colored graphs, from which we will later define the algebtase CA,. The colors
will have a similar role to that in the case of relation algebras. White had two roles, and
this is reflected here by introducing a new shade of white: ivory.nArolored graphis
an undirected irreflexive graph (i.e., if (u, v) is an edge of" then (i) so is(v, u), and
(i) u # v), such that every edge ©fis colored by a unique edge color and sofme- 1)-
tuples have a unique color, too. (In the case whete 3, this means that, v) can carry
both an edge color and a 2-tuple color.) The edge colors are:

greens,g; (0<i <2"),
yellows:y; (1 <i <a — 2),
blacks:b; (1 <i <o —2),
reds:r; (1<i <2"),

ivory: i.
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The colors fora — 1)-tuples are:
e whites:wg (S C 2" +1).

We will write I'(x, y) andI'(azs, ..., ay—1) for the colors of the edgéx, y) and of the
(« —D)-tuple(as, ..., ax—1), respectively. This will not cause confusion in the case 3,
since we will always writé" (ay, . . ., a,—1) for the tuple color, withx explicitly mentioned.
We usually identify a colored graph with its base (set of nodes), but sometimes we write
‘nodes(")’ for the underlying base.

We definecolored graph embeddirig the obvious way: an injective map from a colored
graph into another that preserves all edges and colors, where defined, in both directions.

DEFINITION 4.1. Let 0 < i < 2" and letI" be ann-colored graph consisting of
a nodes,xg, x1,...,xq—2 andy. We calll" ani-cone ifI"(xg, y) = g;, and for every
1< j<a-2T(xj,y) =Y;, and no other edge df is colored green or yellow. The
apex of the cone is, its center is the ordere@ — 1)-tuple (xo, ..., xo—2) and the tint of
the cone is. We will use the notatiorixo, ..., x4—2, y) for a cone. See Figure 4.

We will consider speciat-colored graphs.

y
g/\yl Ya Yoo
X0 x| X, Xg_2

Figure 4  Ani-cone

DEFINITION 4.2. The clasg, consists of alk-colored graph$® with the following
properties.

1. ' is a complete graph.
2. T contains no triangles of the following types (called inconsistent triangles):

e (green, green, green)

o (yellow, yellow, yellow)

e (green, green, ivory)

o (Yi.Vi.b)(l<i<a—2)

o (i, rj,r)unless + j=kori+k=jorj+k=i
e (9i, git1,r;) unlessj = 1.
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3. Forevery-coneg(0 <i < 2")inT"withcenterxo, ..., x4—2), thetuple(xo, ..., x4—2)
is colored by a unique shadeg of white such that € S.

Clearly, G, is closed under isomorphism (denoted=gsand under induced subgraphs.
We are ready to define the cylindric algebegsfor everyn € w. Let

K, = {a : a is a surjective map froma onto somd" € G, with nodes(I") C w}.

Givena € K,, we will denote byl", that element of,, for whicha : « — T',. We define
an equivalence relation on surjective maps to identify maps with isomorphic ranges. Let
a,be K, say,a:a — I'yandb: o — I'y. Then

a~b < a@i)=a(j)iff b@i) =b(j),
andl',(a(@), a(j)) = Tp(b(Q), b(j)), if defined
andl',(a(ko), ..., a(ky—2)) = T'p(b(ko), ..., b(ky_2)), if defined

foralli, j, ko, ..., ke—2 € a. Itis straightforward to check that is indeed an equivalence
relation. Write ] for the ~-equivalence class af,

[a] ={beK,:a~b}.

We definec;} = {[a] : a € K,,). Foreveryi, j € « and [g], [b] € C,, we defineE;; € C,
andT; C 2C,, by:

[a] € E;; iff a(i) = a(j)
and
[a] T;[b] iff al(a\{i}) ~ b[(a\{i}),

that s, if the mapa andb restricted tax\{i} are equivalent in the sense defined above. We
note that

[a]T;[b] < for somec € [a], b(j) = c(j) forall j #i.

It is not hard to check that the structL(r@;,, E;;, T})i jeq is @ cylindric atom structure,
cf. [HMT, 2.7.38, 2.7.40]. We define the cylindric algel#aas the full complex algebra
of (C;l, Ei;, T))i jea: €, is the full Boolean set algebra with urm;, and extra-Boolean
operations

dij = Eij = {[a] : a(i) = a(j)}
and

c;x = {[p] : for some [] € x, [b]T;[a]}.
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We note that an atom df,, is any{[a]} for some ma@ € K,. We will call &, the cylindric
algebra associated with the clagsof graphs.

Next we show that théntersection, cylindrifications, substitutigaeducts,, of €, is
not representable. The idea of the proof is the same as RAhease (Lemma 3.1), though
the details are more complicated.

LEMMA 4.3. For anyn € w, €, is not inRCA,,. Further, its{:, ¢;, s"j i j < a)-
reduct®,, is not representable either.

Proof. To derive a contradiction assume that there is an isomorphisom 2, onto a
set algebra of-ary relations.

LetI'; be the following element af, for eachi < 2" : T;(0,1) = g;, I (0, j) = y;j-1
(for2<j<a-1),Ti(j,k)=ifforl<j<k<o—-Dandl;(1,2,...,0a—1) = won,1.
Leta; be the mamp — T'; such thaty; (j) = j for each 0< j < «, and let4; = {[a;]}.

See Figure 5.
0
9/\’1 V) Yo-2
/ \
1 2 3

W, |

Figure5 Themap; :a — T

Let F; be the following element ofj, for each 0< i < j < 2" such thatj —i <
2" F;.(O, D=rj, F;.(O, 2) =g, F;.(l, 2) =g;, F;.(k, H)=y_1(for0 <k <1land
3<i<a-1), andI‘}(k,l) =i(for2<k<l<a-1). Leta;. be the mapr — F}
such thatz’j (k) = k for each O< k < «. See Figure 6.

SinceAg # 0in ¢, there is(vg, u1, ..., uq—1) € h(Ag)\h(0). Foreveryi < 2", Ag <
CoA;, hence we have elemenigi < 2") such that(v;, u1, ..., uqs—1) € h(A;). For any
0<i < j<2"suchthati —iis a power of 2, we definﬂ’j by recursion ory — i:

i 1 0l 0
A§‘+1 = S5C2A; - S$1S5C2A; 41 - C2(C14; - S1C14;)
and forl < n,

i = slcoA; - s0st 00 Ay AL A
Ai+21+1 = S5C2A; - S1S5C2A;  oi+1 - C2(C1A; - S{C14;) - Ai+21’ Ai+2"
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Figure6 The maIa; S F}

CLAIM 4.4. Foranyi, jsuchthaD <i < j <2"andj — i = 2 for somd < n,

1. AL < ([ai])
2. (vi,vj, U1, uz, ..., Ug—1) € h(AY).

Proof. The proofis by induction o —i. First, letj =i + 1. Leta : « — I" be amap
such thata (k) = k for eachk < o and assume that] € Al ;. By Al ; < slcoA;, we
getthatl'(0,2) = g; andI'(0, k) = y;—1 (for3 <k <a —1). By A§+1 < s?s%czAiH,
we have that"(1,2) = g;41 andI'(1, k) = yx—1 (for 3 < k < a — 1). ThusI'(0, 1)
cannot be green, ivory, yellow dy, (forany 2 < k < o — 2). AlsoI'(p,q) = i (for
2<p<g=<a-1. SinceAiﬁ+1 < Cc2(C14; -s‘l)clA,»), I'(0, 1) cannot bebq either. We
have already seen thB(0, 2) = g; and thatl"(1, 2) = g;+1. Thus the only possible (red)
color for (0,1) isr1. Hencea must ben’fH.

L

Note that(v;, u1, ..., uq—1) € h(A;) and(vj41, u1, ..., ug—1) € h(Aj+1). Then, by

the definition of the operations in set algebras, we gethab; 1, u1, us, ..., ug—1) €
h(ALp)-
Now assume the claim for all j such thatj — i = 2* for somek <. Leta:a — T’

be such that(p) = p for eachp < @ and p] € A§+2,+1. By
A§+2’+1 < S3C2A; - SIS3C2A, 41 - C2(C1A; - SIC1A;),

we get thatl'(0,2) = g;,I'(1,2) = g, o+, '(p,q) = Y4-1 (for 0 < p < 1 and
3<g=<a-1,T'(p,g) =i(for2<p<gqg <a-—1) andl'(0,1) must be red (cf.
the argument above). For any map « — A such that(p) = p for everyp < « and
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[b] € 5%02A§+21 ~sgczA§+2,, we have inductively than (0, 2) = A(1,2) = ry. Hence
the only possible red color for (0,1) i is ry+1. By [b]T2[a], A(0,1) = T'(0, 1), i.e.,
I'©, 1) =rys1. Thusa = a;+21+1.

Finally, (2) for j = i + 2/*1 follows from (1) and the definition of the operations in set
algebras. O

Then (vo, vou-1, U1, U3, ..., Ug—1) € h(Agn,l), Ag,l,l < {[agnfll}, (vpn-1, V21, U1,
Uz, ..., Ug_1) € h(A%',fl), and A%Zﬁl < {[a%f,’fl]} by the claim above. By the proof
of the above claim, we get thétg, vor, uy, us, ..., ue—1) € h(Ag,l) and that the color
of (vg, vor) should bery.. But there is no red colay, for k > 2", henceAg,, =0inc¢,.
Thus(vg, von, u1, us, ..., uq—1) € h(0), whencegvg, uz, uo, us, ..., ug_1) € C1c2h(0) =
h(c1€20) = h(0) — contradiction. Lemma 4.3 has been proved. O

We note that one can define valid equations witnessing the non-representability of the
¢, (n € w) as in theRA-case — we omit the details.

4.2. Games and ultraproduct

It remains to show that any non-trivial ultraproduct of then € w) is representable.

In [HH 97b], two kinds of game are defined. The first type of game is formulated
using colored graphs (see Definition 4.5 below), and the second is played on (networks for)
cylindric algebras (the obvious modification of the game on relation algebras for cylindric
algebras). The two games are equivalent in the sense that the existential3leea
winning strategy in the-colored graph game iff she has a winning strategy in the network
game played on the associated cylindric algetyra Further, it is stated that an atomic
cylindric algebra has a complete representation iff the existential player has a winning
strategy in thevo-long game (on networks).

We will show representability of the ultraproduct by proving that the existential player
can survive longer and longer games@nasn increases. By the equivalence of the two
types of game, she can achieve this in the network games as well. Then the combination of
these winning strategies provide her with a winning strategy in the network game played
on the ultraproduct. Hence the ultraproduct is a representable algebra.

Next we recall the definition of the-colored graph game from [HH 97b].

DEFINITION 4.5. LetG, be the class of-colored graphs defined above.

The gameG] (I < w) is defined as follows. The two playetéand3, build a chain of
elementsofj, :Tg ST C...CIyiflisfinite,orlg CT'1 C...ifl =w.

g € G, is arbitrary with|'g| = «. In each subsequent round0 < i < 1),

e V chooses a grapih from G,, with |®| = «, a single nodg € ® and a colored graph
embedding. : ®\{8} — T;.
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e J responds, if she can, with a finite colored grdph; € G, and embeddinggs :
I - Ijy1andv @ & — T;41 such thae o A andv agree ond\{S}.

3 wins a match of the gam@} if she survives each round. We say thBatas a winning
strategy if she can win all matches.
If A is an embedding, we denote themage of® by 1*(®).

LEMMA 4.6. Any non-trivial ultraproduct® of the,(n € w) overw is in RCA,,.
Hence its{intersection, cylindrifications, substitutiopeeduct is representable as well.

Proof. First we prove tha#l can survive arbitrarily long matches in cofinitely many
n-colored graph games.

CLAIM 4.7. Let! < n be arbitrary fixed elements ef. 3 has a winning strategy i} .

Proof. The proof below is a modification of the proof of the corresponding claim for the
RA-case. Let us assume that we are in gitle round(p < ) and thatl", € G, has been
already constructed.

Again we define the notion ofr@d block Suppose thaty, ..., u,_1 are distinct nodes
of I', and thatl", (u;, u ;) is not green or yellow for anj; j. Let

W={wel,:T,(w,uy)isgreen andl',(w, u;) =Y;_1 for each 2<i < a}.
Suppose that

1. ifTpua, ..., uq—1) =Wy thenS D {i < 2" : Gw € W)I'p(u1, w) = g;},

2. W can be linearly ordere@v; < ... < wy) in the following way: the magf' from
{1,..., ¢} into the set 2 4 1 of indices of green atoms given by, (w;, u1) = g
forevery 1<i < ¢, satisfiesf (i) < f(j) whenever1l<i < j <gq.

Note that the color of evergw;, w;) must be red (sincéw;, w;) occurs in triangles with
two green edges and two (1 </ < o — 2) edges). In such a situation, we will call the
subgraphl” of I', with base{uy, . . ., u,—1}UW ared blockwith center(uy, . . ., ug—1). We
will say thatw; andw; 1 areneighborsand that thelistanceof w; fromw; is| £ (j) — f ()].
We use the notatiofuy, ..., ue—1, w1, ..., wy) for such a red block. See Figure 7.

We note that a red block is a union of cones with the same center and pairwise distinct
tints such that the edges between the apexes are colored with reds.

We now state the following induction hypothesis.

Induction hypothesis For every red block', withbase sefus, ..., ug—1, w1, ..., wy}
and centefus, ..., uy—1) in the above notation, and for every<li < j <k < g,

L Tp(wi, w)) =Ty—pa if fG)— @) <277,
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red

Wy wy

9rn)

Uy Uy uj3 s Uo -1

Figure 7 Ared block

2. Tp(w;, wj) =1, for somer < 2/=1 ... 4 21=0=D,
3. T'p(w;, wy) =1, andT ,(w;, wi) = rg imply T, (w;, wi) = .

Note thatgy < p + 1, since, in each round of the game, at most one new point is created.
The induction hypothesis implies that the largest index on a red atom (to(taheb,)) is
atmost 271 + ... + 2/=7, The initial graphlg trivially satisfies the induction hypothesis.

Assume that in this round] plays® < G, with |®| = «, a single nodes € ®, and
a colored graph embedding: ®\{8} — I',. AsG, is closed under isomorphism, we
may assume that the base®dfisa = {0,1,...,a — 1} and thats = 0. We may also
assume that ifb is a cone with apex 0, then its centeris 2, ..., « — 1). We note that,
forany y1,...,y4—1 € @, if ® is a cone with apex 0 and centery, ..., yo—1), then
01, Ya—1) =12, —1).

3 has to respond with a finit€,.; € G, and embeddingg. : I', — T',41 and
v:® — I'11suchthap(A(i)) = v(@i) foreach 1<i < o — 1.

We can assume that

(*) there is no nodey € I',, such that the colored graph induced by on nodes{y} U
rng(}) is isomorphic tod by an isomorphism extendirig

because otherwisé can respond with",, = T',;1,  the identity, and(0) = y, v(i) =
MDHA<i<a-1.

3 definesl" 1 by extending”,, with a single new node), and lettingu be the identity
map onI',, v(i) = A() (1 <i <« — 1), andv(0) = w. She then colors the new edges
of the graph (those edgés, u) for u € I',\rng(1)); she also colors some — 1)-tuples.

Her strategy in the coloring is as follow3:tries to color the edges first using ivory; then,

if this fails, black; and finally, if all else fails, red with a carefully chosen index. She colors
“new” (e — 1)-tuples — those including and at least one node of,\rng (i), and not
involving green or yellow edges — by whites whose indices are minimal (in the sense that
she useswvg only if there is an-cone in the graph with the above — 1)-tuple as its center
andi € S).
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LetA(i) =v; (1 <i <a—1). The colors of(w, v;) are defined a® (0, i), i.e., these
colors are determined b#/s choice of® andx. Similarly, any(« — 1)-tuple of points from
rng(v) is colored by the same white color (if any) as its pre-image under

We show howa chooses the remaining edge col@rs, w) with w’ € I',\rng (). First,
she colors those edgés’, w) such that eithetw, vy, ..., ve_1) OF (W', v1, ..., Ve_1) iS
not a cone. She colo(s, w’) using ivory if there is na such thafw, v;) and(w’, v;) are
both green. Otherwise she ldts, w’) haveb; for the smallest 1< / < o — 1 such that
there is na for which both(w, v;) and(w’, v;) have colory;. It is easy to check that one
of the above cases holds, and that no inconsistent triangle is created involving the nodes
w, w’, v1, ..., vy_1. Further, no inconsistent triangle is createcuanw’, w” (w’, w” with
the above property), since all triangles with two sides ivory and/or black are consistent.

Now 3 colors those edges(w’,w) (if any) such that both (w,uvy,...,
vg—1) and(w’, v1, ..., vy—1) are cones. Assume there are some. Tihésnthe apex of an
m-cone (say) with centdiy, ..., v,—1). As® € G,, there are no green or yellow edges in
the graph induced ofvy, ..., voa—1}; SOT (v, ..., Ve—1) = ®(1, ..., — 1) = wy for
someS C 2" + 1 withm € S. Let

W ={u € T, : uis the apex of a cone with centéry, ..., va—1)} # 0.

We claim thatW U {vy, ..., v—1} is the base of a red block ifi,. Suppose thaW =
{wy, ..., wy}. Letthe tint of the congw;, vy, ..., v4—1) be denoted by (i): i.e., (w;, v1)
has colog ;) (1 <i < g). By enumeratingV appropriately, we may assume that i& j
thenf (i) < f(j).

We first show thatS > {f(2),..., f(g)}. Certainly,S 2 {f(Q),..., f(g)}, since
I'y € G,. Sincel’,, ® € G,, the only(a — 1)-tuples of elements ofvy, ..., ve—1, w;}
(anyi), and of{vs, ..., ve—1, w}, with a white color are permutations ofy, ..., vy_1).
Thus, ifm = f (i) for somei, the colored graphs induced ¢, . .., vy—1, w} (E ®) and
{v1, ..., vqg—1, w;} are isomorphic. So by (*), we can assume that therirdgf the cone
with apexw is different fromf (i) forany 1<i < ¢g. Asm € S, we are done.

Now we show thatf is one-one. Suppose not. Let, w; € W be distinct such that
f@) = f(j), and letX = {w;, wj, vy, ..., ve—1}. Now |X| = o 4+ 1. Hence, not all of
the nodes in this set were built in a single round. Since only one node is added in each
non-initial round, some node(say) in this set was constructed most recently in the game.
Clearly, whenx was added3 must have chosen the color of some edggey) for some
y € X\{x}. Choose such &a.

Suppose that = vy for somek. NowT), (vi, w;), ') (vi, wj) are both yellow or green,

and3 never uses these colors. $ce {v1, ..., v,—1}. It follows that3 chose the white
colorT',(vy, ..., ve—1) = Ws. Since there was evidently ne-cone at that stage with
center(vy, ..., vy—1), She would have chosehwith m ¢ § — a contradiction, since we

knowm € S.
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Suppose alternatively that= w; (the caser = w; is symmetrical). The graph induced
on {w;, v1, ..., ve—1} involvesa — 1 distinct edges containing; and labeled green or
yellow; becausé@ never chooses these colors, we see that in the round whemrs added,
Vv chose as his move a colored graptginwith nodesf{z, v}, ..., v,,_;}, say, isomorphic
to that induced orfw;, v1, ..., vy_1}, the distinguished nodg and the embedding’ :

v, = u (1 <k <a). Butasf(i) = f(j) and only(a — 1)-tuples without yellow or
green edges are labeled with white colors, the cones on the hases, ..., v,—1} and

{wj,v1, ..., ve—1} are isomorphic. So the extension)dfthat maps: to w; is a colored
graph embedding. Hencawould not have needed to extend the graph by addinBy

her strategy, she would not have done so — another contradiction.

Therefore,f is indeed one-one, and the claim is provéd:U {v1, ..., v4_1} iS a red
block. So it must satisfy the induction hypothesis.

We claim next thaB can find appropriate red colors for eagh, w;) (1 < j < ¢) such
that conditions 1-3 of the induction hypothesis hold (when we repldnep + 1).

Indeed, the same construction as in R&-case works. Leiw; € W be such that
lm — £(j)|is minimal. Ifjm — f(j)| < 2/~P~1, then she let8 1 1(wj, w) = Mp_rgy- If
lm—f(j)| > 2=~ then shelets,11(w;, w) = ry-,-1. Ilabelsthe other edgés, w)
by using a red atom indexed by the sumuif < w; and f(j) < m, orw; < wy and
m < f(j))orthe difference (itv; < wy andf(j) < m, orw; < wjandm < f(j)) ofthe
indices ofthe reds ofwy, w;) and(w, w). Itcan be checked that these red colors exist, and

conditions 1-3 of the induction hypothesis hold fot, ..., vg—1, w1, ..., w, ..., wy).
Finally, 3 colors those (new — 1)-tuples which do not include green or yellow edges.
Let (us, ..., uq—1) be such a sequence. She colors itlgy where
S={i <2":@velps)us, ..., uy—_1,v)is ani-cone with centetus, ..., ug—1)}.

It remains to show that the induction hypothesis holdsifgred blockl™ of T, 4 1. First,
note that if a red block satisfied the induction hypothesigf¢in the previous round) and
itis still ared block inl", 11, then it satisfies the induction hypothesis fot 1 as well. We
make the following observation about “new” red blocks that are not red blocks ¢€f.
above): any new red block must contain the new nadey cannot be in theenterof such a
block, since in that casewould have labeled the center in this round (rop)avith a white
wy for “minimal” S, and the minimality violates the first condition defining ‘red block’; so
w is theapexof the new red block; and its center must(e, . . ., v,—1) because all apex-
base edges must be yellow or green a@mgbver uses these colors. Thus, the only possible
new red block is(vy, ..., Ve—1, W1, ..., W, ..., W), Where(vy, ..., Va—1, W1, ..., Wgy)
was a red block. We have already seen that this red block satisfies the induction hypothesis.
Similarly to theRA-case, one can easily check that the coloring is consistent, i.e., that
l—‘p-&-l € gn-
We can finish the proof as in tHieA-case. The largest index on red colors used by
3 so far is at most 21 + 2/=2 ... 4 2-=r=1 — 2l since, in thekth round, she
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labeled an edgéw, w’) of neighboring pointsw, w’ with r; such thatj < 2/=%-1,
Thus, in the remaining rounds of the garnvecannot force her to use a non-existing red

r; i > 2"). Inany red block, if the distand¢ (i) — f (/)| between two points); andw; is
“small”, i.e., smaller than’2 ?~1, then she useds— 7(j) to label(w;, w;). Thus, in the
remaining rounds, she has enough indices between 1fand— f(j)| to label any edge

(w;, w) and (w, w;) “inserted” into (w;, w;). This shows that she can surviveounds
without arriving at the impossible task of using a non-existing red color. This finishes the
proof of Claim 4.7. O

By the equivalence of network and graph games, the above claim ensuréshihsit
winning strategies for thé-round games on cofinitely many algebras. These winning
strategies provide her with a winning strategy in the game played on the ultraproduct. The
argument here is much the same as inRiAecase; we omit the details. O

4.3. Diagonal-free reducts

In this section we strengthen Theorem 2.7 by showing that {ihtersection,
cylindrificationg-subreduct of representable cylindric algebras of dimension at least three
is not finitely axiomatizable.

We already mentioned th&CA,, is not finitely axiomatizable whenever> 3. Non-
finite axiomatizability holds for the diagonal-free fragmentREEA, as well, a result of
Johnson [Joh 69]. We will give a similar proof below.

Let 2 be anx-dimensional cylindric algebra andbe an element dll. Thedimension
setAa of a is defined as

Aa ={i <« :Cja #a}.

[HMT, Theorem 5.1.51] states that ardimensional cylindric algebra is representable iff
its diagonal-free reduct is representable, provided that the algebra is generated by (
dimensional elements. Below we will show that a similar theorem holds for the appropriate
reducts.

Leta > 3 be fixed. First we define the algebf8§ SRd{.,Ci’dU;i,‘,w}RCAa (n € w)
as follows. Let us recall that we defined atomic cylindric algekiyam Section 4, and that
B, is the{-, c;, s’l i i, j < a}-reduct of¢,. Now letB), be that subalgebra (of similarity
type{-, c;, d;; : i, j < a}) ofthe{-,c;, d;; : i, j < a}-reduct of¢, that is generated by the
atoms of¢,,.

CLAIM 4.8. The aIgebraSB;(n € w) have the following properties:

1. they are generated bigr — 1)-dimensional elements,
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2. they are not representable as set algebras and
3. any non-trivial ultraproduct o‘rB;l(n € w) is representable as a set algebra.

Proof1. It suffices to show that

{la]} = [ Jteillal} 1 i < &)

foranya € K,,. Say,a:a — I'with " € G,.

Clearly,< holds. For the other direction assume thatx — A and [a] # [b].
We show that 4] cannot be an element of the right hand side. Sime@adb
are not equivalent, we can assume that

1.3, j <a)A®G), b(j)) # T'(a@),a(j)) or
2. (Fi1, ..., ig—1 < @)Ab(i1),...,b(iy—1)) #(aliy),...,alig—1)).
In the first case, lek ¢ {i, j}. We claim that p] ¢ ci{[a]}. Assume to
the contrary thatVi, j € a\{k})AbG), b(j)) = ['(a@i),a(j)). But, by the
choice ofk and the assumptio i, j € a\{k})AbG), b(j)) # T'(a@), a(j)),
contradiction. In the second case, choés€ {ii,...,i,—1} and derive a
contradiction in the same way.
2. Recall that the substitutiorsﬁ are defined using ¢; andd;; (i, j < ). Thus
all the elements ofB,, that we defined and used in the non-representability
proof of B, are in fact elements dB;,, cf. the proof of Lemma 4.3. Hence the
same argument works for the non-representabilit3pf
3. The ultraproduct of thés’n(n € w) is clearly representable, since it is a subal-
gebra of a reduct of the ultraproduct of ig(n € w), which is representable

by Lemma 4.6. ]
Now we claim the following variant of [HMT, Theorem 5.1.51].

THEOREM 4.9.Let2 € CA,. Let®B C RO ¢ d;;i <y and assume tha®B is
generated byw — 1)-dimensional elements. Létbe the diagonal-free reduct & and
suppose that is representable as a set algebra. THBris representable as well.

Proof. The easiest way to prove the above theorem is to repeat the proof of [HMT,
Theorem 5.1.51] with minimal and straightforward modifications. Since this proof is rather
technical and long, we just give a sketch (and give the numbers of the corresponding lemmas
from [HMT] in brackets).

Assume that is representable, via the isomorphisias a set algeb@ < (P([[{U; :

i <a}),-Ciiw. We can assume thély = --- = Uy—1 = U and that(d;;) D {s €
*U :s(i) = s(j)} (cf. 5.1.48).
We define the relatio® on U as follows: leti, j < « be distinct indices, then

R ={(u,v) e U x U :s(i) =uands(j) = v for somes € h(d;;)}.
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It can be shown that the definition &f is independent of the choice bandj and thatR
is an equivalence relation dn (see 5.1.49).
Next we let

E={xeC:{Vs,te *U[Vi <a)(s(i),1(i)) € R — (s € h(x) <t € h(x))]},

that is, E consists of those elements &fwhich cannot “distinguish” between equivalent
sequencesand:. It can be shownthdkk € C : Ax # o} C E, and thatF is a subuniverse
of B (cf. 5.1.50). ThusE contains the generators &8, whenceE = B = C. Then
we can factorizd/ by R so that€ can be embedded int@®(*(U/R)), -, C;)i <o Via the
isomorphismf given by

fx)={GG@)/R:i<a)e *(U/R):s € h(x)}
(see 5.1.39). Moreover, the diagonals are preserved:
fdij) ={s € “(U/R) :s() =s())}

because of the definition & and 1.
HenceB can be embedded int@®(*(U/R)), -, C;, d;j)i, j<« as desired. O

Finally we prove Corollary 2.8.

Proof of Corollary2.8: By Claim 4.8, the algebraB;(n € w) are not representable
and are generated k¢ — 1)-dimensional elements. Then by Theorem 4.9, their diagonal-
free reducts’:/n (n € w) are not representable either. On the other hand, the ultraproduct
of e; (n € w) is representable, since it is the diagonal-free reduct of the ultraproduct of
%/n (n € w) which is a representable algebra by Claim 4.8. O

5. Conclusions

Let us mention some open problems.

1. Isthe{,, ;, 1'}-subreduct oRRA finitely axiomatizable?

2. Bredikhin [Bre 77] showed that the,~}-subreduct oRRA is not finitely axiom-
atizable. Is it true for any generalized subreducR&A in which composition and
converse are definable?

3. Find (quasi)equations witnessing the non-finitizabilitySRd. ¢;:i <«}RCA, (for
a > 3).

4. Investigate (non-)finite axiomatizability of subreducts of the clag®és and
SRa*CA,. These classes can be viewediadimensional analogues &RA. See,

e.g., [Mad 83, Mad 89]. For example, we conjecture that the argument for subreducts
of RRA in the current paper can be generalized to prove that for all finite5, if
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K is a generalized subreduct BA,, or of SRa*CA,, in which intersection, relation
composition, and converse are term definable, thes not axiomatizable by any
finite set of first-order sentences, and the equational thedfyiohot finitely based.
It would suffice to show tha®l, ¢ RAs, for each finiten, where2l, is the relation

algebra constructed in Section 3.
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