
Algebra univers. 42 (1999) 165–181
0002–5240/99/030165–17 $ 1.50+ 0.20/0
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Congruence modular varieties with small free spectra

K. A. Kearnes

Abstract. Let A be a finite algebra that generates a congruence modular variety. We show that the free spectrum
of V(A) fails to have a doubly exponentially lower bound if and only ifA has a finitely generated clone andA is
a direct product of nilpotent algebras of prime power cardinality.

1. Introduction

Let A be a finite algebra, and letV(A) be the variety it generates. IfFV(A)(k) is the
k-generated free algebra inV(A), then the function

SpecA(k) := |FV(A)(k)|
is called thefree spectrum ofV(A) (or thefree spectrum ofA).

We will compare functions with the relation�, which is defined by the rule thatf � g
if f (k) ≤ g(k) for all sufficiently largek. In words we say that “g is an upper bound for
f ” or “ f is a lower bound forg”. We useg � f to mean the same thing. We will write
SpecA(k) � 22ck

or SpecA(k) � 22ck
to mean thatthere exists somec > 0 such that the

functions SpecA(k) and 22
ck

are�-comparable. Since the number ofk-ary operations on
a set of size|A| is at most|A||A|k , and since elements ofFV(A)(k) may be identified with

k-ary term operations ofA, it is always the case that SpecA(k) � 22ck
whenA is finite. We

will write SpecA(k) � 22ck
and say that “SpecA(k) does not have a doubly exponential

lower bound” to mean that 22ck 6� SpecA(k).
In this paper we prove that ifA generates a congruence modular variety, then SpecA(k) �

22ck
if and only if A has a finitely generated clone andA is a direct product of nilpotent

algebras of prime power cardinality.
The results of this paper are related to results of Vaughan-Lee [10], Freese and

McKenzie [3], and Berman and Blok [1]. To understand the relationship, fixA to be a
finite algebra of finite type that generates a congruence modular variety. By modifying the
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arguments in [10] it is shown in Chapter 14 of [3] that ifA nilpotent, thenA is finitely
based provided that it factors as a direct product of algebras of prime power cardinality.
The proof revolves around establishing a bound on the rank of commutator terms, and the
hypothesis thatA factors into a direct product of prime power algebras is used in a nontrivial
way to establish the bound. Later, in [1], it is shown that if there is a finite bound on the
rank of commutator terms, then SpecA(k) � 22ck

. What we show here is that forA (as
above) the following are equivalent: (i)A factors as a direct product of nilpotent algebras
of prime power cardinality, (ii)A has a finite bound on the rank of commutator terms, (iii)
SpecA(k) does not have a doubly exponential lower bound. The key idea behind the proof
is to connect these properties with a fourth equivalent property: (iv)A is nilpotent and its
twin monoid is a nilpotent group.

2. The twin monoid

Let A be an algebra, andf (x) andg(x) be unary polynomials ofA. We callf andg

twins if for somen there is an (n + 1)-ary term operationt (x, y) =: ty(x) of A and tuples
a, b ∈ An such thatf (x) = ta(x) andg(x) = tb(x).

LEMMA 2.1. The twin relationτ = {(f, g)|f and g are twins} is a tolerance relation
of the monoid〈Pol1(A); ◦, id〉.

Proof. Recall that a tolerance relation is a reflexive, symmetric, compatible binary rela-
tion. It is clear that the relationτ defined in the lemma is a reflexive, symmetric, binary
relation. To see that it is compatible with composition, assume that (f , g), (f ′, g′) ∈ τ . Then
we can find termst andt ′ and tuplesa, b, a′ andb′ such thatf (x) = ta(x) andg(x) = tb(x)

while f ′(x) = t ′a′(x) andg′(x) = t ′b′(x). Therefore the termty(t ′y′(x)) and the tuplesaa′
andbb′ witness that compositionf (f ′(x)) = ta(t

′
a′(x)) is a twin ofg(g′(x)) = tb(t ′b′(x)).

¨

For any tolerance relationτ on any monoidM , the set of elementsτ -related to 1∈ M is
a submonoid ofM . We call the submonoid of Pol1(A) that consists of twins of the identity
thetwin monoid.It will be denoted TW(A).

LEMMA 2.2. Let A be a finite algebra. There is a single termsy(x) such that each
element ofTW (A) can be represented assa(x) for somea.

Proof. Suppose thatf andf ′ are twins of the identity. Then there are termsty(x) and
t ′y′(x) and tuplesa, b, a′ andb′ such thatid(x) = ta(x), f (x) = tb(x), id(x) = t ′a′(x), and
f ′(x) = t ′b′(x). Now let Tyy′(x) = ty(t

′
y′(x)). Then for the tupleaa′ we haveT ′

aa(x) =
id(id(x)) = id(x), while for the tuplesba′ andab′ we haveTba′(x) = f (id(x)) = f (x)



Vol. 42, 1999 Congruence modular varieties with small free spectra 167

andTab′(x) = id(f ′(x)) = f ′(x). ThereforeTyy′(x) is a term that for different choices of
the parameters representsid(x), f (x) andf ′(x).

The argument we have just given to construct a single term that witnesses membership
in Tw (A) for any two given polynomialsf, f ′ ∈ Tw (A) extends to show that any finite
subset of Tw (A) can be represented by a single term. Since our hypothesis thatA is a finite
algebra implies that Tw (A) is finite, there exists a single termsy(x) and a tupleesuch that
se(x) = id(x) while the polynomials of the formsa(x) represent all elements of Tw (A).

¨

Applications of the twin monoid to free spectra are based on the following result.

THEOREM 2.3. Let A be a finite algebra and letM = Tw (A). For some fixed n it is
the case thatSpecM (k) � SpecA(nk + 1). In particular, if SpecA(k) � 22ck

, then we also
haveSpecM (k) � 22ck

.

Proof. Suppose, for example, that the elementsxy2, yx2 ∈ FV(M )(x, y) are distinct.
Then there existsa, sb ∈ M such that the homomorphism fromFV(M )(x, y) toM induced by

〈x, y〉 7→ 〈sa, sb〉
fails to identifyxy2 andyx2. This says precisely that there is an elementu ∈ A such that
the functionssa ◦ s2

b andsb ◦ s2
a disagree atu. It follows that the homomorphism from

FV(A)(x, y,z) to A induced by

〈x, y,z〉 7→ 〈a, b,u〉
fails to identify the elementssx(sy(sy(z))) andsy(sx(sx(z))).

More generally, this type of reasoning shows that ifn is the length of the tupley that
appears insy(x) then the assignment

ω(y1, . . . , yk) 7→ ω(sy1, . . . , syk
)

is an injective function fromFV(M )(k) to FV(A)(nk + 1) for eachk.
For the last statement of the theorem, we prove the contrapositive. Assume that

SpecM (k) � 22ck
. Then SpecM (k) ≥ 22ck

for some fixedc > 0 and all largek. From the
first part of the theorem we have SpecA(nk + 1) ≥ 22ck

for all largek. Since SpecA(k) is

an increasing function, this is enough to guarantee that SpecA(k) ≥ 22c′k
for c′ = c/2n and

all largek. Thus SpecA(k) � 22ck
, which concludes the proof. ¨

Theorem 2.3 indicates that a detailed understanding of free spectra of monoids would
be useful for more general free spectra questions. We know very little about free spectra of
monoids, but it is not hard to verify the following two facts.
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(1) Any nontrivial monoidM has SpecM (k) � 2k.
(2) If M is a finite monoid, then SpecM (k) � 2ck log(k) iff SpecM (k) � 2ck iff M is

commutative.

One can find in [6] a complete characterization of those finite algebrasA for which
SpecA(k) � 2ck. By (1) and Theorem 2.3, it is necessary that each suchA have a trivial twin
monoid. The result in [6] is that SpecA(k) � 2ck if and only if A has a finitely generated
clone and alllocal twin monoids are trivial. (See [6] for the meaning of this.)

In addition to the easy results about free spectra of monoids that we have just listed, the
following less obvious result has been known for a long time.

THEOREM 2.4. ([2], [9]) Let G be a finite group. IfSpecG(k) � 22ck
, then G is

nilpotent.

Fortunately for us, Theorem 2.4 contains everything we will have to know about the free
spectra of twin monoids for the results of this paper. This is a consequence of the next
theorem and Theorem 12.5 of [4] (which proves that ifA is a finite algebra in a congruence
modular variety and SpecA(k) � 22ck

, thenA is nilpotent).

THEOREM 2.5. If A is a finite nilpotent algebra in a congruence modular variety, then
Tw (A) is a group.

Proof. The assumption thatA generates a congruence modular variety implies that1 /∈
typ {A}, according to Theorem 8.5 of [4]. Therefore, Lemma 4.2 and Theorem 4.3 of
[5] prove that idempotent twin polynomials have ranges of the same cardinality. So, if
se(x) = id(x) andsa(x) = f (x) ∈ Tw (A), then any idempotent iteratef k of f is a twin of
the idempotent polynomialidk = id. Idempotent twins have ranges of the same cardinality,
sof k is a surjective mapping fromA to A. This forcesf to be a permutation ofA. ¨

COROLLARY 2.6. If A is a finite algebra in a congruence modular variety and
SpecA (k) � 22ck

, thenA is a nilpotent algebra whose twin monoid is a nilpotent group.

This corollary makes it clear that in this paper we will be dealing primarily with nil-
potent algebras that generate congruence modular varieties. The following fact, which is
Exercise 7.6 of [3], will be used throughout the rest of the paper.

THEOREM 2.7. A congruence modular variety generated by a nilpotent algebra is
congruence permutable.

The following result helps to understand twin monoids of algebras in congruence per-
mutable varieties.

If K is a class of algebras, let Tw(K) denote{Tw (K )|K ∈ K}.
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THEOREM 2.8. If K is a class of algebras that generates a congruence permutable
variety, thenTw (HSP(K)) ⊆ HSP(Tw (K)).

Proof. We prove the theorem through a sequence of claims.

CLAIM 2.9. Let d(x, y, z) be a Mal’tsev term forV(K). If B ∈ V(K) and e and f are
twin polynomials ofB, then there is a polynomialP ∈ Tw (B) such thatPe = d(e, e2, f e).

Sincee andf are twins there is a termty(x) and tuplesa andb such thate(x) = ta(x)

andf (x) = tb(x). DefineTyz(x) = d(x, ty(x), tz(x)) wherez is a tuple of new variables.
Note thatTaa(x) = id(x) andTab(x) = d(x, e(x), f (x)), sod(x, e(x), f (x)) is a twin of
the identity. It is this polynomial that we take forP . ClearlyPe = d(e, e2, f e), as desired.

CLAIM 2.10. If C, D ∈ V(K), then a surjective homomorphism h:C → D induces a
surjective homomorphism̂h: Tw (C) → Tw (D).

The mapĥ is the restriction to Tw(C) of the map from Pol1(C) to Pol1(D) that assigns
to a polynomialt (x, a) of C the polynomialt (x, h(a)) of D. If ta(x) = id(x) on C and
tb(x) ∈ Tw (C), then clearlyth(a)(x) = id(x) onD andth(b)(x) ∈ Tw (D). Thush induces
a function from Tw(C) to Tw (D). It is easy to see that this function preserves composition.
The nonobvious part of Claim 2.10 is that this homomorphism is surjective ifh is.

Chooseg ∈ Tw (D), and assume thatty(x) is a term for whichtc(x) = id(x) and
td(x) = g(x) for certain tuplesc, d in D. Let a andb be preimages underh for c andd
respectively. Lete(x) = ta(x) andf (x) = tb(x). By construction we havêh(e) = id and
ĥ(f ) = g. Claim 2.9 guarantees that there is aP ∈ Tw (C) such thatPe = d(e, e2, f e).

Note that, sincêh(e) = id, we have

ĥ(P ) = ĥ(P )ĥ(e) = ĥ(P e) = ĥ(d(e, e2, f e)) = d(id, id2, g id) = g.

ThusP ∈ Tw (C) is an element that̂h maps tog.

CLAIM 2.11. If E,F∈ V(K),andE is a subalgebra ofF, thenTw (E) is a homomorphic
image of a submonoid ofTw (F).

To prove this, chooseg ∈ Tw (E). There is a termty(x) and tuplesc, d from E such that
tc(x) = id(x) on E andtd(x) = g(x). SinceE ⊆ F , bothe(x) = tc(x) andf (x) = td(x)

are polynomials ofF, and they satisfye|E = id andf |E = g respectively. LetP ∈ Tw (F)

be such thatPe = d(e, e2, f e). In particular,P |E = Pe|E = d(e, e2, f e)|E = f |E = g.
Thus every elementg ∈ Tw (E) is the restriction toE of someP ∈ Tw (F). Let H be the
monoid consisting of allP ∈ Tw (F) whose restriction toE agrees with someg ∈ Tw (E).

H is a submonoid of Tw(F) and restriction toE determines a homomorphism fromH onto
Tw (E). This establishes Claim 2.11.
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CLAIM 2.12. Assume that
∏

i∈I Gi ∈ V. Then Tw (
∏

i∈I Gi ) is embeddable in∏
i∈I Tw (Gi ).

By Claim 2.10, the canonical projectionsπj :
∏

i∈I Gi → Gj induce homomorphisms

π̂j : Tw

(∏
i∈I

Gi

)
−→ Tw (Gj ).

These homomorphisms determine a natural homomorphism

∏
π̂i : Tw

(∏
i∈I

Gi

)
−→

∏
i∈I

Tw (Gi ).

Since the kernel of̂πj consists of those pairs of elements in Tw(
∏

i∈I Gi ) that agree modulo
πj , it follows that the kernel of

∏
π̂i consists of those pairs of elements in Tw(

∏
i∈I Gi )

that agree modulo
∧

πi = 0. Thus, a pair is in ker(
∏

π̂i) only if it is a pair of equal
polynomials. Hence

∏
π̂i is an embedding.

Through Claims 2.10, 2.11 and 2.12, we have shown that ifK generates a congruence
permutable variety, then

• Tw (H(K)) ⊆ H(Tw (K)),
• Tw (S(K)) ⊆ HS(Tw (K)), and
• Tw (P(K)) ⊆ SP(Tw (K)).

Therefore

Tw (HSP(K)) ⊆ H(HS(SP(Tw (K)))) = HSP(Tw (K)).

¨

We do not know how general the inclusion

Tw (HSP(K)) ⊆ HSP(Tw (K))

is. It does hold in some situations whereK does not generate a congruence permutable vari-
ety. For example, ifK is any class ofboundedlattices (meaning that there are equationally
definable constants 0 and 1 denoting the bottom and top elements), then the inclusion

Tw (HSP(K)) ⊆ HSP(Tw (K))

holds. This is because if a latticeL has a top and a bottom element, then the twin monoid
coincides with the monoid of all unary polynomials. (To see this, note that Tw(L) ⊆
Pol1(L)) trivially. The reverse inclusion holds because ifp(x) ∈ Pol1(L) thenp(x) =
(p(x)∧1)∨(x∧0) is a twin of(p(x)∧0)∨(x∧1) = id(x).) Claims 2.10, 2.11 and 2.12 of
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Theorem 2.8 hold in any variety whose algebras satisfy Tw(A) = Pol1(A), so the theorem
itself holds. (The reason this statement is true is that the proofs of Claims 2.10 and 2.11
involve a pair (e,f ) of twins that are modified to a pair(e, Pe)=(d(e, e2, e2), d(e, e2, e2, fe))
of twins whereP is a twin of the identity. Thus, the pair of twins (id, P ) can substitute
for (e, f ) in any situation wheree “acts like the identity”. Roughly, this has the effect of
modifying f , which may not be a twin of the identity, to a polynomialP that is a twin of
the identity. But in a variety where all unary polynomials are twins of the identity, there is
no need to make this modification.)

Contrary to the situation for bounded lattices, the theorem does not hold for the variety of
all unbounded lattices. (Unboundedmeansnot necessarily bounded.) The reason for this is
that ifF is an infinitely generated free lattice, then it can be shown via Whitman’s solution to
the word problem for lattices that Tw(F) consists of the identity function alone. Therefore,
if K = {F}, thenHSP(Tw (K)) is the variety of trivial monoids. Now, sinceHSP(K) is
the class of all lattices, to show that Tw(HSP(K)) 6⊆ HSP(Tw (K)) it suffices to exhibit
one lattice whose twin monoid is not the trivial monoid. This is easy: any nontrivial lattice
with a top and a bottom element will do, since Tw (L ) = Pol1(L) in this situation.

3. Prime power factorization

We prove our main results in this section. Before getting to them we have to introduce
one more concept.

Let A be a finite algebra that generates a congruence modular variety, and assume
that δ < θ are congruences onA. We will say that the congruence quotient〈δ, θ〉 has
characteristic p,wherep, is a prime, if the size of eachθ/δ-class inA/δ is a power ofp.

Now suppose thatδ ≺ θ and that [θ, θ ] ≤ δ. (These expressions mean that〈δ, θ〉 is an
abelian prime quotient of Con (A).) Thenθ/δ is a minimal abelian congruence ofA/δ. There
is a natural way, described in Chapter 9 of [3], of constructing a finite simple module on the
product of theθ/δ-classes. Since every finite simple module has prime power cardinality
it follows that allθ/δ-classes have size that is a power of some fixed primep. This shows
that any abelian prime quotient has characteristicp for some primep.

In this section we deal with finite nilpotent algebras in congruence modular varieties.
It is shown in Corollary 7.5 of [3] that congruences on such algebras areuniform, which
means that all blocks have the same size. For congruence uniform algebras the notion of
indexmakes sense for any pair of congruencesδ < θ : the index [θ : δ] is the number of
δ-classes in anyθ -class. In the congruence uniform situation,〈δ, θ〉 has characteristicp
precisely when [θ : δ] is a power ofp.

In a congruence uniform algebra, if we have a chain of congruence coverings

δ = α0 ≺ α1 ≺ · · · ≺ αn = θ,
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then

[θ : δ] = [αn : αn−1] · · · [α1 : α0].

Therefore〈δ, θ〉 has characteristicp if and only if each prime quotient in the chain has
characteristicp. In particular, these remarks imply the following theorem.

THEOREM 3.1. A finite nilpotent algebra in a congruence modular variety has cardi-
nality that is a power of the prime p if and only if all its prime quotients have characteristic p.

We will use tame congruence theory (see [4]) as a tool for detecting the characteristic of
a prime quotient.

LEMMA 3.2. Let A be a finite nilpotent algebra that generates a congruence modular
variety. Ifδ ≺ θ in Con(A) and the characteristic of〈δ, θ〉 is p, then the cardinality of any
〈δ, θ〉-minimal set is a power of p.

Proof. Let’s first argue that no generality is lost by assuming thatδ = 0. The assumptions
onA imply that typ(δ, θ) = 2, and therefore any minimal setU ∈ MinA(δ, θ) hasp-power
cardinality for some primep. (These claims can be pieced together from Theorems 4.31,
7.2, 8.5, and 13.9 of [4].) SinceA|U is nilpotent and generates a congruence modular
variety, it is an algebra to which Theorem 3.1 applies: all of its prime quotients have
characteristicp. In particular, sinceδ|U < 1U the index [1U : δ|U ] is a power ofp, which
means that the quotient algebraA|U/δ|U has cardinality which is a power ofp. The universe
of A|U/δ|U is U/δ|U , which is a〈0, θ/δ〉-minimal set ofA/δ. Therefore the cardinality of
the 〈0, θ/δ〉-minimal setU/δ|U is a power of same primep that we started with. (These
claims follow from Theorem 2.8 (2), Lemma 2.16 (2) and Lemma 4.36 of [4].) Finally,
since the characteristic of〈δ, θ〉 equals the characteristic of〈0, θ/δ〉 by definition, we may
replaceA byA/δ and〈δ, θ〉 by 〈0, θ/δ〉, change notation, and assume henceforth thatδ = 0.

If N is a〈0, θ〉-trace ofU ∈ MinA(0, θ), then the facts thatN is a congruence class of
A|U and thatA|U is congruence uniform of prime power cardinality imply thatN has prime
power cardinality for the same prime. So what we have left to show is this: if 0≺ θ , then
the characteristic of〈0, θ〉 divides the cardinality of any〈0, θ〉-trace. One way to see this is
to note that anyθ -class is anE-trace with respect toθ (meaning that it is the intersection of a
θ -class with the image of an idempotent polynomial — takeid(x) for the polynomial), and
thatθ is an abelian minimal congruence of an algebra in a congruence permutable variety.
These facts together with Theorem 4.5 of [8] show that anyθ -class is amultitrace of type2.
According to the structure theorem for such objects, given in Theorem 3.10 of [7], this
means that the size of aθ -class is a power of the size of any〈0, θ〉-trace. Therefore, since
θ -classes and〈0, θ〉-traces each have prime power cardinality, the primes must agree. This
concludes the proof. ¨
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LEMMA 3.3. LetA be an algebra that generates a congruence modular variety. Letα

be a central congruence onA, and letλ be an element ofTw (A). If V is anα-class, andλ
fixes an element ofV , thenλ fixes every element ofV.

Proof. Assume that 0∈ V is fixed by λ, that se(x) = id(x), and sa(x) = λ(x). If
(0, b) ∈ α, then sinceα is a central congruence we can change the underlined entries from
0 tob in

se(0
¯
) = 0 = sa(0

¯
)

and preserve the equality of the left and right sides. This yields

se(b
¯
) = sa(b

¯
),

soλ(b) = sa(b) = se(b) = b. ¨

Let h : A → A/α be the natural homomorphism. We will use the notationα̂ to denote
the kernel of the induced homomorphism̂h : Tw (A) → Tw (A/α) that we described in
the proof of Claim 2.10 of Theorem 2.8. To be explicit,(κ, λ) ∈ α̂ providedκ(x) ≡α λ(x)

for all x ∈ A.

LEMMA 3.4. Let A be a finite nilpotent algebra that generates a congruence modular
variety. Assume that

(1) δ ≺ θ in Con(A)

(2) λ ∈ Tw (A) has prime power order, and

(3) (id, λ) ∈ θ̂ − δ̂.

Then the order ofλ is a power of the characteristic of〈δ, θ〉.
Proof. Factoring moduloδ does not affect the hypotheses or conclusion, so there is no

loss of generality in assuming thatδ = 0.

Let p be the prime that is the characteristic of〈0, θ〉 and letq be the prime for which
λqk = id for somek. The assumptions imply thatλ maps everyθ -class into itself,λ permutes
eachθ -class, andλ is not the identity on someθ -class. LetV be aθ -class on whichλ is
not the identity.V is a union ofλ-orbits, each of which has sizeqr for somer. The size of
V is a power ofp, so if q 6= p thenλ must have a fixed point onV . But now Lemma 3.3
implies thatλ is the identity onV, contrary to the choice ofV . It must be thatq = p. ¨

LEMMA 3.5. Let A be a finite nilpotent algebra that generates a congruence modular
variety. If θ is a minimal congruence onA, thenθ̂ is a nontrivial abelian congruence of
Tw (A). If θ is minimal and〈0, θ〉 has characteristicp, then so does〈0, θ̂〉.
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Proof. Let d(x, y, z) be a Mal’tsev term forA. To see thatθ̂ > 0, choose(u, v) ∈
θ − 0. Thenf (x) = d(x, u, v) is a twin ofd(x, u, u) = id(x) andf (x) = d(x, u, v) ≡θ

d(x, u, u) = id(x) for all x ∈ A. This shows that(id, f ) ∈ θ̂ . Thus, to prove that̂θ is
nontrivial it is enough to observe thatf 6= id (sincef (u) = v 6= u).

Now we show thatθ̂ is abelian. Since a group congruence is abelian if and only if
the elements congruent to the identity element commute with each other, we must prove
that if e, f ∈ Tw (A) satisfy (id, e), (id, f ) ∈ θ̂ , then ef = f e. Note first that since
(id, e), (id, f ) ∈ θ̂ we havee(x) ≡θ x andf (x) ≡θ x for all x ∈ A, so bothe andf map
everyθ -class into itself. Therefore, to prove that they commute it will suffice to prove that
they commute on anyθ -class.

Select aθ -classV and pick 0∈ V. Set 1= e(0) ≡θ 0. Sincee(x) is a twin of id(x),

andd(x, 1, 0) is a twin of d(x, 0, 0) = id(x), it follows from Lemma 2.1 thate′(x) =
d(e(x), 1, 0) ∈ Tw(A). Moreover,e′(0) = d(1, 1, 0) = 0, so according to Lemma 3.3
we must havee′(x) = x on V . Henced(x, 1, 0) is the inverse ofe(x) on V . Similarly,
if we define 2= f (0) ≡θ 0, then we get thatd(x, 2, 0) is the inverse off (x) on V . To
prove thate andf commute onV it is enough to prove that their inversesd(x, 1, 0) and
d(x, 2, 0) commute onV . This follows trivially from the fact, proved in Chapter 5 of [3],
that onV the operationd(x, y, z) interprets asx − dy + z with respect to some abelian
group operations onV (Sinceθ is abelian). Thus, onV , the polynomials we are interested
in are justd(x, 1, 0) = x − 1 + 0 andd(x, 2, 0) = x − 2 + 0, which are translations with
respect to the abelian group structure onV . Since translations commute, we haveef = f e

onV .
Finally we must show that the characteristic of〈0, θ̂〉 is the same as〈0, θ〉. LetN be the

normal subgroup of Tw (A) consisting of elements that areθ̂ -related toid. We need to show
thatN is ap-group for the primep that is the characteristic of〈0, θ〉. If this is not the case,
thenN contains an elementλ of orderq whereq is a prime different fromp. Lemma 3.4
proves that this is impossible. ¨

COROLLARY 3.6. Let A be a finite nilpotent algebra that generates a congruence
modular variety. Tw (A) is solvable. If, moreover,A is a direct product of algebras of
prime power cardinality, thenTw (A) is nilpotent.

Proof. Choose a sequence of congruences

0 = θ0 ≺ θ1 ≺ · · · ≺ θn = 1.

This chain induces a chain

0 = θ̂0 < θ̂1 < · · · < θ̂n = 1

of congruences on Tw (A). Moreover, since [1, θi+1] ≤ θi for eachi, Lemma 3.5 applied
to A/θi shows that [̂θi+1, θ̂i+1] ≤ θ̂i in Tw (A). This proves that Tw (A) is solvable.
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Now suppose thatA = A1 ×· · ·×Ak where eachAi has prime power cardinality. Then
for K = {A1, · · · , Ak} we have thatA ∈ HSP(K). Since we proved in Theorem 2.8 that
Tw (HSP(K)) ⊆ HSP(Tw (K)), to prove that Tw(A) is nilpotent it will suffice to prove
that each Tw(Ai ) is nilpotent.

Fix oneAi and pick a chain of congruences as above:

0 = θ0 ≺ θ1 ≺ · · · ≺ θn = 1.

SinceAi has cardinality that is a power of some primep, therefore each〈θi, θi+1〉 has
characteristic equal to thisp. From what we have proved already, this chain induces a chain

0 = θ̂0 < θ̂1 < · · · < θ̂n = 1

in Con(Tw (Ai )) where each〈θ̂i , θ̂i+1〉 has characteristic equal top. Hence Tw(A)i is a
p-group. Sincep-groups are nilpotent, the proof is complete. ¨

We now prove a partial converse to the second claim of Corollary 3.6. The full converse
is proved in Theorem 3.12.

THEOREM 3.7. Let A be a finite, subdirectly irreducible, nilpotent algebra that gen-
erates a congruence modular variety. IfTw (A) is nilpotent, thenA has prime power
cardinality.

Proof. Let µ denote the monolith ofA and letp be the characteristic of〈0, µ〉. If
every prime quotient ofA has characteristicp, then the cardinality ofA is a power of
p. Therefore, to establish the theorem, we must prove that ifA has a prime quotient of
characteristicq 6= p, then Tw (A) is not nilpotent. Assume that〈δ, θ〉 is a prime quotient
of A with characteristicq 6= p.

CLAIM 3.8. Tw (A) has an elementλ of order q.

Since the characteristic of〈δ, θ〉 is q, the characteristic of〈δ̂, θ̂〉 is alsoq, as one can
deduce by applying Lemma 3.5 toA/δ. Thereforeq divides the order of Tw (A). Cauchy’s
Theorem implies that there is aλ ∈ Tw (A) of orderq.

CLAIM 3.9. If λ ∈ Tw (A) has orderq, then there existu, v, w ∈ A andg ∈ Pol1(A)

such that

(1) λ(u) = v,

(2) (u, v) /∈ µ,

(3) (g(u), g(v)) = (u, w) ∈ µ − 0, and

(4) ∀x 6= y ∈ A
(
(x, y) 6∈ CgA(g(x), g(y))

)
.
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Chooseθ minimal so thatλ(x) ≡θ x. (Equivalently,θ is a congruence minimal for the
property that̂θ contains(id, λ).) Sinceλ 6= id, we do not haveθ = 0. Thus there is aδ ≺ θ.

By the minimality ofθ, there is an elementu ∈ A that has the property thatλ(u) 6≡δ u.

This is the element we take foru, andλ(u) is the element we take forv. Already we have
that (1) holds, and that(u, v) ∈ θ − δ.

The characteristic of〈δ, θ〉 must beq 6= p. This follows from Lemma 3.4 and the facts
that the order ofλ is q and(id, λ) ∈ θ̂ − δ̂. In particular, we cannot have〈δ, θ〉 = 〈0, µ〉
since the characteristics differ. So, if we had(u, v) ∈ µ ≤ δ, then we would contradict
(u, v) /∈ δ. We conclude that (2) holds.

Congruence uniformity allows us to choose an elementw ∈ A for which(u, w) ∈ µ−0.

We need to locate a polynomialg for which (3) and (4) hold. LetU be a〈δ, θ〉-minimal set,
and leth be a unary polynomial ofA for whichh(A) = U and(h(u), h(v)) ∈ θ |U −δ. Such
anh exists by Theorem 2.8 (4) of [4]. As is the case for any algebra, ifa, b ∈ A, then the set
of all pairs of the form(k(a), k(b)), wherek runs over all unary polynomials ofA, is equal
to the diagonal subalgebra ofA2 generated by(a, b). In a congruence permutable variety
the diagonal subalgebras ofA2 are precisely the congruences, so the set of all(k(a), k(b))

is precisely CgA(a, b). Thus, in the particular case where(a, b) = (h(u), h(v)), the fact
that CgA(h(u), h(v)) ≥ µ = CgA(u, w) implies that there is a unary polynomialk such
that(kh(u), kh(v)) = (u, w). We takeg = kh. It is automatic that (3) holds.

To see that (4) holds, assume to the contrary that there exist distinct elementsx, y ∈ A

such that(x, y) ∈ CgA(g(x), g(y)). Fix suchx and y and letβ = CgA(g(x), g(y)) =
CgA(x, y). Sincex 6= y it is possible to chooseα ≺ β. Then, since(x, y) ∈ β and
(g(x), g(y)) /∈ α we get thatg(β) = kh(β) 6⊆ α. In particular,h(β) 6⊆ α. From this, and
Definition 2.5 of [4], the seth(A) = U ∈ MinA(δ, θ) contains an〈α, β〉-minimal set. But
algebras induced on minimal sets ofA are E-minimal, by Theorems 4.31, 7.2, and 8.5 of
[4], and there are no proper containments between induced E-minimal algebras. ThusU

is itself an〈α, β〉-minimal set, and moreover by Theorem 2.8 (1) of [4] we conclude that
MinA(δ, θ) = MinA(α, β). Next, sinceg(β) = kh(β) 6⊆ α andU = h(A), it follows that
k(β|U) 6⊆ α. Hence, by Theorem 2.8 (3) of [4] we havek(U) ∈ MinA(δ, θ). But we chose
k so that it contains distinctµ-related elementsu andw in its range. Thus,µ|k(U) > 0, and
it follows thatµ restricts nontrivially to any〈δ, θ〉-minimal set. But this implies that each
〈δ, θ〉-minimal set contains a〈0, µ〉-minimal set. As already noted, such a containment
cannot be proper, so we are led to

MinA(α, β) = MinA(δ, θ) = MinA(0, µ).

Now we have a characteristic problem: Lemma 3.2 proves that, since the characteristics of
〈0, µ〉 and〈δ, θ〉 differ, their minimal sets do not have the same size. This contradiction
establishes (4), and completes the proof of Claim 3.9.
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CLAIM 3.10. If u, v, w andg have the properties listed in Claim3.9, andd(x, y, z)

is a Mal’tsev term forA, then6(x) := d(x, g(x), u) is a permutation ofA that fixes all
elements of theµ-class ofu, maps theµ-class ofv into itself, and moves all elements of the
µ-class ofv.

Suppose that6(a) = 6(b). Let θ = CgA(g(a), g(b)). We have

a′ := d(a, g(a), u) = 6(a) = 6(b) = d(b, g(b), u) ≡θ d(b, g(a), u) =: b′.

By Corollary 7.4 of [3] the mappingd(x, g(a), u) is a polynomial permutation that has a
polynomial inverse. If the inverse isp(x), then

a = p(a′) ≡θ p(b′) = b.

Hence(a, b) ∈ θ = CgA(g(a), g(b)). By property (4) of Claim 3.9 we conclude thata = b.
This shows that6 is 1-1, and therefore is a permutation ofA.

Arbitrarily chooseu′ from theµ-class ofu. Then, by the properties ofg, we have that
g(u′) = g(u) = u. Thus6(u′) = d(u′, u, u) = u′, and so6 fixes every element ofu/µ.

Finally, choosev′ from theµ-class ofv. By the properties ofg we haveg(v′) = g(v) =
w ≡µ u, so6(v′) = d(v′, w, u) ≡µ d(v, u, u) = v. This proves that6 maps theµ-class
of v into itself. If 6(v′) = v′, then

d(v′, w, u) = 6(v′) = v′ = d(v′, u, u).

Applying the 1,µ-term condition to the underlined position we get that

u = d(w, w, u) = d(w, u, u) = w.

But u 6= w, so we cannot have6(v′) = v′. Thus,6 fixes no element ofv/µ.

CLAIM 3.11. No q-Sylow subgroup ofTw (A) is normal.

The polynomial permutation6−1 ◦ λ ◦ 6 has orderq, since it is a conjugate ofλ andλ

has orderq. Moreover,λ is a twin of id, so6−1 ◦ λ ◦ 6 is a twin of6−1 ◦ id ◦ 6 = id
by Lemma 2.1. This shows that bothλ and6−1 ◦ λ ◦ 6 are elements of Tw (A), and both
have orderq.

If a q-Sylow subgroup was normal it would be the uniqueq-Sylow subgroup, and this
would force it to contain all elements of Tw (A) whose order is a power ofq. In particular,
it would contain bothλ and 6−1 ◦ λ ◦ 6, and therefore it would contain the element
0 := λ−1 ◦ 6−1 ◦ λ ◦ 6. If so, the order of0 would be a power ofq. We show that this is
not the case.
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Let’s evaluate0 atu:

Evaluation : Justification :

0(u) = λ−1 ◦ 6−1 ◦ λ ◦ 6(u) Defn. of 0

= λ−1 ◦ 6−1 ◦ λ(u) 6(u) = u

= λ−1 ◦ 6−1(v) λ(u) = v

≡µ λ−1(v) 6−1(v) ≡µ v

= u λ−1(v) = u

This proves two things. First, since0 is a polynomial that mapsu back into itsµ-class,
therefore0 maps the entireµ-class ofu into itself. Second,0 movesu. For if not, then in
the above derivation we would have equality at the beginning and end. This would force
equality on the fourth line:6−1(v) = v. But this contradicts the part of Claim 3.10 that
asserts that6 has no fixed pointsµ-related tov.

Thus0 acts onu/µ in a way that movesu. If 0 has order that is a power ofq, then the
fact thatu/µ has cardinality that is a power ofp, andq 6= p, means that0 must have a
fixed point onu/µ. Now we have a contradiction to Lemma 3.3:0 ∈ Tw (A) has a fixed
point onu/µ, but does not fix all elements ofu/µ. This proves the claim.

Claim 3.11 finishes the proof of the theorem, because all Sylow subgroups of a nilpotent
group are normal. ¨

Two varietiesV1 andV2 in the same language areindependentif there is a binary term
t (x, y) for which

V1 |= t (x, y) = x and V2 |= t (x, y) = y.

When this is so, thenV1 intersectsV2 trivially, and any algebra in the joinV1 ∨ V2 factors
as a direct product of an algebra inV1 and an algebra inV2; moreover, all homomorphisms
between algebras inV1 ∨V2 respect these direct factorizations. We writeV1 ×V2 to denote
the join ofV1 andV2 when they are independent.

It is not difficult to prove that ifV1 andV2 are subvarieties of a congruence permutable
variety andV1 ∩ V2 is trivial, thenV1 andV2 are independent. We will use this fact in
the proof of the next theorem. (We only use the fact in the situation whenV1 andV2 are
subvarieties of anilpotentcongruence permutable variety. In this situation the fact is a
special case of Theorem 11.3 of [3]. However, nilpotence is not a necessary hypothesis.)

THEOREM 3.12.Let A be a finite nilpotent algebra that generates a congruence
modular variety.A factors into a direct product of algebras of prime power cardinality if
and only ifTw (A) is nilpotent.

Proof. We proved in Corollary 3.6 that ifA factors into a direct product of algebras of
prime power cardinality, then Tw (A) is nilpotent. Here we prove the reverse direction, so
assume that Tw (A) is nilpotent.
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For each primep, letKp denote the class of subdirectly irreducible homomorphic images
of A whose monolith has characteristicp. LetVp denote the subvariety ofV(A) generated
by Kp.

CLAIM 3.13. For each prime p, each finite algebra inVp has order that is a power of p.

To show this, first note that by Claim 2.10 of Theorem 2.8 the twin group of each member
of Kp is a homomorphic image of Tw (A), which we assumed to be a nilpotent group. There-
fore the twin groups of members ofKp are nilpotent. SinceKp consists of subdirectly irre-
ducible algebras whose monoliths have characteristicp, it is a consequence of Theorem 3.7
that all members ofKp have cardinality that is a power ofp. For eachS ∈ Kp we can
apply Lemma 3.5 repeatedly to successive quotients to obtain that the twin group Tw (S) is
ap-group for the samep. As proved in Theorem 2.8, Tw(HSP(Kp)) ⊆ HSP(Tw (Kp)),

therefore any finite algebra in the varietyVp has a twin group that is ap-group for thisp.
Now it cannot be that some finiteC ∈ Vp has cardinality divisible by a primeq 6= p, for
if this happened thenq would appear as the characteristic of some prime quotient ofC,
and thus it would appear as the characteristic of some congruence quotient of thep-group
Tw (C). This proves the claim.

Claim 3.13 implies that ifp andq are distinct primes, then no non-trivial algebra inVp has
cardinality equal to the cardinality of an algebra inVq . ThusVp andVq intersect trivially. As
observed directly before the statement of the theorem, this means thatVp ∨Vq = Vp ×Vq .

Moreover, ifr is a prime different from bothp andq, then since the order of a finite algebra
in Vr is a power ofr and the order of a finite algebra inVp ×Vq is a product ofp’s andq ’s,
we get thatVr intersects trivially withVp × Vq . Thus

(Vp ∨ Vq) ∨ Vr = (Vp × Vq) ∨ Vr = (Vp × Vq) × Vr .

Generalizing this, ifp1, . . . , pk is the sequence of primesp for which Kp is nonempty,
then the variety generated by the union of theKpi

’s is

Vp1 × · · · × Vpk
.

In particular, sinceA is a subdirect product of algebras in∪k
i=1Kpi

, we get thatA is in this
variety. HenceA is a product of algebras of prime power cardinality. ¨

A commutator termfor an algebraA is a termω(x1, . . . , xr , z) such that

A |= ω(x1, . . . ,
i-th
z , . . . , xr , z) = z

for eachi. We call a commutator termω(x1, . . . , xr , z) nontrivial if

A 6|= ω(x1, . . . , xr , z) = z.

Therankof a nontrivial commutator term is the numberr that appears in these equations.
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THEOREM 3.14.Let A be a finite nilpotent algebra of finite type that generates a
congruence modular variety. The following conditions are equivalent.

(1) SpecA(k) � 22ck
.

(2) Tw (A) is nilpotent.
(3) A factors as a direct product of algebras of prime power cardinality.
(4) A has a finite bound on the rank of nontrivial commutator terms.
(5) SpecA(k) � 2p(k) for some polynomialp(k).

Proof. Corollary 2.6 proves that (1)⇒ (2). Theorem 3.12 proves that (2)⇒ (3).
Theorem 14.9 of [3] proves that (3)⇒ (4). (The implication (3)⇒ (4) is the only place
where we need to assume thatA has finite type.) The implication (4)⇒ (5) is established
in the proof of Theorem 1 of [1]. The implication (5)⇒ (1) is trivial. ¨

In fact, it is easy to characterize those algebras in congruence modular varieties that have
small free spectrum without assuming finite type, as we did in Theorem 3.14.

COROLLARY 3.15. LetA be a finite algebra for whichtyp {V(A)} ∩ {1, 5} = ∅. Then
SpecA(k) � 22ck

if and only if

(1) A has a finitely generated clone, and
(2) A factors as a direct product of nilpotent algebras of prime power cardinality.

Proof. First assume that (1) and (2) hold. Given (1), there is no loss of generality
assuming thatA has finite type. By (2),A is nilpotent; thereforeV(A) is locally solvable,
a concept introduced in [4]. Since are assuming that1 6∈ typ {V(A)} we conclude from
Theorem 7.11 of [4] and the fact thatV(A) is locally solvable thatV(A) is congruence
permutable. Hence Theorem 3.14 (3)⇒ (1) shows that SpecA(k) � 22ck

.
Now assume that typ{V(A)} ∩ {1, 5} = ∅ and SpecA(k) � 22ck

. By Theorem 12.5
of [4], A is a finite nilpotent algebra that generates a congruence permutable variety. The
proof of Theorem 1 of [1] shows that in this situation SpecA(k) � 22ck

if and only if
there is a finite bound on the rank of nontrivial commutator terms,even if the type ofA is
infinite. But Lemma 14.6 of [3] proves that if there is a finite bound on the rank of nontrivial
commutator terms, then the clone ofA is finitely generated. (What is shown there is that
the clone ofA is generated by a fixed Mal’tsev term from the clone, a collection of unary
terms representing all unary terms, and a collection of commutator terms representing all
nontrivial commutator terms.) Thus typ{V(A)} ∩ {1, 5} = ∅ and SpecA(k) � 22ck

imply
that (1) holds. Now, given (1) and thatA is nilpotent we can derive (2) from Theorem 3.14
(1) ⇒ (3). ¨
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