Algebra univers. 42 (1999) 165-181
0002-5240/99/030165-17 $ 1.500.20/0 I . .
© Birkhauser Verlag, Basel, 1999 Algebra Universalis

Congruence modular varieties with small free spectra

K. A. KEARNES

Abstract. Let A be a finite algebra that generates a congruence modular variety. We show that the free spectrum
of V(A) fails to have a doubly exponentially lower bound if and onljihas a finitely generated clone aAds
a direct product of nilpotent algebras of prime power cardinality.

1. Introduction

Let A be a finite algebra, and I8t(A) be the variety it generates. fya)(K) is the
k-generated free algebrai(A), then the function

Speg (K) := |Fya) (k)]

is called theree spectrum of (A) (or thefree spectrum of).

We will compare functions with the relatior, which is defined by the rule that< g
if f(k) < g(k) for all sufficiently largek. In words we say thatd'is an upper bound for
f” or “f is a lower bound fog”. We useg > f to mean the same thing. We will write
Spea (k) < 22 or Speg (k) > 22" to mean thathere exists some > 0 such that the
functions Speg(k) and 2" are =<-comparable. Since the numberlefry operations on
a set of sizdA| is at mostjA|'A|k, and since elements &fa)(k) may be identified with
k-ary term operations @4, it is always the case that Spg&) < 22" whenA is finite. We
will write Speg, (k) « 22" and say that “Spggk) does not have a doubly exponential
lower bound” to mean thaZ £ Speg (k).

In this paper we prove that4 generates a congruence modular variety, then Sigeg
22" if and only if A has a finitely generated clone aAdis a direct product of nilpotent
algebras of prime power cardinality.

The results of this paper are related to results of Vaughan-Lee [10], Freese and
McKenzie [3], and Berman and Blok [1]. To understand the relationshipAfie be a
finite algebra of finite type that generates a congruence modular variety. By modifying the
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arguments in [10] it is shown in Chapter 14 of [3] thatAfnilpotent, thenA is finitely
based provided that it factors as a direct product of algebras of prime power cardinality.
The proof revolves around establishing a bound on the rank of commutator terms, and the
hypothesis thah factors into a direct product of prime power algebras is used in a nontrivial
way to establish the bound. Later, in [1], it is shown that if there is a finite bound on the
rank of commutator terms, then Spek) « 22* \What we show here is that fax (as
above) the following are equivalent: @ factors as a direct product of nilpotent algebras

of prime power cardinality, (iiA has a finite bound on the rank of commutator terms, (iii)
Speg (k) does not have a doubly exponential lower bound. The key idea behind the proof
is to connect these properties with a fourth equivalent propertyA(iig) nilpotent and its

twin monoid is a nilpotent group.

2. The twin monoid

Let A be an algebra, and(x) andg(x) be unary polynomials ofA. We call f andg
twinsif for somen there is an# + 1)-ary term operation(x, y) =: #y(x) of A and tuples
a, b € A" such thatf (x) = ta(x) andg(x) = tp(x).

LEMMA 2.1. The twin relationt = {(f, g)|f and g are twing is a tolerance relation
of the monoidPoh (A); o, id).

Proof. Recall that a tolerance relation is a reflexive, symmetric, compatible binary rela-
tion. It is clear that the relation defined in the lemma is a reflexive, symmetric, binary
relation. To see thatitis compatible with composition, assumetthgt((f’, g) € z. Then
we can find termsand:’ and tuples, b, @ andb’ such thatf (x) = z53(x) andg(x) = 1 (x)
while f'(x) = t,(x) andg’(x) = 1, (x). Therefore the terrrg,(t)’/,(x)) and the tuplesd
andbb’ witness that compositiofi (f'(x)) = ta(t,(x)) is a twin of g(g'(x)) = b (t, (x)).

O

For any tolerance relationon any monoidM, the set of elements-related to 1 M is
a submonoid oM. We call the submonoid of PglA) that consists of twins of the identity
thetwin monoid.It will be denoted Ty (A).

LEMMA 2.2. Let A be a finite algebra. There is a single tewy(x) such that each
element off\y (A) can be represented ag(x) for somea.

Proof. Suppose thaf and f’ are twins of the identity. Then there are term&) and
t;/,(x) and tuplesa, b, & andb’ such thatid(x) = ta(x), f(x) = tp(x), id(x) = t},(x), and
f'(x) = t,(x). Now let Tyy (x) = ty(t;,/(x)). Then for the tuplead we haveT,,(x) =
id(id(x)) = id(x), while for the tuplesba’ andab’ we haveTpy (x) = f(id(x)) = f(x)
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and Ty (x) = id(f'(x)) = f'(x). ThereforeTyy (x) is a term that for different choices of
the parameters representigx), f(x) and f’(x).

The argument we have just given to construct a single term that withesses membership
in Tw (A) for any two given polynomialg, f' € Tw (A) extends to show that any finite
subset of TwA) can be represented by a single term. Since our hypothesia thatfinite
algebra implies that Twk) is finite, there exists a single tersy(x) and a tuplee such that
se(x) = id(x) while the polynomials of the formy(x) represent all elements of Tuh{.

O

Applications of the twin monoid to free spectra are based on the following result.

THEOREM 2.3. Let A be a finite algebra and le¥l = Tw (A). For some fixed n it is
the case thaBpeg, (k) < Speg (nk + 1). In particular, if Speg (k) < 22*, then we also
haveSpeg, (k) < 2%*.

Proof. Suppose, for example, that the elementé, yx? ¢ Fya)(x, y) are distinct.
Thenthere exist, sp € M such that the homomorphism frafiy v (x, y) toM induced by

(.X, Y> = <Sa, Sb)

fails to identify xy2 andyx2. This says precisely that there is an elememrt A such that
the functionss; o stz, andsp o sg disagree at:. It follows that the homomorphism from
Fya) (X, y,2z) to A induced by

(X,¥,z) — (&, b,u)

fails to identify the elements (sy (sy(z))) andsy (sx(sx(2))).
More generally, this type of reasoning shows that i§ the length of the tuplg that
appears iny(x) then the assignment

0(Y1, ..., Yk) B ©(Syg, ..., Sy,)

is an injective function fronfryg) (k) to Fya) (nk + 1) for eachk.

For the last statement of the theorem, we prove the contrapositive. Assume that
Speg, (k) = 2%, Then Speg (k) > 22* for some fixect > 0 and all largek. From the
first part of the theorem we have Spéek + 1) > 22 for all largek. Since Speg(k) is

an increasing function, this is enough to guarantee that,3pgc- 22" for ¢ = ¢/2n and
all largek. Thus Speg(k) > 22", which concludes the proof. O

Theorem 2.3 indicates that a detailed understanding of free spectra of monoids would
be useful for more general free spectra questions. We know very little about free spectra of
monoids, but it is not hard to verify the following two facts.
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(1) Any nontrivial monoidM has Speg (k) > 2.
(2) If M is a finite monoid, then Spgak) « 2°¢1°9%) iff Speg, (k) < 2k iff M is
commutative.

One can find in [6] a complete characterization of those finite algeArdsr which
Speg, (k) < 2°¢. By (1) and Theorem 2.3, itis necessary that each gucave a trivial twin
monoid. The result in [6] is that Spgek) <« 2°¢ if and only if A has a finitely generated
clone and allocal twin monoids are trivial. (See [6] for the meaning of this.)

In addition to the easy results about free spectra of monoids that we have just listed, the
following less obvious result has been known for a long time.

THEOREM 2.4. ([2].[9]) Let G be a finite group. IfSpeg (k) <« 22", thenG is
nilpotent.

Fortunately for us, Theorem 2.4 contains everything we will have to know about the free
spectra of twin monoids for the results of this paper. This is a consequence of the next
theorem and Theorem 12.5 of [4] (which proves thét if a finite algebra in a congruence
modular variety and Spgck) < 22", thenA is nilpotent).

THEOREM 2.5. If A is afinite nilpotent algebra in a congruence modular variety, then
Tw (A) is a group.

Proof. The assumption thak generates a congruence modular variety implies that
typ {A}, according to Theorem 8.5 of [4]. Therefore, Lemma 4.2 and Theorem 4.3 of
[5] prove that idempotent twin polynomials have ranges of the same cardinality. So, if
se(x) = id(x) andsa(x) = f(x) € Tw (A), then any idempotent iteraf of f is a twin of
the idempotent polynomiati* = id. Idempotent twins have ranges of the same cardinality,
so f¥ is a surjective mapping from to A. This forcesf to be a permutation of. O

COROLLARY 2.6. If A is a finite algebra in a congruence modular variety and
Speg, (k) « 2201‘, thenA is a nilpotent algebra whose twin monoid is a nilpotent group.

This corollary makes it clear that in this paper we will be dealing primarily with nil-
potent algebras that generate congruence modular varieties. The following fact, which is
Exercise 7.6 of [3], will be used throughout the rest of the paper.

THEOREM 2.7. A congruence modular variety generated by a nilpotent algebra is
congruence permutable.

The following result helps to understand twin monoids of algebras in congruence per-
mutable varieties.
If K is a class of algebras, let T#C) denote{Tw (K)|K € K}.
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THEOREM 2.8.If K is a class of algebras that generates a congruence permutable
variety, thenTw (HSP (X)) € HSP(Tw (K)).

Proof. We prove the theorem through a sequence of claims.

CLAIM 2.9. Let dx, vy, 2 be a Mal'tsev term fol(K). If B € V(K) and e and f are
twin polynomials oB, then there is a polynomiat € Tw (B) such thatPe = d(e, €2, fe).

Sincee and f are twins there is a termy(x) and tuplesa andb such thai(x) = fa(x)
and f (x) = t(x). DefineTy,(x) = d(x, ty(x), t;(x)) wherez is a tuple of new variables.
Note thatTaa(x) = id(x) andTap(x) = d(x, e(x), f(x)), s0d(x, e(x), f(x)) is a twin of
the identity. Itis this polynomial that we take fér. ClearlyPe = d(e, €2, fe), as desired.

CLAIM 2.10. If C, D € V(K), then a surjective homomorphism @: — D induces a
surjective homomorphisit Tw (C) — Tw (D).

The mapfz is the restriction to TWC) of the map from Pal(C) to Pok (D) that assigns
to a polynomials (x, a) of C the polynomialt (x, h(a)) of D. If z5(x) = id(x) on C and
tb(x) € Tw (C), then clearlyt, @) (x) = id(x) onD andt;m (x) € Tw (D). Thush induces
a function from TwW(C) to Tw (D). Itis easy to see that this function preserves composition.
The nonobvious part of Claim 2.10 is that this homomorphism is surjectivesif

Chooseg € Tw (D), and assume thay(x) is a term for whichr.(x) = id(x) and
tq(x) = g(x) for certain tupleg, d in D. Let a andb be preimages undér for c andd
respectively. Lek(x) = t3(x) and f(x) = mp(x). By construction we havé(e) = id and
fz(f) = g. Claim 2.9 guarantees that there i®ac Tw (C) such thatPe = d(e, €2, fe).
Note that, sincé (e) = id, we have

h(P) = h(P)h(e) = h(Pe) = h(d(e, €, fe)) = d(id, id?, g id) = g.
ThusP € Tw (C) is an element that maps tog.

CLAIM 2.11. If E,Fe V(K), andE s asubalgebra of, thenTw (E) isahomomorphic
image of a submonoid diwv (F).

To prove this, choosg € Tw (E). There is a term, (x) and tuples, d from E such that
te(x) = id(x) onE andrg(x) = g(x). SinceE C F, bothe(x) = tc(x) and f (x) = 1q(x)
are polynomials oF, and they satisfy|r = idand f|r = g respectively. LefP € Tw (F)
be such thaPe = d(e, ¢2, fe). In particular,P|g = Pe|g = d(e, €2, fe)lg = flrg = g.
Thus every elemergt € Tw (E) is the restriction taE of someP € Tw (F). LetH be the
monoid consisting of alP € Tw (F) whose restriction t& agrees with somg € Tw (E).
H is a submonoid of TwF) and restriction t&& determines a homomorphism frdthonto
Tw (E). This establishes Claim 2.11.
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CLAIM 2.12. Assume thaf |
ITiEI TVV((;i)

By Claim 2.10, the canonical projections : [ |

7 Tw <HG,<) — Tw (G)).

iel

G; € V. ThenTw (J];.; Gi) is embeddable in

iel iel

ie; Gi = G; induce homomorphisms

These homomorphisms determine a natural homomorphism

[[#7:Tw (]_[ G,) — []Tw Gh.
iel iel

Since the kernel ot ; consists of those pairs of elements in(Ty.; G;) that agree modulo
7;, it follows that the kernel of [ 77; consists of those pairs of elements in(T; G;)
that agree modulg\ =; = 0. Thus, a pair is in ke(]]7;) only if it is a pair of equal
polynomials. Henc¢] 7; is an embedding.

Through Claims 2.10, 2.11 and 2.12, we have shown thidtgenerates a congruence
permutable variety, then

e Tw (H(K)) € H(Tw (K)),
e Tw (S(K)) € HS(Tw (X)), and
o Tw (P(K)) € SP(Tw (K)).

Therefore

Tw (HSP(K)) € HHS(SP(Tw (K)))) = HSP(Tw (K)).

We do not know how general the inclusion
Tw (HSP(K)) € HSP(Tw (K))

is. It does hold in some situations whé€eloes not generate a congruence permutable vari-
ety. For example, i is any class oboundedattices (meaning that there are equationally
definable constants 0 and 1 denoting the bottom and top elements), then the inclusion

Tw (HSP(K)) € HSP(Tw (K))

holds. This is because if a lattitehas a top and a bottom element, then the twin monoid
coincides with the monoid of all unary polynomials. (To see this, note thatlTiwC

Poli (L)) trivially. The reverse inclusion holds becausepifcr) € Poli(L) thenp(x) =
(px)ADVxAQ)isatwinof(p(x) AO) Vv (x Al) = id(x).) Claims 2.10, 2.11 and 2.12 of
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Theorem 2.8 hold in any variety whose algebras satisfyAyv= Pol; (A), so the theorem

itself holds. (The reason this statement is true is that the proofs of Claims 2.10 and 2.11
involve a pair ¢, f) of twins that are modified to a paie, Pe) = (d(e, €, €?), d(e, €%, €, fe))

of twins whereP is a twin of the identity. Thus, the pair of twingd( P) can substitute

for (e, f) in any situation where “acts like the identity”. Roughly, this has the effect of
modifying f, which may not be a twin of the identity, to a polynom#lthat is a twin of

the identity. But in a variety where all unary polynomials are twins of the identity, there is
no need to make this modification.)

Contrary to the situation for bounded lattices, the theorem does not hold for the variety of
all unbounded lattices Unboundedneansiot necessarily boundedThe reason for this is
thatif F is an infinitely generated free lattice, then it can be shown via Whitman'’s solution to
the word problem for lattices that T¢#) consists of the identity function alone. Therefore,
if £ = {F}, thenHSP(Tw (K)) is the variety of trivial monoids. Now, sinddSP(K) is
the class of all lattices, to show that THSP(K)) € HSP(Tw (K)) it suffices to exhibit
one lattice whose twin monoid is not the trivial monoid. This is easy: any nontrivial lattice
with a top and a bottom element will do, since Tw) (= Pol (L) in this situation.

3. Prime power factorization

We prove our main results in this section. Before getting to them we have to introduce
one more concept.

Let A be a finite algebra that generates a congruence modular variety, and assume
thats < 6 are congruences ofA. We will say that the congruence quotigit 6) has
characteristic p,wherep, is a prime, if the size of eadlys-class inA/s is a power ofp.

Now suppose that < 6 and that§, 6] < §. (These expressions mean tii&to) is an
abelian prime quotient of CoA\).) Thend /s is a minimal abelian congruenceAfs. There
is a natural way, described in Chapter 9 of [3], of constructing a finite simple module on the
product of thed /5-classes. Since every finite simple module has prime power cardinality
it follows that all6/5-classes have size that is a power of some fixed pgme€his shows
that any abelian prime quotient has characteristior some primep.

In this section we deal with finite nilpotent algebras in congruence modular varieties.
It is shown in Corollary 7.5 of [3] that congruences on such algebrasraferm, which
means that all blocks have the same size. For congruence uniform algebras the notion of
indexmakes sense for any pair of congruenges 6: the index p : §] is the number of
5-classes in any-class. In the congruence uniform situati@é, 6) has characteristip
precisely whenq : §] is a power ofp.

In a congruence uniform algebra, if we have a chain of congruence coverings

=g <01 <--- <o, =0,
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then
[0 :8] =[an : ap—1] - [e1 : ag]-

Therefore(s, ) has characteristip if and only if each prime quotient in the chain has
characteristig. In particular, these remarks imply the following theorem.

THEOREM 3.1. A finite nilpotent algebra in a congruence modular variety has cardi-
nality thatis a power of the prime p if and only if all its prime quotients have characteristic p.

We will use tame congruence theory (see [4]) as a tool for detecting the characteristic of
a prime quotient.

LEMMA 3.2. LetA be a finite nilpotent algebra that generates a congruence modular
variety. If§ < 6 in Con(A) and the characteristic o5, 0) is p, then the cardinality of any
(8, 8)-minimal set is a power of p.

Proof. Let’s first argue that no generality is lost by assuming éhat0. The assumptions
onA imply that typ(8, #) = 2, and therefore any minimal st € Mina (8, 6) hasp-power
cardinality for some prime. (These claims can be pieced together from Theorems 4.31,
7.2, 8.5, and 13.9 of [4].) SincA|y is nilpotent and generates a congruence modular
variety, it is an algebra to which Theorem 3.1 applies: all of its prime quotients have
characteristig. In particular, sincé|y < 1y the index [ : §|y] is a power ofp, which
means that the quotient algeldq; /8|y has cardinality which is a power pf The universe
of Aly /8|y isU/8|y, which is a(0, 8/8)-minimal set ofA /8. Therefore the cardinality of
the (0, 8/8)-minimal setU/§|y is a power of same primg that we started with. (These
claims follow from Theorem 2.8 (2), Lemma 2.16 (2) and Lemma 4.36 of [4].) Finally,
since the characteristic ¢, 6) equals the characteristic @, 6/5) by definition, we may
replaceA by A/s and(é, 6) by (0, 6/3), change notation, and assume henceforthsthaO.

If Nisa(0,0)-trace ofU € Mina (0, 8), then the facts thaV is a congruence class of
Ay and thatA|y is congruence uniform of prime power cardinality imply thahas prime
power cardinality for the same prime. So what we have left to show is this<ibQthen
the characteristic a0, 6) divides the cardinality of any0, 6)-trace. One way to see this is
to note that any-class is ark -trace with respect té (meaning that it is the intersection of a
0-class with the image of an idempotent polynomial — take) for the polynomial), and
thatd is an abelian minimal congruence of an algebra in a congruence permutable variety.
These facts together with Theorem 4.5 of [8] show thatéulass is anultitrace of type.
According to the structure theorem for such objects, given in Theorem 3.10 of [7], this
means that the size oftaclass is a power of the size of afy, 6)-trace. Therefore, since
0-classes andD, 0)-traces each have prime power cardinality, the primes must agree. This
concludes the proof. O
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LEMMA 3.3. LetA be an algebra that generates a congruence modular varietyw Let
be a central congruence dh, and leth be an element dfw (A). If V is ana-class, and.
fixes an element df, thena fixes every element &f.

Proof. Assume that Oc V is fixed by A, that se(x) = id(x), andsa(x) = A(x). If
(0, b) € a, then sincex is a central congruence we can change the underlined entries from
Otobin

5e(@) =0=s54(0

and preserve the equality of the left and right sides. This yields

se() = sa(b),
SOA(b) = sa(b) = se(b) = b. O

Leth : A = A/a be the natural homomorphism. We will use the notatidie denote
the kernel of the induced homomorphisfm Tw (A) — Tw (A/a) that we described in
the proof of Claim 2.10 of Theorem 2.8. To be expli¢it, A) € & providedx (x) =, A(x)
forallx € A.

LEMMA 3.4. LetA be a finite nilpotent algebra that generates a congruence modular
variety. Assume that

(1) 8 < 0 in Con(A)
(2) A € Tw (A) has prime power order, and
(3) (id, 1) € 6 — 8.

Then the order of is a power of the characteristic @8, 6).

Proof. Factoring moduld does not affect the hypotheses or conclusion, so there is no

loss of generality in assuming that= 0.

Let p be the prime that is the characteristic(6f ) and letg be the prime for which
29" = idfor somek. The assumptions imply thatmaps every-class into itselfp permutes
eachd-class, and. is not the identity on some-class. LetV be ad-class on which is
not the identity.V is a union ofi-orbits, each of which has sizé for somer. The size of
V is a power ofp, so ifg # p theni must have a fixed point oii. But now Lemma 3.3
implies thath is the identity onV, contrary to the choice of . It must be tha; = p. O

LEMMA 3.5. LetA be a finite nilpotent algebra that generates a congruence modular
variety. Ifé is a minimal congruence oA, thend is a nontrivial abelian congruence of
Tw (A). If 8 is minimal and(0, 6) has characteristip, then so doeg0, 9).
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Proof. Let d(x, y, z) be a Mal'tsev term forA. To see that > 0, choose(u, v) €
6 — 0. Then f(x) = d(x,u,v)is atwin ofd(x, u, u) = id(x) and f (x) = d(x, u, v) =¢
d(x,u,u) = id(x) for all x € A. This shows thatid, f) € . Thus, to prove thad is
nontrivial it is enough to observe that# id (since f (u) = v # u).

Now we show thab is abelian. Since a group congruence is abelian if and only if
the elements congruent to the identity element commute with each other, we must prove
that if e, f € Tw (A) satisfy (id, e), (id, f) € 0, thenef = fe. Note first that since
(id, e), (id, ) € 6 we havee(x) =y x and f(x) =¢ x for all x € A, so bothe and f map
everyd-class into itself. Therefore, to prove that they commute it will suffice to prove that
they commute on ang-class.

Select @-classV and pick Oe V. Set 1= ¢(0) =4 0. Sincee(x) is a twin of id(x),
andd(x, 1,0) is a twin ofd(x, 0, 0) = id(x), it follows from Lemma 2.1 that'(x) =
d(e(x),1,0) € Tw(A). Moreover,¢'(0) = d(1,1,0) = 0, so according to Lemma 3.3
we must have’(x) = x on V. Henced(x, 1, 0) is the inverse ok(x) on V. Similarly,
if we define 2= f(0) =4 0, then we get thad/(x, 2, 0) is the inverse off (x) on V. To
prove thate and f commute onV it is enough to prove that their inversééx, 1, 0) and
d(x, 2,0) commute onV. This follows trivially from the fact, proved in Chapter 5 of [3],
that onV the operationi(x, y, z) interprets asc — dy + z with respect to some abelian
group operations o (Sincef is abelian). Thus, o, the polynomials we are interested
inare justd(x,1,0) = x — 14 0 andd(x, 2,0) = x — 2+ 0, which are translations with
respect to the abelian group structurelonSince translations commute, we haye= fe
onv.

Finally we must show that the characteristiq@fd) is the same a&, 6). Let N be the
normal subgroup of Tw4) consisting of elements that éterelated taid. We need to show
thatN is ap-group for the primep that is the characteristic @0, 6). If this is not the case,
thenN contains an elemernt of orderg whereq is a prime different fronp. Lemma 3.4
proves that this is impossible. O

COROLLARY 3.6. Let A be a finite nilpotent algebra that generates a congruence
modular variety. Tw (A) is solvable. If, moreove# is a direct product of algebras of
prime power cardinality, thefiw (A) is nilpotent.

Proof. Choose a sequence of congruences
O=0g<61<---<6, =1
This chain induces a chain

O:éo<é1<~-~<9n=1

of congruences on TwA). Moreover, since [16;11] < 6; for eachi, Lemma 3.5 applied
to A/6; shows thatf .1, 6; 1] < 6; in Tw (A). This proves that TwA) is solvable.
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Now suppose thak = A1 x - - - x Ax where eacl\; has prime power cardinality. Then
for € = {A1, ---, A} we have thalA € HSP(K). Since we proved in Theorem 2.8 that
Tw (HSP(K)) € HSP(Tw (K)), to prove that TWA) is nilpotent it will suffice to prove
that each TWA;) is nilpotent.

Fix oneA; and pick a chain of congruences as above:

O0=6y=<01<---<6,=1

SinceA; has cardinality that is a power of some primetherefore eacht;, 6; 1) has
characteristic equal to this From what we have proved already, this chain induces a chain

O=0p<br<-<b,=1

in Con(Tw (A;)) where eaché;, é,-+1) has characteristic equal ja Hence Tw(A); is a
p-group. Sincep-groups are nilpotent, the proof is complete. O

We now prove a partial converse to the second claim of Corollary 3.6. The full converse
is proved in Theorem 3.12.

THEOREM 3.7. Let A be a finite, subdirectly irreducible, nilpotent algebra that gen-
erates a congruence modular variety. Tiv (A) is nilpotent, therA has prime power
cardinality.

Proof. Let « denote the monolith oA and letp be the characteristic of0, ). If
every prime quotient oA has characteristip, then the cardinality oA is a power of
p. Therefore, to establish the theorem, we must prove thathfs a prime quotient of
characteristieg # p, then Tw @A) is not nilpotent. Assume thaé, 6) is a prime quotient
of A with characteristigg # p.

CLAIM 3.8. Tw (A) has an elemernit of order g.

Since the characteristic @8, 6) is ¢, the characteristic of3, §) is alsog, as one can
deduce by applying Lemma 3.5 £y 5. Thereforeg divides the order of TwA). Cauchy’s
Theorem implies that there is\ae Tw (A) of orderg.

CLAIM 3.9. If A € Tw (A) has orderg, then there exist, v, w € A andg € Poli(A)
such that

(1) A(u) = v,

@) . v) ¢ .

(3) (gw), g()) = (u,w) € u — 0, and

(4) Vx £y € A((x, y) ¢ CP(g(x), g())).
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Choose& minimal so that.(x) =4 x. (Equivalently,0 is a congruence minimal for the
property that) containg(id, 1).) Sincex # id, we do nothave = 0. Thus thereis & < 6.

By the minimality of9, there is an element € A that has the property thaiu) #; u.
This is the element we take far andi(«) is the element we take far. Already we have
that (1) holds, and thdit, v) € 6 — 6.

The characteristic of8, 8) must beg # p. This follows from Lemma 3.4 and the facts
that the order of is ¢ and(id, 1) € 6 — §. In particular, we cannot havg, 6) = (0, )
since the characteristics differ. So, if we hadv) € u < §, then we would contradict
(u, v) ¢ §. We conclude that (2) holds.

Congruence uniformity allows us to choose an elenaegat A for which (u, w) € u—0.

We need to locate a polynomigafor which (3) and (4) hold. Let/ be a(§, 6)-minimal set,
and leth be a unary polynomial ok for whichz(A) = U and(h(u), h(v)) € 0|y —§. Such
anh exists by Theorem 2.8 (4) of [4]. Asis the case for any algebrg tife A, then the set
of all pairs of the formk(a), k(b)), wherek runs over all unary polynomials &, is equal
to the diagonal subalgebra Af generated bya, b). In a congruence permutable variety
the diagonal subalgebras Af are precisely the congruences, so the set akadl), k(b))

is precisely C§(a, b). Thus, in the particular case whege b) = (h(u), h(v)), the fact
that Cd*(h(u), h(v)) > n = CgA(u, w) implies that there is a unary polynomialsuch
that(kh(u), kh(v)) = (u, w). We takeg = kh. It is automatic that (3) holds.

To see that (4) holds, assume to the contrary that there exist distinct elemertsA
such that(x, y) € Cg*(g(x), g(¥)). Fix suchx and y and lei3 = Cg*(g(x), g(y)) =
Cd*(x,y). Sincex # y it is possible to choose < B. Then, sincex,y) € B and
(g(x), g(y)) ¢ o we getthatg(8) = kh(B) € «. In particularz(8) € «. From this, and
Definition 2.5 of [4], the sek(A) = U € Mina (8, 6) contains an«, 8)-minimal set. But
algebras induced on minimal setsAfare E-minimal, by Theorems 4.31, 7.2, and 8.5 of
[4], and there are no proper containments between induced E-minimal algebraslU Thus
is itself an{«, B)-minimal set, and moreover by Theorem 2.8 (1) of [4] we conclude that
Mina (8, ) = Mina(a, B). Next, sinceg(B) = kh(B) € a« andU = h(A), it follows that
k(Bly) € a. Hence, by Theorem 2.8 (3) of [4] we hav@/) € Mina (8, 6). But we chose
k so that it contains distingt-related elements andw in its range. Thusi|xw) > 0, and
it follows that i restricts nontrivially to anys, 6)-minimal set. But this implies that each
(8, 8)-minimal set contains &0, u)-minimal set. As already noted, such a containment
cannot be proper, so we are led to

Mina (a, 8) = Mina (8, 8) = Mina (0, ).
Now we have a characteristic problem: Lemma 3.2 proves that, since the characteristics of

(0, u) and (s, 0) differ, their minimal sets do not have the same size. This contradiction
establishes (4), and completes the proof of Claim 3.9.
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CLAIM 3.10. If u, v, w and g have the properties listed in Clai®9, andd(x, y, z)
is a Mal'tsev term forA, thenX (x) := d(x, g(x), u) is a permutation ofd that fixes all
elements of thg-class ofu, maps the:-class ofv into itself, and moves all elements of the
u-class ofv.

Suppose thak (a) = =(b). Letd = Cd*(g(a), g(b)). We have
a' :=d(a, g(a),u) = X(a) = T(b) = d(b, g(b),u) =5 d(b, g(a),u) =:b'.

By Corollary 7.4 of [3] the mappind (x, g(a), u) is a polynomial permutation that has a
polynomial inverse. If the inverse js(x), then

a=pa)=¢ pb)=b.

Hence(a, b) € 6 = Cd(g(a), g(b)). By property (4) of Claim 3.9 we conclude that= b.
This shows thak is 1-1, and therefore is a permutationfof
Arbitrarily chooseu’ from the u-class ofu. Then, by the properties @f, we have that
gw') =gw) =u. ThusZ(u') =d’', u,u) = u’, and soX fixes every element af /1.
Finally, choose’ from theu-class ofv. By the properties of we haveg(v') = g(v) =
w=, u,S0EW) =d0, w,u) =, d(v,u,u) =v. This proves thak maps theu-class
of vinto itself. If X(v') = v/, then

d ,w,u) =) =0 =dQ, u,u).
Applying the 1,u-term condition to the underlined position we get that
u=dw,w,u) =dw,u,u) =w.

Butu # w, so we cannot havE(v") = v’. Thus,X fixes no element of /1.

CLAIM 3.11. No g-Sylow subgroup afw (A) is normal.

The polynomial permutatio® ~1 o 1 o ¥ has ordeg, since it is a conjugate of andx
has orde;. Moreover,x is a twin ofid, soX 1o Ao T isatwinof £ 1oido ¥ = id
by Lemma 2.1. This shows that bottand~ 1 o A o = are elements of TwA), and both
have ordey.

If a ¢-Sylow subgroup was normal it would be the uniqu&ylow subgroup, and this
would force it to contain all elements of Tuh] whose order is a power @f In particular,
it would contain bothi and £~ o A o X, and therefore it would contain the element
I''=2"1ox1oioX. If so, the order of” would be a power of. We show that this is
not the case.
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Let's evaluatd™ atu:

Evaluation : Justification :
F'w) =r1oT loro=() Defn. of I
=21ox1on) S =u
=11ox 1) Au) =v
=, 2 1(v) > 1) =, v
=u 2w =u

This proves two things. First, sindeis a polynomial that maps back into itsu-class,
thereforel’ maps the entirg-class ofu into itself. Secondl” movesu. For if not, then in
the above derivation we would have equality at the beginning and end. This would force
equality on the fourth lineX~1(v) = v. But this contradicts the part of Claim 3.10 that
asserts thak has no fixed pointg.-related tov.

ThusI" acts oru/u in a way that moves. If ' has order that is a power of then the
fact thatu/u has cardinality that is a power @f andg # p, means thaf” must have a
fixed point onu /. Now we have a contradiction to Lemma 313:c Tw (A) has a fixed
point onu /., but does not fix all elements af . This proves the claim.

Claim 3.11 finishes the proof of the theorem, because all Sylow subgroups of a nilpotent
group are normal. O

Two varieties); and); in the same language aredependenitf there is a binary term
t(x, y) for which

ViEtx,y)=x and V2 Et(x,y) =y.

When this is so, the; intersects, trivially, and any algebra in the joil; v V> factors
as a direct product of an algebrali and an algebra itv2; moreover, all homomorphisms
between algebras ¥ Vv V, respect these direct factorizations. We wiliex V> to denote
the join of V; and)> when they are independent.

It is not difficult to prove that if’; and), are subvarieties of a congruence permutable
variety andV; N Vs is trivial, then); and ), are independent. We will use this fact in
the proof of the next theorem. (We only use the fact in the situation Wheand), are
subvarieties of ailpotentcongruence permutable variety. In this situation the fact is a
special case of Theorem 11.3 of [3]. However, nilpotence is not a necessary hypothesis.)

THEOREM 3.12.Let A be a finite nilpotent algebra that generates a congruence
modular variety.A factors into a direct product of algebras of prime power cardinality if
and only ifTw (A) is nilpotent.

Proof. We proved in Corollary 3.6 that iA factors into a direct product of algebras of
prime power cardinality, then TwA( is nilpotent. Here we prove the reverse direction, so
assume that TwK) is nilpotent.
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Foreach prime, letC, denote the class of subdirectly irreducible homomorphicimages
of A whose monolith has characterisfic LetV,, denote the subvariety 0f(A) generated
by ICpp.

CLAIM 3.13. For each prime p, each finite algebra), has order that is a power of p.

To show this, first note that by Claim 2.10 of Theorem 2.8 the twin group of each member
of IC,, is ahomomorphic image of TwA(), which we assumed to be a nilpotent group. There-
fore the twin groups of members &, are nilpotent. Sincé,, consists of subdirectly irre-
ducible algebras whose monoliths have characteristics a consequence of Theorem 3.7
that all members ofC, have cardinality that is a power @f. For eachS € K, we can
apply Lemma 3.5 repeatedly to successive quotients to obtain that the twin gro@® isw (
a p-group for the same. As proved in Theorem 2.8, TAHSP(KC,)) € HSP(Tw (KC})),
therefore any finite algebra in the varigty has a twin group that is a-group for thisp.
Now it cannot be that some finite € V,, has cardinality divisible by a prime # p, for
if this happened theg would appear as the characteristic of some prime quotief, of
and thus it would appear as the characteristic of some congruence quotienpeditbep
Tw (C). This proves the claim.

Claim 3.13implies thatip andg are distinct primes, then no non-trivial algebrainhas
cardinality equal to the cardinality of an algebrajn Thus), andV, intersecttrivially. As
observed directly before the statement of the theorem, this meang;thay, =V, x V.
Moreover, ifr is a prime different from botlp andg, then since the order of a finite algebra
inV, is a power of- and the order of a finite algebralf), x V, is a product ofp’s andg’s,
we get thal), intersects trivially with),, x V. Thus

Vp VYV, =V x V) VYV, = (V) x V) x V.

Generalizing this, ifpy, ..., pi is the sequence of primgsfor which IC,, is nonempty,
then the variety generated by the union of iig’s is

Vo X o+ X V.

In particular, sincé is a subdirect product of algebrasu{ﬁ:llcp[, we get that is in this
variety. HenceA is a product of algebras of prime power cardinality. O

A commutator ternfior an algebra is a termw(x1, .. ., x,, z) such that

i-th
A'Z(U(.xl,..., < ,~~7xr,Z):Z

for eachi. We call a commutator terma(x1, ..., x-, z) nontrivial if
AFEowkx,...,xrh2) =2z

Therank of a nontrivial commutator term is the numbethat appears in these equations.
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THEOREM 3.14.Let A be a finite nilpotent algebra of finite type that generates a
congruence modular variety. The following conditions are equivalent.

(1) Speg (k) < 22",

(2) Tw (A) is nilpotent.

(3) A factors as a direct product of algebras of prime power cardinality.
(4) A has a finite bound on the rank of nontrivial commutator terms.
(5) Speg (k) <« 2P® for some polynomiap (k).

Proof. Corollary 2.6 proves that (13» (2). Theorem 3.12 proves that (Z» (3).
Theorem 14.9 of [3] proves that (3} (4). (The implication (3)= (4) is the only place
where we need to assume tiahas finite type.) The implication (4 (5) is established
in the proof of Theorem 1 of [1]. The implication (5 (1) is trivial. O

In fact, itis easy to characterize those algebras in congruence modular varieties that have
small free spectrum without assuming finite type, as we did in Theorem 3.14.

COROLLARY 3.15. LetA be afinite algebra for whickyp {V(A)} N {1, 5} = @. Then
Spea (k) < 22 if and only if

(1) A has afinitely generated clone, and
(2) A factors as a direct product of nilpotent algebras of prime power cardinality.

Proof. First assume that (1) and (2) hold. Given (1), there is no loss of generality
assuming thaf has finite type. By (2)A is nilpotent; therefor@’(A) is locally solvable
a concept introduced in [4]. Since are assuming that typ {V(A)} we conclude from
Theorem 7.11 of [4] and the fact th&(A) is locally solvable thaV’(A) is congruence
permutable. Hence Theorem 3.14 £3)(1) shows that Spagk) < 22

Now assume that typV(A)} N {1,5} = @ and Speg(k) < 22*. By Theorem 12.5

of [4], A is a finite nilpotent algebra that generates a congruence permutable variety. The
proof of Theorem 1 of [1] shows that in this situation SpEQ < 22 if and only if
there is a finite bound on the rank of nontrivial commutator temwsn if the type oA is
infinite. But Lemma 14.6 of [3] proves that if there is a finite bound on the rank of nontrivial
commutator terms, then the cloneAfis finitely generated. (What is shown there is that
the clone ofA is generated by a fixed Mal'tsev term from the clone, a collection of unary
terms representing all unary terms, and a collection of commutator terms representing all
nontrivial commutator terms.) Thus tyP(A)} N {1, 5} = @ and Speg (k) K 22 imply
that (1) holds. Now, given (1) and thAtis nilpotent we can derive (2) from Theorem 3.14
1)=(3). O
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