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Absolutely closed nil-2 groups

A. MAGIDIN

Abstract. Using the description of dominions in the variety of nilpotent groups of class at most two, we give a
characterization of which groups are absolutely closed in this variety. We use the general result to derive an easier
characterization for some subclasses; e.g., an abelian grasipbsolutely closed iV if and only if G/pG is

cyclic for every prime numbep.

0. Introduction

The main result of this paper is a characterization of the absolutely closed groups in the
variety N> (definitions are recalled in Section 1 below). We obtain this result by using the
description of dominions in the variety>, and applying some ideas D. Saracino used in
his classification of the strong amalgamation bases for the same variety [7].

In Section 1 we will recall the main definitions and review the notion of amalgam. In
Section 2 we will recall the results of Saracino related to his classification of amalgamation
bases of\2, and we will prove our main result. Finally, in Section 3 we will prove several
reduction theorems, and deduce some conditions which are sufficient for a group to be
absolutely closed iv>. We will also give easier to check conditions for special classes
of groups; for example, we will show that a finitely generated abelian group is absolutely
closed inV> if and only if it is cyclic.

The contents of this paper are part of investigations that developed out of the author’s
doctoral dissertation, which was conducted at the University of California at Berkeley, under
the direction of Prof. George M. Bergman. It is my very great pleasure to express my deep
gratitude and indebtedness to Prof. Bergman, for his advice and encouragement throughout
my graduate work and the preparation of a prior version of this paper, and for suggesting
Theorem 3.17.

1. Preliminaries

Recall that Isbell [2] defines for a variefyof algebras (in the sense of Universal Algebra)
of a fixed types2, and an algebra € C and subalgebr& of A, thedominionof B in A to
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be the intersection of all equalizers containiBgEXxplicitly,
dOfTﬁ(B) = {a € A|\7’f,g A — C, if flp=glpthenf(a) = g(a)}

whereC ranges over all algebras ih and f, g are morphisms.
Also, Isbell calls an algebr& € C absolutely closedin C) if and only if

VA € C with B € A, donf (B) = B.

For example, in the variety of semigroups, every group (when considered as a semi-
group using the forgetful functor) is absolutely closed; this follows easily from the Zigzag
Lemma [2].

REMARK 1.1. Note that the property of being “absolutely closed” depends on the
variety of contextC; it is common for an algebra to be absolutely closed when consid-
ered a member d@, and not absolutely closed when considered as a member of a different
varietyC’.

In the variety\> of nilpotent groups of class at most 2 (i.e., grodgp®r which [G, G] <
Z(G)) there are nontrivial dominions [5]. The precise description of dominions in this
variety is recalled below. Given that there are nontrivial dominions, an interesting problem
is to characterize all groups that are absolutely closedbin

For the remainder of this paper, every group will be assumed to g imless otherwise
specified, and all maps are assumed to be group morphisms, unless otherwise noted. We will
write all groups multiplicatively. We will say that a groupabsolutely closetb mean it is
absolutely closed iV,. The identity element of the grou will be denoteck, omitting
the subscript if there is no danger of ambiguity. For a gréuand elements andy in G,
the commutator of andy is [x, y] = x~1y~1xy. The commutator subgroup of a group
G, denoted byG’ or [G, G], is the normal subgroup aF generated by ally, y] with x, y
in G. More generally, given two subsetsand B of G (not necessarily subgroupsji [ B]
denotes the subgroup 6f generated by all elements,[], wherea € A andb € B. The
center ofG will be denoted byZ(G). Any presentation of a group will be understood to
be a presentation iv2; that is, the identities alV will be imposed on the group, as well
as all the relations specified in the presentation. We willZise denote the infinite cyclic
group, which we also write multiplicatively.

In A2, since commutators are central, the commutator bracket acts as a bilinear map
from G2 x G onto [G, G]. In particular, for every, y, z € G, andn € Z,

[x, vzl =[x, yllx, 2l [xy. el =[x, 2lly, 2 X" 9] =[x, 01" =[x, »"]

Also, givenA, B € N>, every element of their coprodum]_[N2 B has a unique expres-
sioninthe formxBy,wherex € A, B € B,andy € [A, B]. Atheorem of T. MacHenry [4]
states that the subgroup [ B] of A ]_[N2 B is isomorphic to the tensor produf? ® BaP.
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Recall that an\V,-amalgam of two groupd, C € N> with core B consists of groups
A, B, andC, equipped with one to one group morphisms

by B— A
b B— C.

To simplify notation, we denote this situation gy, C; B). To say that the amalgam
(A, C; B) is (weakly embeddable inV,> means that there exists a groip in N> and
one-to-one group morphisms

Mm:A— M, . C— M, A.:B— M
such that
Apody =21 Acodc =A.

When we examine whether or not the amalgam C; B) is embeddable, the obvious
candidate foM is the coproduct with amalgamation afandC over B, denotedd ]_[Q/2 C.
This coproduct is sometimes called thé-free product with amalgamation. We say that
(A, C; B) is weakly embeddablén A5>) if no two distinct elements oft are identified
with each other in the coproduﬁt]_[f;[2 C, and similarly with two distinct elements ¢f.
Note that weak embeddability does not preclude the possibility that an elanoént\ B
be identified with an element of C\B in A ]_[2/2 C. We say that A, C; B) is strongly
embeddabldin N5) if there is also no identification between elementsAqf3 and ele-
ments ofC\ B. By special amalgamve mean an amalga, A’; B), where there is an
isomorphismy, betweenA and A’ over B, meaning thaty o ®4 = ® 4. In this case, we
usually write(A, A; B), with ¢ = id4 being understood.

Also, we recall that a groufs is said to be aveak amalgamation bader N5 if every
amalgam withG as a core is weakly embeddableNf; it is astrong amalgamation bagéor
N?>) if every such amalgam is strongly embeddable\(); and it is aspecial amalgamation
basefor N> if every special amalgam with core is strongly embeddable iN. Note that
a special amalgam is always weakly embeddable.

The connection between amalgams and dominions is via special amalgams. Hétting
be an isomorphic copy of, andM = A ]_[/1;[2 A’, we have that

dom\2(B) = AN A S M 1)

where we have identifie# with its common image im andA’.

The above discussion can be done in the much more general context of an arbitrary
variety C of algebras of a fixed type. For a more complete discussion of amalgams in
general and their connection with dominions, see [1].
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REMARK 1.2. Itis not hard to verify that a grouB is a strong amalgamation base if
and only if it is both a weak amalgamation base and a special amalgamation base. For a
proof we direct the reader to [1]. We also note that for a grAum a varietyC, being a
special amalgamation base tbis equivalent to being absolutely closeddnindeed, the
equality given in (1) shows thad is absolutely closed i@ if and only if for every groups
containingH, the special amalgaiG, G; H) is strongly embeddable, which holds if and
only if H is a special amalgamation base.

2. Absolutely closed groups

In this section we recall the characterization of weak and strong amalgamation bases in
the varietyN>, due to Saracino. Then we will state the characterization of absolutely closed
groups in this variety.

It will be helpful to recall a theorem about adjunction of roots\fg-groups:

THEOREM 2.1. (Saracino, Theorem 2.1 in [Tt G be a nilpotent group of class at
most two, letn > O, let n be an m-tuple of positive integers, and ¢gbe an m-tuple of
elements of;. Then there exists a nilpotent gropof class two, containing, and which
contains an;-th root for g;(1 < i < m) if and only if for everym x m array {c;;} of
integers such that;c;; = njcj; foralli and j, and forallys, ..., y, € G,

m m
if vy =][]g"mModG"), then [[ly;. gjl=e.
i=1 Jj=1

REMARK 2.2. Note that Theorem 2.1 implies that we can always adjgih roots to
a finite family of commutators (in fact, of central elements). In particulay,éf G € N>,
andg € G"G’, then there is an extension 6f which contains am-th root for g: since
g = x"x’, adjoin am-th root forx’, and we are done.

THEOREM 2.3. (Saracino, Theorem 3.3 in [1Jet G € N>2. The following are
equivalent:

(i) G is aweak amalgamation base f&f.
(i) G is a strong amalgamation base faf,.
(i) G satisfiesG’ = Z(G), andVg € GVn > 0(g € G"G' or 3y € Gand Ik € Z
such that(y” = g€ (mod G’) and [y, g] # e)).
(iv) G satisfiesG' = Z(G), and for allg € G and alln > 0, eitherg has an n-th root
moduloG’, or elseg has no n-th root in any overgroul§ € N> of G.

We pause briefly to give some examples of groups that are strong amalgamation bases
in AV>.
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EXAMPLE 2.4. Both the dihedral groups and the quaternion group of 8 elements
Q are strong amalgamation bases. It is clear that they li€inand a routine calculation
shows that they both satisfy (iii).

EXAMPLE 2.5. Analogously, any non-abelian group of orgérwith p an odd prime,
is a strong amalgamation base fd.

REMARK 2.6. On the other hand, we remark that a nontrivial abelian group cannot be
a strong amalgamation base/ifs, since it never satisfie§’ = Z(G).

Next, we recall the description of dominionsify:

LEMMA 2.7. (See [5])LetG € N>, H asubgroup of5. Let D be the subgroup off
generated by all elements &f and all element$x, y]?, wherex, y lie in G, ¢ > 0, and
x4,y1 € H[G, G]. ThenD = dorr@/Z(H).

REMARK 2.8. Lemma 2.7 also follows from B. Maier’s work on amalgams of nilpotent
groups; we direct the reader to [6].

We can now prove our main result:

THEOREM 2.9.Let G € N2. ThenG is absolutely closed iV if and only if for all
x,y € G and for alln > 0, one of the following holds:
There existi, b, ¢ € Z, g1, g2 € G such that

g = x%y’ (modG’)
(2)
g5 = x"y* (modG")

and[gy, x][g2, y] # e; or
There exist:, b, ¢ € Z, g1, g2 € G such that

¢ = xy’ (modG’)
3)

g5 = x"*1y“ (modG)).

REMARK 2.10. Note that (2) is simply the statement that there is no extensiéh of
which contains:-th roots for bothv andy.

Proof. First, suppose that for all, y € G, and alln > 0, either (2) or (3) holds. Let
K be an overgroup of;, and suppose that there extst k2 € K, k], k, € K’ such that
kiky, ksk, € G. We want to show thatf, k2]" lies in G. Letx = kfky andy = k5ks,.



66 A. MAGIDIN ALGEBRA UNIVERS.

Note that since both andy havern-th roots modulo the commutator K, there is an
extension ofK which has:-th roots for bothe andy (as in Remark 2.2 above). Therefore,
(2) cannot hold inG. Hence, there exist, b, ¢ € Z, andgi, g2 € G such thag] = x4yb
andg} = x"*1y¢ moduloG’.

Sincex = kjk’andy = k3k’, we have thatk; " andyk, " are central irk . In particular,

[gaky k"~ xk [ g2k k. vy " = e

On the other hand,

[g1ky“ky "~ F, xki "l goky "k, yky "] = [gu. x][g1. ky"Nky “ky "~ * x]
[k, kl—n][kz—b—1’ k"]
[e2, VIl g2, k3 "1lky "5 €. 5]
[k_b, kz—n][kz—c’ kz—n]
= [g1. x1[g2, yllg1. k1 "1l g2, k; "]
[ka, x~“Ukz, x>~ Nlk1, yP1lka, y~°
kg, k] DD ey, kp] D
= [g1, xl[g2, yllg1. k1 "l[g2. k3 "]
[k1, xy Pk, x 7271y 7]
[k1, kz]ﬂb—n(b—H)
(g1, x1[ g2, yllg1. k1] "[g2, k2] "
[k1, g1 "[k2, g5 " k1, k2] ™"
= [g1, xIlg2, ¥k, ko] "

Therefore, 1, x][g2, y][k1, k2] ™" = e, SO [k1, k2]" = [g1. x][g2, y]; sincegs, g2, x,
andy all lie in G, it follows that [k1, k2]" € G, as claimed.

Therefore, ifG satisfies the conditions, the&nis absolutely closed.

Conversely, suppose that does not satisfy the condition given. Let, x> € G, and
n > 0, such that:

Foralla, b, c € Z, if g1, g2 € G are such that

¢t = x¢x5 (modG)

(4)
g5 = xfxg (modG")
then [g1, x1][ g2, x2] = e; and
For alla, b, ¢ € Z, there do not exisg1, g2 € G such that
g1 = x¢x5 (modG)
(5)

g = x2S (mod G).
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LetF =G ]_[NZ(Z ]_[N2 Z), and denote the generators of the two copieg dfy r1
andro. Every element o ]_[N2 Z has a unique expression of the forﬁhé’[rl, ro]¢. Let
N be the minimal normal subgroup &f containingx1r; " andxzr, ™. We will show that
N N G = {e}, and that for every € G, g[r1,r2]™" ¢ N. This will prove thatG is not
absolutely closed, by looking &/N, which containg5 as a subgroup, and wherveg [r2]”
lies in the dominion ofG but not inG. The proof is patterned after a proof of Saracino
(Theorem 2.1 in [7]).

A general element oV may be written as

2 Sj
1_[ (l_[(bijjk)(Xjrj")g-”‘ (bijjk)_l) , (6)

j=1 \k=1

whereb ;. € G, s; isapositive integer ;x = +1, andz jx = ry’**r,’*. SinceF is nilpotent

of class two, this does indeed represent a general elemant of
We may rewrite (6) as follows:

2 s
[l (n[(bjkz*/k)_l’ (X.i”j_")_ef"](X,/rj_")gjk>

j=1 \k=1

which, expanding the brackets bilinearly, becomes

2 Sj
[1 (l—[[bjk, X1k b 1 2k 21 2k r,-‘"]”") (xjr; ")

j=1 \k=1

wherer; = ) k.

Now suppose that this element is equal to an element of the gprmr2]4", for some
g € G q € Z; if we write the general expression in the fowfy, wherex € G, 8 €
Z|M2 z, andy < [G, Z]_[ 2 7], then theg-factor is equal to; ""*r, "2z, wherez is in
the commutator of | | N2 7. But on the other hand, by uniqueness- r, = 0. Again by
unigueness, and using this fact, we have:

2
¢ = n(n[b,k,m )
(H[Zﬂf’ Jn]gjk)

[r1, 2] =

I
,TL:I“ I :Im I
||':|\

birery I sk x.;]ffk) .



68 A. MAGIDIN ALGEBRA UNIVERS.

Feeding in the value of;; and rearranging, we have

s1 52
g= [H by M} [H b, xz] @)
k=1 k=1

[rl’ rz]qn — [rl’ VZ] —nX ek a1+ X E1A1k2 (8)
and
2 Sj -n
. ) P ) .
=1 (H b?) xy e e ©
j=1 k=1

Now defineg; € G by g; = []; b};, and define;; by c;j = —Zeirai;. Then (7)
becomes

g = [g1, x1][g2. x2].
equation (8) becomes
[r1. ra]" = [y, ra]" 2722,

and equation (9) becomes

e = [gl—nxinxgzl’ ] [gz—nxilzx?z’ 7).

Since we know that@, Z ]_[N2 7] is isomorphic toG® ® (Z & Z), this implies that
gIﬂxilleZl’ gz—ilxi'12x§22 c G/

that is,

g x1Mx5? (mod G')

(10)
g5 x1"2x5% (modG").

Now, suppose thai = 0; that is, we are trying to find which elements lieGhn N.
Sinceq = 0, it follows from (8) thatcp1 — ¢12 = 0, that is, that12 = ¢21. By (4) and (10),
[g1, x1][ g2, x2] = e, and thereforeg = e. In particular,G N N = {e}, as claimed.

Finally, suppose thaj = —1. Thency1 — c12 = —1, SOc12 = c21 + 1. But then (5)
says that (10) cannot occur, so there is no elergentG such thatg[r1, ro] ™" € N. This
proves the theorem. O

In fact, we need only verify (2) and (3) for prime powers:
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COROLLARY 2.11. LetG € N>. ThenG is absolutely closed if and only if for every
x,y € G, and every prime powep“, G satisfieq2) or (3) withn = p?.

Proof. Necessity is immediate. To show that it is also sufficient, note that for a given
if for all x, y € G, G satisfies (2) or (3), then it follows that whenewéris an overgroup
of G, andk! k], kbk;, € G, then ki1, k2]" € G.

Let K be an overgroup of7, and suppose that for some> 0, kjk3, k5k5 both lie in
G. Letn = pi'--- p/" be a prime factorization of. SinceG satisfies (2) or (3) for prime
powers, it follows that

ke ko7 = (1P P e G

for eachi. Leta = gcd{n?/pft, ..., n%/p/"}. Then k1, k2]® € G. Butitis not hard to
see thatt = n, so [k1, k2]" € G, as claimed. O

We also note the following result:

LEMMA 2.12. LetG € N>, and letn > 0. If x € G"G’, then for all y there exist
g1, g2 € G anda, b, ¢ € Z such that

gt = xy" (mod G')
g5 =x"ty (mod G).

In particular, G, n, x, andy satisfy(3). Analogously, ify € G"G’, then for allx we have
that G, n, x, andy satisfy(3).

Proof. Suppose that = r"r’,andy € G. Leta=b=c =0, g1 = ¢, andgy = r. If,
on the other hand; = s”s’, andx € G, leta = ¢ =0,b = —1, g» = ¢, andgy = s L.
O

COROLLARY 2.13.If G € N> is such that for every € G and every: > 0, eitherx
has an n-th root inG moduloG’, or elsex does not have an n-th root in ay»-overgroup
of G, thenG is absolutely closed.

Proof. Givenx, y € G, andn > 0, if eitherx or y has an n-th root modulo the commu-
tator, then (3) is satisfied. Otherwise, no overgroug-afontains ar-th root for either
x ory, and hence no overgroup 6fcontains am-th root forbothx andy, soG satisfies (2).

O

In particular, we deduce that any group that satisfies Saracino’s conditions is absolutely
closed, which is in keeping with the fact that any strong amalgamation base is necessarily
also a special amalgamation base.
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3. Consequences and applications

First, we deduce some easy conditions from Theorem 2.9 which are sufficient for a group
to be absolutely closed.

COROLLARY 3.1. If G is a divisible nilpotent group of class at most 2, th@énis
absolutely closed in>.

Proof. If G is divisible, then every element hasmith root modulo the commutator, so
G satisfies (3) by Lemma 2.12. O

Note that any nontrivial divisible abelian grodpis absolutely closed, even though it
cannot be a strong amalgamation base, since the commutator subgroup cannot equal the
center. Therefore, the class of absolutely closed groups is strictly larger than the class of
strong amalgamation bases/f.

Before proceeding, we will prove some reduction theorems regarding absolutely closed
groups.

If r is a set of primes, we will say that a groapis x-divisible if every element of;
has ap-th root in G, for every primep € =. We will say thatG is n’-divisible if every
element ofG has ag-th root inG, for every primeg ¢ .

It is not hard to verify that for a nilpotent grou@ of class 2, beingr-divisible is
equivalent to asking thag2® be z-divisible.

THEOREM 3.2.Let = be a set of primes, and let, B € N,. Suppose that is -
divisible, andB is =’-divisible. ThenG = A @ B is absolutely closed if and only if both
and B are.

Proof. It is easy to see that, in general, Af@® B is absolutely closed, then so afe
andB.

For the converse, suppose that bdttand B are absolutely closed, and I&t be an
overgroup ofA @ B. Letx,y € K,x',y’ € K’, andn > 0 be such that"x’, y"y’ €
A @ B. We want to show that(, y]" € A @ B. Write x"x’ = a1 & b1, andy”y’ =
as @ bs.

By Corollary 2.11, it suffices to consider the case whes a prime power, say

o

p

If p € 7, thena;* has am-th rootinA. Thatis, there exists € A such that” = a;*.

Similarly, there exists € A such thas” = a, .

Therefore,
rx)" =r"x" = al_l(al @ by) = by (ModK")
(sy)" = s"y" = ay (a2 @ bp) = by (MOdK)
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SO [rx, sy]" € don{,}fz(B). SinceB is absolutely closed, it follows thatf, sy]” lies in B.
However,

[rx,sy]" = [r,s]"[r, y]"[x, s]"[x, y]"
= [rs]"[r, y"Y'IIx"x", s][x, y]"
= [r,s]"[r, a2 ® b2][a1 ® b1, s][x, ¥]".

Sincer ands lie in A, the first three terms on the right hand side liedid B. Since
[rx,sy]" € B, it follows that [x, y]" € A & B as well.
If, on the other handp ¢ =z, then the argument proceeds as above, taking rodi§]0f
andb; 2. O
2

COROLLARY 3.3. (Cf. Theorem 3.5 in [7])f A, B € N> are of relatively prime
exponents, theA @ B is absolutely closed if and only if bothand B are.

Proof. If A is of finite exponenk, thenA is w-divisible, wherer is the set of all primes
not occuring in the prime factorization af The result now follows from Theorem 3.2.
O

Recall that every abelian grodpmay be written a&; = D @ Geq, WhereD is divisible
andGyeqis reduced. By lettingr be the set of all primes, we obtain:

COROLLARY 3.4. An abelian groupG is absolutely closed if and only if its reduced
part is absolutely closed.

COROLLARY 3.5. If G € N> is w-divisible, thenG is absolutely closed if and only if
for everyx, y € G and every prime power = g%, withg ¢ 7, G, x, y, andn satisfy(2)
or (3).

COROLLARY 3.6. If G € N> is a torsion group, therG is absolutely closed if and
only if its p-parts are.

Next we analyze what (2) and (3) mean for finitely generated abelian groups.

THEOREM 3.7.If G is cyclic, thenG is absolutely closed.

Proof. LetG = (¢), and letx =", y = ¢’ be any two elements. Lat= p“ be a prime
power. We claim thaG, x, y, andn satisfy (3). To see this, it will suffice to show that we
can finda, b, andc € Z such thatp®|ar + bs andp*|(b + D)r + cs.
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If (p,r) =1, seth = —1, ¢ = 0; then we want to find an such thatp®|ar — 5. But
sincer is relatively prime top, asa ranges ovel, ar ranges over all congruence classes
modulo p?, so there is one which is congruentsto

If (p,s) = 1, we proceed similarly. Finally, suppose that p®,s = p?; we may
assume that, y < a.

If § <y <a,thenseb = —1,¢ =0, anda = p¥ % + p*=9,

Andify <8 <a,thensett =b =0, and letc = —p?~¥ + p*—7, O

In fact, if G is a finitely generated abelian group, then being cyclic is also necessary for
G to be absolutely closed. To prove this, we start with a series of examples:

EXAMPLE 3.8. Z® Z is not absolutely closed. Indeed, lebe theV; group presented
(in NV2) by

F = <x1y | [x,y]4=e);

then the subgroup df generated by? andy? is abelian, isomorphic t& & Z, but [x, y]?
lies in the dominion ofx?, y2), and not in the subgroup.

EXAMPLE 3.9. Z/p®Z & Z/p*2Z with p a prime, andi1, a2 > 1, is not absolutely
closed. This time lef be the\> group presented by

ay+1 ap+1 2
Pr =yl =[x, 5P =e)

F = (x, y|x
and letG = (x?, yP). ThenG = Z/p"1Z & Z/p*2 Z, but

[x, ] € domy2(G)\G.

EXAMPLE 3.10. Z & Z/p®Z is not absolutely closed, wheyeis a prime andr > 1.
Let F be the\> group presented by

F=(yy"" =[x,y =
and letG = (x?, y?). ThenG is isomorphictoZ & Z/p®Z, and
[x.5]” € dom2(G)\G.

THEOREM 3.11. A finitely generated abelian group is absolutely closedvinif and
only if it is cyclic.

Proof. Sufficiency is Theorem 3.7. For necessity, debe a finitely generated abelian
group, and write

G=272"®0Z/amZ®---®Z/a,Z

where eacla; is a prime power.
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If r > 1,orr = 1ands > 0, thenG has a direct summand which is not absolutely
closed by the examples above, hedtes not absolutely closed. §f > 1 and there exist
andj suchthai; anda; are not relatively prime, the@ also has a direct summand which
is not absolutely closed. All other cases (namely: 1 ands = 0; orr = 0 and allg;
relatively prime) are cyclic groups. O

We can also prove an analogue of a result of Saracino. Recall the following:

THEOREM 3.12. (Saracino, Theorems 3.4 and 3.6 inl[&))G be a nilpotent group of
class 2 and exponent wheren is the product of distinct primes, or twice such a product.
ThenG is a strong amalgamation base faf, if and only if G’ = Z(G).

We obtain a similar result here:

THEOREM 3.13.Let G be a nilpotent group of class two and exponenivheren is a
product of distinct primes. The@ is absolutely closed if and only #(G)/ G’ is cyclic.

Proof. By Corollary 3.6, we may assume th@tis a p-group, that isp = p with p a
prime. Denote the image of an element G in G by x.

SinceG? is aZ/ pZ vector space, and(G)/G’ is a subspace, there exist elements
{zi}ier @and{b;} jcs such that each liesin Z(G), {z;} is a basis foZ (G)/G’, and{z;, b_j}
is a basis foiG2P. SinceG is of exponenyp, it follows that(z;|i € 1) is a direct summand
of G; hence, iflI| > 1, thenG is not absolutely closed. Thus, we may assume|that 1,
which proves necessity.

To see sufficiency, note that K is an overgroup o, andg € G has ap-th rootinK
moduloK’, theng is central inG; for if g = rPr"in K, andh € G, then

lg. h] =[rPr Kl =[rP, h] =[r, k] =[r.e] = e

sinceG is of exponenp.

Also note thatG is g-divisible for any primeg # p, SO it sufflces to checlp®-th
roots. LetK be any overgroup of7, and suppose tha{7 r1s r2 ry € G, wherery, rp €
K,ri,rh € K'. Write g1 = r! rj, g2 = rj rj. In particular,g; andgo must be central
in G, hence they lie inz1)G’ (or in G’ if |[I| = 0). But then there exist’, y’ € G’ such
thatrfarix’, rgaréy’ € (z1). Therefore,

[r1. r2]?" € dom¥2((z1)) = (z1)

since cyclic groups are absolutely closed. In particular,b]?* € G, and soG is absol-
utely closed. O

Although we have proven an analogue of the “square-free” case of Theorem 3.12, the
“twice a square-free number” version does not hold. A counterexample is:
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EXAMPLE 3.14. A groupG € N> of exponent four, withZ (G)/ G’ cyclic, which is
not absolutely closed. L&t be presented by

G=(x,y.z|x* =y ==y =[x’ =y =e).

Clearly,G is of exponent four, anG3 = Z/4Z @ Z/2Z & Z/2Z. Also, the center ot
is generated, modul6’, by x?, S0 Z(G)/ G’ is cyclic.
Let F € N> be presented by

F = (a,b,c’a4=b4=c4=[a,b]4=[a,c]4=[b,c]4=e).
Then(a, b2, ¢?) = G; yet
[b. c]? e dom?(G)\G

soG is not absolutely closed.
In fact, we may generalize this example to show théF)/ G’ being cyclic is no longer
sufficient for finitely generated torsion groups of exponghtwith n > 1. Simply set

G=(x,y,z|x" =y =2/ =y, =[x, y]" =[x,2]" = ¢)
and
F=(abcla” =b" =c" =[a,b]” =[a,c]”" =[b,c]"" =e)

and identifyG with the subgroup generated byb?, andc?.
Nevertheless, the condition tha{G)/G’ be cyclic is necessary for finitely generated
torsion groups:

THEOREM 3.15.Let G € N> be a finitely generate¢chot necessarily abeligrtorsion
group. IfG is absolutely closed in>, thenZ(G)/ G’ is cyclic.

Proof. We may assume thdt is a p-group; suppose tha(G)/G’ is not cyclic. We
want to show thag is not absolutely closed. It will suffice to show th@tdoes not satisfy
(2) or (3) forn a power ofp.

SinceG is finitely generated, it is of exponept for somex > 0. SinceZ(G)/G’ is not
cyclic, there exist, y € Z(G)\G’ with the property that ik?y” € G’ for some integers
a,b € Z,thenx® € G’ andy® e G’; simply write Z(G)/ G’ as a sum of cyclic groups, and
let x andy be central elements which project to generators of distinct cyclic summands.

Sincex andy are both central, then (2) cannot hold for them. Suppose then that (3)
holds, forn = p®. Then there exist elemengs, g» € G, and integers, b, ¢ € Z, such that

= xayb (mod G”)

= x"*1y¢ (mod G").
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However,gfa = gé’a = e, hence by choice of andy, we have thak?, y?, x’*1, andy*
all liein G'.

Since G is a p-group, the orders of andy modulo G’ are nontrivial powers op.
Therefore, we must have thatb (sincey” € G’), and thatp|b + 1 (sincex’*! e G).
This is clearly impossible, s6 does not satisfy (3). Therefor€,is not absolutely closed,
as claimed. O

Using the ideas above, we can extend Theorem 3.11 to an easy to state characterization
for all abelian groups. We start with a technical lemma. Recall ti@isfan abelian group,
we denote by G the subgroup of all element$ with x € G. For an arbitrary groug, nG
denotes the subgroup generated by all such elements.

LEMMA 3.16. For an abelian groupG and a prime numbep, the following are
equivalent:

(i) G/pG iscyclic.
(i) G/p“G is cyclic for some integer > 0.
(i) G/p“G is cyclic for all integersz > 0.

Proof. Clearly (iii) implies (ii). Sincep®G is a subgroup opG, it follows thatG/pG
is a quotient ofG/ p“ G, so (ii) implies (i). Finally, note that for any integer> 0, G/p*G
is an abelian group of exponepf, hence is a direct sum of cyclic groups of ordefs
with 1 < b < a. HenceG/pG is a direct sum of cyclic groups of ordet with one direct
summand for each direct summandiyip? G, hence ifG/ pG is cyclic, then so i$5 / p* G
for eacha > 0; so (i) implies (iii). O

The following result was suggested by George Bergman:

THEOREM 3.17.Let G be an abelian group (not necessarily finitely generated). Then
G is absolutely closed inV> if and only if for every prime, G/ pG is cyclic.

Proof. First, suppose that/ pG is cyclic for each primep. Let K be any over-group
of G, and letx, y € K be such that for some primeand integer: > 0, x?* andy?* both
lie in G[K, K]. We want to show thatd, y]?”* liesinG.

By Lemma 3.16,G/p“G is cyclic. Lett € G be such that its image i6/p“G is a
generator folG/p®G. Letx’, y' € [K, K] be such that?“x’, y?*y’ € G.

Therefore, there exigti, g2 € G, andr, s € Z such thate?“x’ = t”g[”a andy?’y’ =
tsgz_pa. In particular, the elementsz; andyg2 of K are such that thejp“-th powers lie in
G[K, K]; in fact, they lie in(t)[K, K]. By Lemma 2.7, kg1, yg2]?" lies in the dominion
of (¢). But by Theorem 3.7, the cyclic subgroup generated isyabsolutely closed, hence
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[xg1, yg2]?" liesin (r), and so inG. However,

[xg1, yg2]” = [x,y]7 [x, g2]” [g1. ¥]” [g1. 217
= [x,y]7 [x" X', g2ll g1, y¥ ¥l g1, 21",

and sincegy, g2, x?'x’, y?*y’, and [rg1, yg2]?" all lie in G, it follows that [x, y]?* also
liesin G, as claimed. This shows thatis absolutely closed.

Conversely, suppose that there exists a prgnsech thatG/ pG is not cyclic. Therefore,
G/pG is a direct sum of more than one cyclic group of orgetetx, y € G be elements
which project to generators of distinct cyclic summandsGgipG. We will show that
G, x, y, andn = p do not satisfy (2) nor (3).

Note that neithex nory havep-th roots inG, and that if a product® y” has ap-th root
in G, then necessarily|a andp|b.

SinceG is abelian, (2) cannot be satisfied. Suppose, howeverxthatand p satisfy
(3). Therefore, there exist, b, ¢ € Z, g1, g2 € G such that

b
g = x'y

P _ b+l ¢
& = X .

y
In particular, sincecy? andx?+1y¢ havep-th roots,p|b and p|b + 1, which is clearly
impossible. Therefore7, x, y, andn do not satisfy (3) either, s6 cannot be absolutely
closed.
This proves the theorem. O

As in the case of Theorem 3.15, when passing to a more general class of groups, we lose
one of the implications:

COROLLARY 3.18. Let G € N> be a group(not necessarily abelign If G/(pG)G’
is cyclic for all primesp, thenG is absolutely closed.

Proof. The argumentabove goes through, noting thatinstead of having equalitiés=
t’gl_p andy?’y’ = tsgz_p , we obtain congruences modulk [ K], which is enough for

the argument to hold. O

Finally, we show that the converse of Corollary 3.18 does not hold:

EXAMPLE 3.19. AgroupG € M>whichis absolutely closed, and for whi¢ly (3G)G’
is not cyclic. LetG be theN> group presented by

G=(yzlx¥=y=2=yP=[xz=z2d=e.
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ThenG is of exponent 3, and (G)/ G’ is generated by, hence is cyclic. By Theorem 3.13,
G is absolutely closed. Sinc&3= {e},

G/(3G)G' = G/G = (Z/32)3,

s0G/(3G)G' is not cyclic. This shows that the condition in Corollary 3.18 is not necessary
in general.
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