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Absolutely closed nil-2 groups

A. Magidin

Abstract. Using the description of dominions in the variety of nilpotent groups of class at most two, we give a
characterization of which groups are absolutely closed in this variety. We use the general result to derive an easier
characterization for some subclasses; e.g., an abelian groupG is absolutely closed inN 2 if and only ifG/pG is
cyclic for every prime numberp.

0. Introduction

The main result of this paper is a characterization of the absolutely closed groups in the
varietyN2 (definitions are recalled in Section 1 below). We obtain this result by using the
description of dominions in the varietyN2, and applying some ideas D. Saracino used in
his classification of the strong amalgamation bases for the same variety [7].

In Section 1 we will recall the main definitions and review the notion of amalgam. In
Section 2 we will recall the results of Saracino related to his classification of amalgamation
bases ofN2, and we will prove our main result. Finally, in Section 3 we will prove several
reduction theorems, and deduce some conditions which are sufficient for a group to be
absolutely closed inN2. We will also give easier to check conditions for special classes
of groups; for example, we will show that a finitely generated abelian group is absolutely
closed inN2 if and only if it is cyclic.

The contents of this paper are part of investigations that developed out of the author’s
doctoral dissertation, which was conducted at the University of California at Berkeley, under
the direction of Prof. George M. Bergman. It is my very great pleasure to express my deep
gratitude and indebtedness to Prof. Bergman, for his advice and encouragement throughout
my graduate work and the preparation of a prior version of this paper, and for suggesting
Theorem 3.17.

1. Preliminaries

Recall that Isbell [2] defines for a varietyC of algebras (in the sense of Universal Algebra)
of a fixed type�, and an algebraA ∈ C and subalgebraB of A, thedominionof B in A to
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be the intersection of all equalizers containingB. Explicitly,

domC
A(B) = {

a ∈ A∣∣∀f, g : A −→ C, if f |B = g|B thenf (a) = g(a)
}

whereC ranges over all algebras inC, andf, g are morphisms.
Also, Isbell calls an algebraB ∈ C absolutely closed(in C) if and only if

∀A ∈ C with B ⊆ A, domC
A(B) = B.

For example, in the variety of semigroups, every group (when considered as a semi-
group using the forgetful functor) is absolutely closed; this follows easily from the Zigzag
Lemma [2].

REMARK 1.1. Note that the property of being “absolutely closed” depends on the
variety of contextC; it is common for an algebra to be absolutely closed when consid-
ered a member ofC, and not absolutely closed when considered as a member of a different
varietyC′.

In the varietyN2 of nilpotent groups of class at most 2 (i.e., groupsG for which [G,G] ⊆
Z(G)) there are nontrivial dominions [5]. The precise description of dominions in this
variety is recalled below. Given that there are nontrivial dominions, an interesting problem
is to characterize all groups that are absolutely closed inN2.

For the remainder of this paper, every group will be assumed to lie inN2 unless otherwise
specified, and all maps are assumed to be group morphisms, unless otherwise noted. We will
write all groups multiplicatively. We will say that a group isabsolutely closedto mean it is
absolutely closed inN2. The identity element of the groupG will be denotedeG, omitting
the subscript if there is no danger of ambiguity. For a groupG and elementsx andy in G,
the commutator ofx andy is [x, y] = x−1y−1xy. The commutator subgroup of a group
G, denoted byG′ or [G,G], is the normal subgroup ofG generated by all [x, y] with x, y
inG. More generally, given two subsetsA andB ofG (not necessarily subgroups), [A,B]
denotes the subgroup ofG generated by all elements [a, b], wherea ∈ A andb ∈ B. The
center ofG will be denoted byZ(G). Any presentation of a group will be understood to
be a presentation inN2; that is, the identities ofN2 will be imposed on the group, as well
as all the relations specified in the presentation. We will useZ to denote the infinite cyclic
group, which we also write multiplicatively.

In N2, since commutators are central, the commutator bracket acts as a bilinear map
fromGab ×Gab onto [G,G]. In particular, for everyx, y, z ∈ G, andn ∈ Z,

[x, yz] = [x, y][x, z]; [xy, z] = [x, z][y, z]; [xn, y] = [x, y]n = [x, yn].

Also, givenA,B ∈ N2, every element of their coproductA
∐N2 B has a unique expres-

sion in the formαβγ , whereα ∈ A, β ∈ B, andγ ∈ [A,B]. A theorem of T. MacHenry [4]
states that the subgroup [A,B] of A

∐N2 B is isomorphic to the tensor productAab⊗Bab.
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Recall that anN2-amalgam of two groupsA,C ∈ N2 with coreB consists of groups
A,B, andC, equipped with one to one group morphisms

8A : B −→ A

8C : B −→ C.

To simplify notation, we denote this situation by(A,C;B). To say that the amalgam
(A,C;B) is (weakly) embeddable inN2 means that there exists a groupM in N2 and
one-to-one group morphisms

λA : A −→ M, λC : C −→ M, λ : B −→ M

such that

λA ◦8A = λ λC ◦8C = λ.

When we examine whether or not the amalgam(A,C;B) is embeddable, the obvious
candidate forM is the coproduct with amalgamation ofA andC overB, denotedA

∐N2
B C.

This coproduct is sometimes called theN2-free product with amalgamation. We say that
(A,C;B) is weakly embeddable(in N2) if no two distinct elements ofA are identified
with each other in the coproductA

∐N2
B C, and similarly with two distinct elements ofC.

Note that weak embeddability does not preclude the possibility that an elementx of A\B
be identified with an elementy of C\B in A

∐N2
B C. We say that(A,C;B) is strongly

embeddable(in N2) if there is also no identification between elements ofA\B and ele-
ments ofC\B. By special amalgamwe mean an amalgam(A,A′;B), where there is an
isomorphismψ betweenA andA′ overB, meaning thatψ ◦8A = 8A′ . In this case, we
usually write(A,A;B), with ψ = idA being understood.

Also, we recall that a groupG is said to be aweak amalgamation basefor N2 if every
amalgam withGas a core is weakly embeddable inN2; it is astrong amalgamation base(for
N2) if every such amalgam is strongly embeddable (inN2); and it is aspecial amalgamation
basefor N2 if every special amalgam with coreG is strongly embeddable inN2. Note that
a special amalgam is always weakly embeddable.

The connection between amalgams and dominions is via special amalgams. LettingA′
be an isomorphic copy ofA, andM = A

∐N2
B A′, we have that

domN2
A (B) = A

⋂
A′ ⊆ M (1)

where we have identifiedB with its common image inA andA′.
The above discussion can be done in the much more general context of an arbitrary

variety C of algebras of a fixed type. For a more complete discussion of amalgams in
general and their connection with dominions, see [1].
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REMARK 1.2. It is not hard to verify that a groupB is a strong amalgamation base if
and only if it is both a weak amalgamation base and a special amalgamation base. For a
proof we direct the reader to [1]. We also note that for a groupH in a varietyC, being a
special amalgamation base forC is equivalent to being absolutely closed inC. Indeed, the
equality given in (1) shows thatH is absolutely closed inC if and only if for every groupG
containingH , the special amalgam(G,G;H) is strongly embeddable, which holds if and
only if H is a special amalgamation base.

2. Absolutely closed groups

In this section we recall the characterization of weak and strong amalgamation bases in
the varietyN2, due to Saracino. Then we will state the characterization of absolutely closed
groups in this variety.

It will be helpful to recall a theorem about adjunction of roots toN2-groups:

THEOREM 2.1. (Saracino, Theorem 2.1 in [7])LetG be a nilpotent group of class at
most two, letm > 0, let n be an m-tuple of positive integers, and letg be an m-tuple of
elements ofG. Then there exists a nilpotent groupH of class two, containingG, and which
contains anni-th root for gi(1 ≤ i ≤ m) if and only if for everym × m array {cij } of
integers such thatnicij = nj cji for all i andj , and for ally1, . . . , ym ∈ G,

if y
nj
j ≡

m∏
i=1

g
cij
i (modG′), then

m∏
j=1

[yj , gj ] = e.

REMARK 2.2. Note that Theorem 2.1 implies that we can always adjoinni-th roots to
a finite family of commutators (in fact, of central elements). In particular, ifg ∈ G ∈ N2,
andg ∈ GnG′, then there is an extension ofG which contains ann-th root forg: since
g = xnx′, adjoin ann-th root forx′, and we are done.

THEOREM 2.3. (Saracino, Theorem 3.3 in [7])Let G ∈ N2. The following are
equivalent:

(i) G is a weak amalgamation base forN2.
(ii) G is a strong amalgamation base forN2.

(iii) G satisfiesG′ = Z(G), and∀g ∈ G∀n > 0 (g ∈ GnG′ or ∃y ∈ G and ∃k ∈ Z

such that(yn ≡ gk (modG′) and [y, g] 6= e)).
(iv) G satisfiesG′ = Z(G), and for allg ∈ G and alln > 0, eitherg has an n-th root

moduloG′, or elseg has no n-th root in any overgroupK ∈ N2 of G.

We pause briefly to give some examples of groups that are strong amalgamation bases
in N2.
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EXAMPLE 2.4. Both the dihedral groupD8 and the quaternion group of 8 elements
Q are strong amalgamation bases. It is clear that they lie inN2, and a routine calculation
shows that they both satisfy (iii).

EXAMPLE 2.5. Analogously, any non-abelian group of orderp3, withp an odd prime,
is a strong amalgamation base forN2.

REMARK 2.6. On the other hand, we remark that a nontrivial abelian group cannot be
a strong amalgamation base inN2, since it never satisfiesG′ = Z(G).

Next, we recall the description of dominions inN2:

LEMMA 2.7. (See [5])LetG ∈ N2, H a subgroup ofG. LetD be the subgroup ofG
generated by all elements ofH and all elements[x, y]q , wherex, y lie in G, q ≥ 0, and
xq, yq ∈ H [G,G]. ThenD = domN2

G (H).

REMARK 2.8. Lemma 2.7 also follows from B. Maier’s work on amalgams of nilpotent
groups; we direct the reader to [6].

We can now prove our main result:

THEOREM 2.9. LetG ∈ N2. ThenG is absolutely closed inN2 if and only if for all
x, y ∈ G and for alln > 0, one of the following holds:
There exista, b, c ∈ Z, g1, g2 ∈ G such that

gn1 ≡ xayb (modG′)
(2)

gn2 ≡ xbyc (modG′)

and[g1, x][g2, y] 6= e; or
There exista, b, c ∈ Z, g1, g2 ∈ G such that

gn1 ≡ xayb (modG′)
(3)

gn2 ≡ xb+1yc (modG′).

REMARK 2.10. Note that (2) is simply the statement that there is no extension ofG

which containsn-th roots for bothx andy.

Proof. First, suppose that for allx, y ∈ G, and alln > 0, either (2) or (3) holds. Let
K be an overgroup ofG, and suppose that there existk1, k2 ∈ K, k′

1, k
′
2 ∈ K ′ such that

kn1k
′
1, k

n
2k

′
2 ∈ G. We want to show that [k1, k2]n lies inG. Let x = kn1k

′
1 andy = kn2k

′
2.
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Note that since bothx andy haven-th roots modulo the commutator inK, there is an
extension ofK which hasn-th roots for bothx andy (as in Remark 2.2 above). Therefore,
(2) cannot hold inG. Hence, there exista, b, c ∈ Z, andg1, g2 ∈ G such thatgn1 ≡ xayb

andgn2 ≡ xb+1yc moduloG′.
Sincex = kn1k

′ andy = kn2k
′, we have thatxk−n

1 andyk−n
2 are central inK. In particular,[

g1k
−a
1 k−b−1

2 , xk−n
1

][
g2k

−b
1 k−c

2 , yk−n
2

] = e.

On the other hand,

[g1k
−a
1 k−b−1

2 , xk−n
1 ][g2k

−b
1 k−c

2 , yk−n
2 ] = [g1, x][g1, k

−n
1 ][k−a

1 k−b−1
2 , x]

[k−a
1 , k−n

1 ][k−b−1
2 , k−n

1 ]

[g2, y][g2, k
−n
2 ][k−b

1 k−c
2 , y]

[k−b
1 , k−n

2 ][k−c
2 , k−n

2 ]

= [g1, x][g2, y][g1, k
−n
1 ][g2, k

−n
2 ]

[k1, x
−a ][k2, x

−b−1][k1, y
−b][k2, y

−c]
[k2, k1](−n)(−b−1)[k1, k2](−b)(−n)

= [g1, x][g2, y][g1, k
−n
1 ][g2, k

−n
2 ]

[k1, x
−ay−b][k2, x

−b−1y−c]
[k1, k2]nb−n(b+1)

= [g1, x][g2, y][g1, k1]−n[g2, k2]−n

[k1, g
−n
1 ][k2, g

−n
2 ][k1, k2]−n

= [g1, x][g2, y][k1, k2]−n.

Therefore, [g1, x][g2, y][k1, k2]−n = e, so [k1, k2]n = [g1, x][g2, y]; sinceg1, g2, x,
andy all lie in G, it follows that [k1, k2]n ∈ G, as claimed.

Therefore, ifG satisfies the conditions, thenG is absolutely closed.
Conversely, suppose thatG does not satisfy the condition given. Letx1, x2 ∈ G, and

n > 0, such that:
For alla, b, c ∈ Z, if g1, g2 ∈ G are such that

gn1 ≡ xa1x
b
2 (modG′)

(4)
gn2 ≡ xb1x

c
2 (modG′)

then [g1, x1][g2, x2] = e; and
For alla, b, c ∈ Z, there do not existg1, g2 ∈ G such that

gn1 ≡ xa1x
b
2 (modG′)

(5)
gn2 ≡ xb+1

1 xc2 (modG′).
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Let F = G
∐N2(Z

∐N2 Z), and denote the generators of the two copies ofZ by r1
andr2. Every element ofZ

∐N2 Z has a unique expression of the formra1 r
b
2[r1, r2]c. Let

N be the minimal normal subgroup ofF containingx1r
−n
1 andx2r

−n
2 . We will show that

N ∩ G = {e}, and that for everyg ∈ G, g[r1, r2]−n /∈ N . This will prove thatG is not
absolutely closed, by looking atF/N , which containsG as a subgroup, and where [r1, r2]n

lies in the dominion ofG but not inG. The proof is patterned after a proof of Saracino
(Theorem 2.1 in [7]).

A general element ofN may be written as

2∏
j=1

( sj∏
k=1

(bjkzjk)(xj r
−n
j )εjk (bjkzjk)

−1

)
, (6)

wherebjk ∈ G, sj is a positive integer,εjk = ±1, andzjk = r
ajk1
1 r

ajk2
2 . SinceF is nilpotent

of class two, this does indeed represent a general element ofN .
We may rewrite (6) as follows:

2∏
j=1

( sj∏
k=1

[(bjkzjk)
−1, (xj r

−n
j )−εjk ](xj r−nj )εjk

)

which, expanding the brackets bilinearly, becomes

2∏
j=1

( sj∏
k=1

[bjk, xj ]
εjk [bjk, r

−n
j ]εjk [zjk, xj ]

εjk [zjk, r
−n
j ]εjk

)
(xj r

−n
j )tj

wheretj = ∑sj
k=1 εjk.

Now suppose that this element is equal to an element of the formg[r1, r2]qn, for some
g ∈ G, q ∈ Z; if we write the general expression in the formαβγ , whereα ∈ G,β ∈
Z
∐N2 Z, andγ ∈ [G,Z

∐N2 Z], then theβ-factor is equal tor−nt11 r
−nt2
2 z, wherez is in

the commutator ofZ
∐N2 Z. But on the other hand, by uniquenesst1 = t2 = 0. Again by

uniqueness, and using this fact, we have:

g =
2∏
j=1

( sj∏
k=1

[bjk, xj ]
εjk

)

[r1, r2]qn =
2∏
j=1

( sj∏
k=1

[zjk, r
−n
j ]εjk

)

e =
2∏
j=1

( sj∏
k=1

[bjk, r
−n
j ]εjk [zjk, xj ]

εjk

)
.
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Feeding in the value ofzjk and rearranging, we have

g =
[
s1∏
k=1

b
ε1k
1k , x1

][
s2∏
k=1

b
ε2k
2k , x2

]
(7)

[r1, r2]qn = [r1, r2]−n6ε2ka2k1+n6ε1ka1k2 (8)

and

e =
2∏
j=1



( sj∏
k=1

b
εjk
jk

)−n
x

−6ε1ka1kj
1 x

−6ε2ka2kj
2 , rj


 (9)

Now definegj ∈ G by gj = ∏
k b

εjk
jk , and definecij by cij = −6εikaikj . Then (7)

becomes

g = [g1, x1][g2, x2],

equation (8) becomes

[r1, r2]qn = [r1, r2]n(c21−c12),

and equation (9) becomes

e = [g−n
1 x

c11
1 x

c21
2 , r1] [g−n

2 x
c12
1 x

c22
2 , r2].

Since we know that [G,Z
∐N2 Z] is isomorphic toGab ⊗ (Z ⊕ Z), this implies that

g−n
1 x

c11
1 x

c21
2 , g−n

2 x
c12
1 x

c22
2 ∈ G′

that is,

gn1 ≡ x
c11
1 x

c21
2 (modG′)

(10)
gn2 ≡ x

c12
1 x

c22
2 (modG′).

Now, suppose thatq = 0; that is, we are trying to find which elements lie inG ∩ N .
Sinceq = 0, it follows from (8) thatc21 − c12 = 0, that is, thatc12 = c21. By (4) and (10),
[g1, x1][g2, x2] = e, and therefore,g = e. In particular,G ∩N = {e}, as claimed.

Finally, suppose thatq = −1. Thenc21 − c12 = −1, soc12 = c21 + 1. But then (5)
says that (10) cannot occur, so there is no elementg ∈ G such thatg[r1, r2]−n ∈ N . This
proves the theorem. ¨

In fact, we need only verify (2) and (3) for prime powers:
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COROLLARY 2.11. LetG ∈ N2. ThenG is absolutely closed if and only if for every
x, y ∈ G, and every prime powerpa,G satisfies(2) or (3) with n = pa .

Proof. Necessity is immediate. To show that it is also sufficient, note that for a givenn,
if for all x, y ∈ G,G satisfies (2) or (3), then it follows that wheneverK is an overgroup
of G, andkn1k

′
1, k

n
2k

′
2 ∈ G, then [k1, k2]n ∈ G.

Let K be an overgroup ofG, and suppose that for somen > 0, kn1k
′
1, k

n
2k

′
2 both lie in

G. Letn = p
a1
1 · · ·parr be a prime factorization ofn. SinceG satisfies (2) or (3) for prime

powers, it follows that

[k1, k2]n
2/p

ai
i = [k

n/p
ai
i

1 , k
n/p

ai
i

2 ]p
ai
i ∈ G

for eachi. Let a = gcd {n2/p
a1
1 , . . . , n

2/p
ar
r }. Then [k1, k2]a ∈ G. But it is not hard to

see thata = n, so [k1, k2]n ∈ G, as claimed. ¨

We also note the following result:

LEMMA 2.12. LetG ∈ N2, and letn > 0. If x ∈ GnG′, then for ally there exist
g1, g2 ∈ G anda, b, c ∈ Z such that

gn1 ≡ xayb (modG′)
gn2 ≡ xb+1yc (modG′).

In particular,G,n, x, andy satisfy(3). Analogously, ify ∈ GnG′, then for allx we have
thatG,n, x, andy satisfy(3).

Proof. Suppose thatx = rnr ′, andy ∈ G. Let a = b = c = 0, g1 = e, andg2 = r. If,
on the other hand,y = sns′, andx ∈ G, let a = c = 0, b = −1, g2 = e, andg1 = s−1.

¨

COROLLARY 2.13. If G ∈ N2 is such that for everyx ∈ G and everyn > 0, eitherx
has an n-th root inGmoduloG′, or elsex does not have an n-th root in anyN2-overgroup
ofG, thenG is absolutely closed.

Proof. Givenx, y ∈ G, andn > 0, if eitherx or y has an n-th root modulo the commu-
tator, then (3) is satisfied. Otherwise, no overgroup ofG contains ann-th root for either
x ory, and hence no overgroup ofG contains ann-th root forbothx andy, soG satisfies (2).

¨

In particular, we deduce that any group that satisfies Saracino’s conditions is absolutely
closed, which is in keeping with the fact that any strong amalgamation base is necessarily
also a special amalgamation base.
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3. Consequences and applications

First, we deduce some easy conditions from Theorem 2.9 which are sufficient for a group
to be absolutely closed.

COROLLARY 3.1. If G is a divisible nilpotent group of class at most 2, thenG is
absolutely closed inN2.

Proof. If G is divisible, then every element has ann-th root modulo the commutator, so
G satisfies (3) by Lemma 2.12. ¨

Note that any nontrivial divisible abelian groupG is absolutely closed, even though it
cannot be a strong amalgamation base, since the commutator subgroup cannot equal the
center. Therefore, the class of absolutely closed groups is strictly larger than the class of
strong amalgamation bases inN2.

Before proceeding, we will prove some reduction theorems regarding absolutely closed
groups.

If π is a set of primes, we will say that a groupG is π -divisible if every element ofG
has ap-th root inG, for every primep ∈ π . We will say thatG is π ′-divisible if every
element ofG has aq-th root inG, for every primeq /∈ π .

It is not hard to verify that for a nilpotent groupG of class 2, beingπ -divisible is
equivalent to asking thatGab beπ -divisible.

THEOREM 3.2. Let π be a set of primes, and letA,B ∈ N2. Suppose thatA is π -
divisible, andB isπ ′-divisible. ThenG = A⊕B is absolutely closed if and only if bothA
andB are.

Proof. It is easy to see that, in general, ifA ⊕ B is absolutely closed, then so areA
andB.

For the converse, suppose that bothA andB are absolutely closed, and letK be an
overgroup ofA ⊕ B. Let x, y ∈ K, x′, y′ ∈ K ′, andn > 0 be such thatxnx′, yny′ ∈
A ⊕ B. We want to show that [x, y]n ∈ A ⊕ B. Write xnx′ = a1 ⊕ b1, andyny′ =
a2 ⊕ b2.

By Corollary 2.11, it suffices to consider the case whenn is a prime power, sayn =
pα.

If p ∈ π , thena−1
1 has ann-th root inA. That is, there existsr ∈ A such thatrn = a−1

1 .
Similarly, there existss ∈ A such thatsn = a−1

2 .
Therefore,

(rx)n ≡ rnxn ≡ a−1
1 (a1 ⊕ b1) ≡ b1 (modK ′)

(sy)n ≡ snyn ≡ a−1
2 (a2 ⊕ b2) ≡ b2 (modK ′)
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so [rx, sy]n ∈ domN2
K (B). SinceB is absolutely closed, it follows that [rx, sy]n lies inB.

However,

[rx, sy]n = [r, s]n[r, y]n[x, s]n[x, y]n

= [r, s]n[r, yny′][xnx′, s][x, y]n

= [r, s]n[r, a2 ⊕ b2][a1 ⊕ b1, s][x, y]n.

Sincer ands lie in A, the first three terms on the right hand side lie inA ⊕ B. Since
[rx, sy]n ∈ B, it follows that [x, y]n ∈ A⊕ B as well.

If, on the other hand,p /∈ π , then the argument proceeds as above, taking roots ofb−1
1

andb−1
2 . ¨

COROLLARY 3.3. (Cf. Theorem 3.5 in [7])If A,B ∈ N2 are of relatively prime
exponents, thenA⊕ B is absolutely closed if and only if bothA andB are.

Proof. If A is of finite exponentn, thenA isπ -divisible, whereπ is the set of all primes
not occuring in the prime factorization ofn. The result now follows from Theorem 3.2.

¨

Recall that every abelian groupGmay be written asG = D⊕Gred, whereD is divisible
andGred is reduced. By lettingπ be the set of all primes, we obtain:

COROLLARY 3.4. An abelian groupG is absolutely closed if and only if its reduced
part is absolutely closed.

COROLLARY 3.5. If G ∈ N2 is π -divisible, thenG is absolutely closed if and only if
for everyx, y ∈ G and every prime powern = qa , with q /∈ π,G, x, y, andn satisfy(2)
or (3).

COROLLARY 3.6. If G ∈ N2 is a torsion group, thenG is absolutely closed if and
only if itsp-parts are.

Next we analyze what (2) and (3) mean for finitely generated abelian groups.

THEOREM 3.7. If G is cyclic, thenG is absolutely closed.

Proof. LetG = 〈t〉, and letx = t r , y = t s be any two elements. Letn = pα be a prime
power. We claim thatG, x, y, andn satisfy (3). To see this, it will suffice to show that we
can finda, b, andc ∈ Z such thatpα|ar + bs andpα|(b + 1)r + cs.
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If (p, r) = 1, setb = −1, c = 0; then we want to find ana such thatpα|ar − s. But
sincer is relatively prime top, asa ranges overZ, ar ranges over all congruence classes
modulopα, so there is one which is congruent tos.

If (p, s) = 1, we proceed similarly. Finally, suppose thatr = pδ, s = pγ ; we may
assume thatδ, γ < α.

If δ ≤ γ < α, then setb = −1, c = 0, anda = pγ−δ + pα−δ.
And if γ ≤ δ < α, then seta = b = 0, and letc = −pδ−γ + pα−γ . ¨

In fact, ifG is a finitely generated abelian group, then being cyclic is also necessary for
G to be absolutely closed. To prove this, we start with a series of examples:

EXAMPLE 3.8. Z⊕Z is not absolutely closed. Indeed, letF be theN2 group presented
(in N2) by

F = 〈x, y ∣∣ [x, y]4 = e〉;
then the subgroup ofF generated byx2 andy2 is abelian, isomorphic toZ⊕Z, but [x, y]2

lies in the dominion of〈x2, y2〉, and not in the subgroup.

EXAMPLE 3.9. Z/pa1Z ⊕ Z/pa2Z with p a prime, anda1, a2 ≥ 1, is not absolutely
closed. This time letF be theN2 group presented by

F = 〈x, y∣∣xpa1+1 = yp
a2+1 = [x, y]p

2 = e〉
and letG = 〈xp, yp〉. ThenG ∼= Z/pa1Z ⊕ Z/pa2Z, but

[x, y]p ∈ domN2
F (G)\G.

EXAMPLE 3.10. Z ⊕ Z/paZ is not absolutely closed, wherep is a prime anda ≥ 1.
Let F be theN2 group presented by

F = 〈x, y∣∣ypa+1 = [x, y]p
2 = e〉

and letG = 〈xp, yp〉. ThenG is isomorphic toZ ⊕ Z/paZ, and

[x, y]p ∈ domN2
F (G)\G.

THEOREM 3.11.A finitely generated abelian group is absolutely closed inN2 if and
only if it is cyclic.

Proof. Sufficiency is Theorem 3.7. For necessity, letG be a finitely generated abelian
group, and write

G ∼= Zr ⊕ Z/a1Z ⊕ · · · ⊕ Z/asZ

where eachai is a prime power.
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If r > 1, or r = 1 ands > 0, thenG has a direct summand which is not absolutely
closed by the examples above, henceG is not absolutely closed. Ifs > 1 and there existi
andj such thatai andaj are not relatively prime, thenG also has a direct summand which
is not absolutely closed. All other cases (namely,r = 1 ands = 0; or r = 0 and allai
relatively prime) are cyclic groups. ¨

We can also prove an analogue of a result of Saracino. Recall the following:

THEOREM 3.12. (Saracino, Theorems 3.4 and 3.6 in [7])LetG be a nilpotent group of
class 2 and exponentn, wheren is the product of distinct primes, or twice such a product.
ThenG is a strong amalgamation base forN2 if and only ifG′ = Z(G).

We obtain a similar result here:

THEOREM 3.13.LetG be a nilpotent group of class two and exponentn, wheren is a
product of distinct primes. ThenG is absolutely closed if and only ifZ(G)/G′ is cyclic.

Proof. By Corollary 3.6, we may assume thatG is ap-group, that is,n = p with p a
prime. Denote the image of an elementx ∈ G in Gab by x.

SinceGab is a Z/pZ vector space, andZ(G)/G′ is a subspace, there exist elements
{zi}i∈I and{bj }j∈J such that eachzi lies inZ(G), {zi} is a basis forZ(G)/G′, and{zi, bj }
is a basis forGab. SinceG is of exponentp, it follows that〈zi |i ∈ I 〉 is a direct summand
ofG; hence, if|I | > 1, thenG is not absolutely closed. Thus, we may assume that|I | ≤ 1,
which proves necessity.

To see sufficiency, note that ifK is an overgroup ofG, andg ∈ G has ap-th root inK
moduloK ′, theng is central inG; for if g = rpr ′ in K, andh ∈ G, then

[g, h] = [rpr ′, h] = [rp, h] = [r, hp] = [r, e] = e

sinceG is of exponentp.
Also note thatG is q-divisible for any primeq 6= p, so it suffices to checkpa-th

roots. LetK be any overgroup ofG, and suppose thatrp
a

1 , r ′1, r
pa

2 r ′2 ∈ G, wherer1, r2 ∈
K, r ′1, r ′2 ∈ K ′. Write g1 = r

pa

1 r ′1, g2 = r
pa

2 r ′2. In particular,g1 andg2 must be central
in G, hence they lie in〈z1〉G′ (or inG′ if |I | = 0). But then there existx′, y′ ∈ G′ such
thatrp

a

1 r ′1x′, rp
a

2 r ′2y′ ∈ 〈z1〉. Therefore,

[r1, r2]p
a ∈ domN2

K (〈z1〉) = 〈z1〉
since cyclic groups are absolutely closed. In particular, [r1, r2]p

a ∈ G, and soG is absol-
utely closed. ¨

Although we have proven an analogue of the “square-free” case of Theorem 3.12, the
“twice a square-free number” version does not hold. A counterexample is:
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EXAMPLE 3.14. A groupG ∈ N2 of exponent four, withZ(G)/G′ cyclic, which is
not absolutely closed. LetG be presented by

G = 〈x, y, z ∣∣ x4 = y2 = z2 = [x, y]2 = [x, z]2 = [y, z] = e〉.
Clearly,G is of exponent four, andGab ∼= Z/4Z ⊕ Z/2Z ⊕ Z/2Z. Also, the center ofG
is generated, moduloG′, by x2, soZ(G)/G′ is cyclic.

Let F ∈ N2 be presented by

F = 〈a, b, c ∣∣ a4 = b4 = c4 = [a, b]4 = [a, c]4 = [b, c]4 = e〉.
Then〈a, b2, c2〉 ∼= G; yet

[b, c]2 ∈ domN2
F (G)\G

soG is not absolutely closed.
In fact, we may generalize this example to show thatZ(G)/G′ being cyclic is no longer

sufficient for finitely generated torsion groups of exponentpn, with n > 1. Simply set

G = 〈x, y, z ∣∣ xpn = yp = zp = [y, z] = [x, y]p = [x, z]p = e〉
and

F = 〈a, b, c ∣∣ apn = bp
2 = cp

2 = [a, b]p
2 = [a, c]p

2 = [b, c]p
2 = e〉

and identifyG with the subgroup generated bya, bp, andcp.
Nevertheless, the condition thatZ(G)/G′ be cyclic is necessary for finitely generated

torsion groups:

THEOREM 3.15.LetG ∈ N2 be a finitely generated(not necessarily abelian) torsion
group. IfG is absolutely closed inN2, thenZ(G)/G′ is cyclic.

Proof. We may assume thatG is ap-group; suppose thatZ(G)/G′ is not cyclic. We
want to show thatG is not absolutely closed. It will suffice to show thatG does not satisfy
(2) or (3) forn a power ofp.

SinceG is finitely generated, it is of exponentpα for someα > 0. SinceZ(G)/G′ is not
cyclic, there existx, y ∈ Z(G)\G′ with the property that ifxayb ∈ G′ for some integers
a, b ∈ Z, thenxa ∈ G′ andyb ∈ G′; simply writeZ(G)/G′ as a sum of cyclic groups, and
let x andy be central elements which project to generators of distinct cyclic summands.

Sincex andy are both central, then (2) cannot hold for them. Suppose then that (3)
holds, forn = pα. Then there exist elementsg1, g2 ∈ G, and integersa, b, c ∈ Z, such that

g
pα

1 ≡ xayb (modG′)

g
pα

2 ≡ xb+1yc (modG′).
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However,gp
α

1 = g
pα

2 = e, hence by choice ofx andy, we have thatxa, yb, xb+1, andyc

all lie in G′.
SinceG is a p-group, the orders ofx andy moduloG′ are nontrivial powers ofp.

Therefore, we must have thatp|b (sinceyb ∈ G′), and thatp|b + 1 (sincexb+1 ∈ G′).
This is clearly impossible, soG does not satisfy (3). Therefore,G is not absolutely closed,
as claimed. ¨

Using the ideas above, we can extend Theorem 3.11 to an easy to state characterization
for all abelian groups. We start with a technical lemma. Recall that ifG is an abelian group,
we denote bynG the subgroup of all elementsxn with x ∈ G. For an arbitrary groupG,nG
denotes the subgroup generated by all such elements.

LEMMA 3.16. For an abelian groupG and a prime numberp, the following are
equivalent:

(i) G/pG is cyclic.
(ii) G/paG is cyclic for some integera > 0.

(iii) G/paG is cyclic for all integersa > 0.

Proof. Clearly (iii) implies (ii). SincepaG is a subgroup ofpG, it follows thatG/pG
is a quotient ofG/paG, so (ii) implies (i). Finally, note that for any integera > 0,G/paG
is an abelian group of exponentpa , hence is a direct sum of cyclic groups of orderspb,
with 1 ≤ b ≤ a. HenceG/pG is a direct sum of cyclic groups of orderp, with one direct
summand for each direct summand inG/paG, hence ifG/pG is cyclic, then so isG/paG
for eacha > 0; so (i) implies (iii). ¨

The following result was suggested by George Bergman:

THEOREM 3.17.LetG be an abelian group (not necessarily finitely generated). Then
G is absolutely closed inN2 if and only if for every primep,G/pG is cyclic.

Proof. First, suppose thatG/pG is cyclic for each primep. LetK be any over-group
of G, and letx, y ∈ K be such that for some primep and integera > 0, xp

a
andyp

a
both

lie in G[K,K]. We want to show that [x, y]p
a

lies inG.
By Lemma 3.16,G/paG is cyclic. Let t ∈ G be such that its image inG/paG is a

generator forG/paG. Let x′, y′ ∈ [K,K] be such thatxp
a
x′, ypay′ ∈ G.

Therefore, there existg1, g2 ∈ G, andr, s ∈ Z such thatxp
a
x′ = t rg

−pa
1 andyp

a
y′ =

t sg
−pa
2 . In particular, the elementsxg1 andyg2 ofK are such that theirpa-th powers lie in

G[K,K]; in fact, they lie in〈t〉[K,K]. By Lemma 2.7, [xg1, yg2]p
a

lies in the dominion
of 〈t〉. But by Theorem 3.7, the cyclic subgroup generated byt is absolutely closed, hence
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[xg1, yg2]p
a

lies in 〈t〉, and so inG. However,

[xg1, yg2]p
a = [x, y]p

a

[x, g2]p
a

[g1, y]p
a

[g1, g2]p
a

= [x, y]p
a

[xp
a

x′, g2][g1, y
pay′][g1, g2]p

a

,

and sinceg1, g2, x
pax′, ypay′, and [xg1, yg2]p

a
all lie in G, it follows that [x, y]p

a
also

lies inG, as claimed. This shows thatG is absolutely closed.
Conversely, suppose that there exists a primep such thatG/pG is not cyclic. Therefore,

G/pG is a direct sum of more than one cyclic group of orderp. Let x, y ∈ G be elements
which project to generators of distinct cyclic summands ofG/pG. We will show that
G, x, y, andn = p do not satisfy (2) nor (3).

Note that neitherx nory havep-th roots inG, and that if a productxayb has ap-th root
in G, then necessarilyp|a andp|b.

SinceG is abelian, (2) cannot be satisfied. Suppose, however, thatx, y, andp satisfy
(3). Therefore, there exista, b, c ∈ Z, g1, g2 ∈ G such that

g
p

1 = xayb

g
p

2 = xb+1yc.

In particular, sincexayb andxb+1yc havep-th roots,p|b andp|b + 1, which is clearly
impossible. Therefore,G, x, y, andn do not satisfy (3) either, soG cannot be absolutely
closed.

This proves the theorem. ¨

As in the case of Theorem 3.15, when passing to a more general class of groups, we lose
one of the implications:

COROLLARY 3.18. LetG ∈ N2 be a group(not necessarily abelian). If G/(pG)G′
is cyclic for all primesp, thenG is absolutely closed.

Proof. The argument above goes through, noting that instead of having equalitiesxp
a
x′ =

t rg
−pa
1 andyp

a
y′ = t sg

−pa
2 , we obtain congruences modulo [K,K], which is enough for

the argument to hold. ¨

Finally, we show that the converse of Corollary 3.18 does not hold:

EXAMPLE 3.19. A groupG ∈ N2 which is absolutely closed, and for whichG/(3G)G′
is not cyclic. LetG be theN2 group presented by

G = 〈x, y, z | x3 = y3 = z3 = [x, y]3 = [x, z] = [y, z] = e〉.



Vol. 42, 1999 Absolutely closed nil-2 groups 77

ThenG is of exponent 3, andZ(G)/G′ is generated byz, hence is cyclic. By Theorem 3.13,
G is absolutely closed. Since 3G = {e},
G/(3G)G′ ∼= G/G′ ∼= (Z/3Z)3,

soG/(3G)G′ is not cyclic. This shows that the condition in Corollary 3.18 is not necessary
in general.
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