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Non-embeddable simple relation algebras

M. F. FRIAS AND R. D. MADDUX

Abstract. This paper presents solutions or partial solutions for several problems in the theory of relation
algebras. In a simple relation algebra A, an element x satisfying the condition (a) 0"x ; 1; x# +x# ; 1; x5
1’ must be an atom of A. It follows that x must also be an atom in every simple extension of A.
Andréka, Jónsson and Németi [1, Problem 4] (see [12, Problem P5]) asked whether the converse holds:
if x is an atom in every simple extension of a simple relation algebra, must it satisfy (a)? We show that
the answer is ‘‘no’’.

The only known examples of simple relation algebras without simple proper extensions are the
algebras of all binary relations on a finite set. Jónsson proposed finding all finite simple relation algebras
without simple proper extensions [12, Problem P6]. We show how to construct many new examples of
finite simple relation algebras that have no simple proper extensions, thus providing a partial answer for
this second problem. These algebras are also integral and nonrepresentable.

Andréka, Jónsson, Németi [1, Problem 2] (see [12, Problem P7]) asked whether there is a countable
simple relation algebra that cannot be embedded in a one-generated relation algebra. The answer is
‘‘yes’’. Givant [3, Problem 9] asked whether there is some k such that every finitely generated simple
relation algebra can be embedded in a k-generated simple relation algebra. The answer is ‘‘no’’.

1. Introduction

Let U be an arbitrary set. ReU is the representable relation algebra whose
universe consists of all binary relations on U. If U is empty then ReU is a trivial
one-element algebra, so ReU is not simple and has no atoms. On the other hand,
if U is not empty, then ReU is simple and atomic. The atoms of ReU are the binary
relations of the form {�a, b�}, where a, b �U. Every atom of ReU satisfies the
condition

0"x ; 1; x# +x# ; 1; x51’. (1)

One of the remarkable properties of relation algebras is that if x is an element of
a simple relation algebra A that satisfies (1), then x must be an atom of A. (See [7,
Lemma 7.3] or [11, Theorem 41].) This has an interesting consequence for which we
first make a definition.
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DEFINITION 1.1. Suppose x is an element of a simple relation algebra A. We
say that x is a persistent atom of A if x is an atom of A and x is also an atom of
every simple relation algebra that contains A as a subalgebra.

In a simple relation algebra A, every element x that satisfies (1) is a persistent
atom of A, for if B is a simple relation algebra that contains A as a subalgebra,
then x is an element of B that still satisfies (1), so x is also an atom of B. For
example, all the atoms of ReU are persistent. It follows that ReU cannot be
properly embedded in any simple relation algebra whenever ReU is finite [7,
Lemma 7.4]. These observations provoke some natural questions. Do all persistent
atoms of simple relation algebras satisfy (1)? (See [1, Problem 4] or [12, Problem
P4].) Are there any other finite simple relation algebras besides ReU that cannot be
properly embedded in any simple relation algebra? (See [12, Problem P6].)

We will show that the answer to the first question is ‘‘no’’ by exhibiting finite
simple relation algebras in which the identity element 1’ is a persistent atom that
does not satisfy (1). See Theorems 6.1, 6.2, 7.1. A nontrivial relation algebra is said
to be integral if 0=x ; y implies either x=0 or y=0. Integrality has the following
interesting characterization.

THEOREM 1.2. [8, Theorem 4.17] Let A be a relation algebra with at least two
elements. The the following statements are equi6alent.

(1) 1’ is an atom of A.
(2) If x and y are elements of A and 0=x ; y, then either x=0 or y=0.

Every integral relation algebra is simple [8, Theorem 4.18(ii)]. All our examples
are integral. A relation algebra is Boolean if it satisfies x ; y=x · y, x# =x, and
1’=1 (and hence is essentially just a Boolean algebra). The identity element 1’ of
a relation algebra A satisfies (1) only if A is Boolean. A Boolean relation algebra
is simple only if it has exactly two elements. There are 102 integral relation algebras
having exactly sixteen elements (and four atoms). In all of them, 1’"1 and 1’ fails
to satisfy (1). A heuristic criterion was developed for selecting integral algebras in
which the identity atom 1’ might also be persistent, narrowing the list of 102
algebras down to five algebras. These algebras, dubbed C1 –C5, are presented in
Section 6. It turns out that 1’ is indeed persistent in all five. However, in three of
these algebras, namely C3 –C5, all four atoms are persistent, so C3 –C5 cannot be
properly embedded in any simple relation algebra; see Theorem 6.3. None of C1–C5

is isomorphic to any ReU, because ReU is not integral whenever U has more than
one element, and ReU has only two elements when U has exactly one element. The
algebras C3 –C5 therefore show that the answer to the second question is ‘‘yes’’.

The algebras C1 –C5 share certain features that lead to the formulation of some
general lemmas applicable to larger algebras. Lemma 4.1 below gives a simple
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criterion by which the persistence of one atom can be deduced from the persistence
of another. Lemmas 5.4–5.6 arise from the key fact that the algebras C1 –C5 fail to
satisfy a certain identity, namely (L) in Section 7. Identity (L) holds in all
representable relation algebras, so C1 –C5 are not representable. The failure of (L)
in C1 –C5 is due to the presence of elements that satisfy conditions (35)–(40) in
Section 5. These conditions form the hypotheses to Lemmas 5.4–5.6, and together
with the hypotheses of Lemma 4.1, allow us to show that all the atoms of C3 –C5

are persistent. For a finite integral relation algebra with a large number of atoms,
the hypotheses of these lemmas determine only a small part of the structure of the
algebra, suggesting the possibility of constructing, by varying the rest of the
algebra, a huge number of finite integral relation algebras with no proper simple
extensions. Section 7 presents such a construction. If B is a set of cardinality n, and
D is any set of three-element subsets of B, then DB

D is a complete atomic integral
(hence simple) relation algebra with n+3 atoms that is not properly embeddable in
any simple relation algebra. See Theorem 7.1. When B is a one-element set, this
construction yields C3 as a special case. Probably C4 and C5 are also special cases
of general constructions, and there are probably many other ways to construct such
algebras, including ways that do not depend on the failure of (L). However, every
finite simple representable relation algebra can be embedded in ReU for some set
U, so every simple relation algebra without proper simple extensions is nonrepre-
sentable.

An interesting byproduct of the construction of DB
D is the solution of two more

problems. If U is finite, then the relation algebra ReU is generated by a single
relation [13, Theorem 8.4(xiv)]. Indeed, any linear ordering of U generates ReU. It
follows that every simple finitely representable relation algebra can be embedded in
a one-generated simple representable relation algebra. A significant extension of
this observation is that every finitely generated (and possibly infinite) representable
simple relation algebra can be embedded in a one-generated representable simple
relation algebra; see Tarski–Givant [13, Theorem 8.4(xv)]. Can results like these be
extended to nonrepresentable relation algebras? Does there exist a countable (or
finitely generated) simple relation algebra that is not embeddable in a one-generated
relation algbera? (See [1, Problem 2] or [12, Problem P7].) We show that the answer
is ‘‘yes’’. More generally, Givant [3, Problem 9] asked whether there is some k such
that every finitely generated simple relation algebra can be embedded in a k-gener-
ated simple relation algebra. The answer is ‘‘no’’, because the construction of DB

D

happens to include algebras that require arbitrarily large numbers of generators.
Indeed, given k, choose n so that k+3B log2(n+3), let B be an n-element set, and
let D be either the empty set, or else the set of all three-element subsets of B. We
prove in Section 7 that the resulting algebra DB

D cannot be generated by fewer than
−3+ log2(n+3) elements. Of course, DB

D cannot be properly embedded in any
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simple relation algebra. With slightly more work we can also show that DB
D cannot

be embedded in any k-generated relation algebra, simple or not. See Theorem 7.2.

2. Relation algebras

DEFINITION 2.1. A relation algebra is an algebraic structure of the form
�A, +, —, ;, # , 1’�, where A is a nonempty set, + and ; are binary operations on A,
— and # are unary operations on A, and 1’ is a distinguished element of A, such that
for all x, y, z �A :

x+y=y+x (2)

(x+y)+z=x+ (y+z) (3)

x=x) +y+x) +y) (4)

x ; (y ; z)= (x ; y) ; z (5)

(x+y) ; z= (x ; z)+ (y ; z) (6)

x ; 1’=x (7)

x## =x (8)

(x+y) # =x# +y# (9)

(x ; y) # =y# ; x# (10)

y) =y) + (x# ; x ; y ) (11)

Identities (2)–(4) state that the reduct �A, +, —� is a Boolean algebra [5] [6].
Define an additional binary operation · on A, two partial ordering relations 5 and
] on A, and elements 0’, 1, and 0 of A as follows. For all x, y �A,

x · y=x) +y) ,

x5y U x+y=y U x · y=x,

x]y U x+y=x U x · y=y,

0%=1’,

1=1’+0’,

0=1.
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Parentheses may be omitted according to the convention that unary operations are
always performed first, followed by ;, then ·, and finally +, with repeated binary
operations associated to the left, e.g., x ; y ; z= (x ; y) ; z. Here are other laws of
relation algebras that we will use. Proofs can be found in [2], [8], or [10].

1’ ; x=x, (12)

x ; (y+z)=x ; y+x ; z, (13)

(x · y) # =x# · y# , (14)

if x5y and u56 then x# 5y# and x ; u5y ; 6, (15)

x ; 0=0=0 ; x, (16)

1 ; 1=1, (17)

1" ’=1’, 0" ’=0’, 0" =0, 1" =1, (18)

x) ; x# 50’, x# ; x) 50’, (19)

if x51’ then x# =x, (20)

if x, y51’ then x ; y=x · y (21)

if x51’ then x ; y · z=x ; (y · z) and z · y ; x= (z · y) ; x (22)

x= (1’ · x ; x# ) ; x=x ; (1’ · x# ; x) (23)

x · y ; z5 (y · x ; z# ) ; z, (24)

x · y ; z5y ; (z · y# ; x), (25)

x ; 1 · y ; z= (x ; 1 · y) ; z, y ; z · 1 ; x=y ; (z · 1 ; x), (26)

z ; y# · x=0 U x ; y · z=0 U x# ; z · y=0. (27)

The following lemma gives a well known alternate characterization of relation
algebras, together with a variation on it that will be useful for us later.

LEMMA 2.2. The following statements are equi6alent.
(1) A is a relation algebra
(2) A satisfies (2)–(4), (5), (7), and (27).
(3) A satisfies (2)–(4), (7), (27), and

6 ; x · w ; y=0 U 6# ; w · x ; y# =0. (28)
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Proof. The equivalence of the first two statements is due to Chin–Tarski [2,
Theorem 2.2]. The first statement implies the third, for if A is a relation algebra
then (2)–(27) hold, and from (5) and (27) we get

6 ;x ·w ;y=0 U 6# ; (w ;y) · x=0 U (6# ;w) ;y ·x=0 U x ;y# ·6# ;w=0,

so (28) follows by the commutativity of ·, a consequence of (2)–(4). To complete
the proof, we assume A satisfies (2)–(4), (7), (27), and (28), and derive (5). From
(2)–(4) we get all the laws of Boolean algebras. From (7) and (27) we have

x ·y=0 U x ; 1’ · y=0 U x# ;y · 1’=0 U x## ; 1’ ·y=0 U x## ·y=0.

Taking y to be first x) and then x##( , we conclude by various Boolean algebraic laws
that x=x## , so (8) holds. From (8), (27), and (28) we get

x ; (y ; z) · w=0 U

x# ; w · y ; z=0 U

x# ; w · y ; z## =0 U

x ; y · w ; z# =0 U

(x ; y) ; z · w=0.

Applying this with w=x ; (y ; z) shows that (x ; y) ; z5x ; (y ; z), and the opposite
inclusion follows by taking w= (x ; y) ; z. Thus (5) holds. 

3. Simplicity

An algebra is simple if it contains at least two elements and has exactly two
congruence relations, namely the identity relation and the universal relation on its
underlying domain [4, Def. 0.2.34]. For relation algebras there is a particularly
useful characterization of simplicity.

THEOREM 3.1. [8, Theorem 4.10] Let A be a relation algebra in which 0"1.
Then the following conditions are equi6alent :

(1) A is simple,
(2) for e6ery x �A, if x"0 then 1=1 ; x ; 1,
(3) for all x, y �A, if 0=x ;1 ; y then x=0 or y=0.
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4. Persistent atoms

LEMMA 4.1. Assume A is a simple relation algebra and x is a persistent atom
of A. Suppose A has elements y, z such that

0"z5x ; y, (29)

z# ; z · y# ; y51’. (30)

Then z is also a persistent atom of A.

Proof. Suppose, to the contrary, that z is not a persistent atom of A. Then there
is a simple relation algebra B, containing A as a subalgebra, with elements z0, z1 �B
such that

z0+z1=z, z0 · z1=0, z0"0, z1"0. (31)

From (29) and (31) we get 0"z05z5x ; y, hence 0"z0 ; y# · x by (27). Since x is
a persistent atom of A, it is an atom of B, so 0"x5z0 ; y# . Similarly, 0"x5z1 ; y# .
Thus we have

0"x5z0 ; y# · z1 ; y# . (32)

From (31) we get z15z0, hence z# 0 ; z15z# 0 ; z050’ by (15) and (19), so
z# 0 ; z1 · y# ; y5z# ; z · 0’ · y# ; y. From this we get 0=z# 0 ; z1 · y# ; y by (30), hence
0=z0 ; y# · z1 ; y# by (28) and (8), contradicting (32). 

5. Coherence

DEFINITION 5.1. Let x be an element of a relation algebra A. We say that x
is a coherent element in A if e ; x=x ; e whenever 1’]e �A.

For example, all subidentity elements are coherent, that is, if x51’ then x is
coherent. It is easy to show that the only coherent elements in ReU are subidentity
elements. On the other hand, in an integral relation algebra, where 1’ is an atom,
every element is coherent by various parts of Lemma 5.2. The converse holds when
the algebra is simple by Lemma 5.3.

LEMMA 5.2. Suppose x and y are elements of a relation algebra A.
(1) If x is coherent and y5x then y is coherent.
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(2) If x is coherent then x# is coherent.
(3) If x and y are both coherent then x+y and x ; y are coherent.
(4) If x51’ and x is an atom, then x ; 1 ; x is coherent.

Proof. Assume x is coherent and y5x. For any e51’, we have, by (22),

e ; y=e ; (y · x)=y · e ; x=y · x ; e= (y · x) ; e=y ; e,

so y is coherent, and e# =e by (20), so, by (10),

e ; x# =e# ; x# = (x ; e) # = (e ; x) # =x# ; e# =x# ; e.

This shows that x# is coherent. Assume x and y are both coherent. For any e51’,
we have e ; x=x ; e and e ; y=y ; e, so, by (6), (13), and (5),

e ; (x+y)=e ; x+e ; y=x ; e+y ; e= (x+y) ; e,

and

e ; (x ; y)= (e ; x) ; y= (x ; e) ; y=x ; (e ; y)=x ; (y ; e)= (x ; y) ; e.

Thus x+y and x ; y are coherent. Finally, suppose x51’ and x is an atom. Let
e51’. Since x is an atom, either e · x=0 or else e · x=x. If e · x=0 then, by (5),
(21), and (16), e ; (x ; 1 ; x)= (e ; x) ; 1 ; x= (e · x) ; 1 ; x=0 ; 1 ; x=0, and, simi-
larly, 0=x ; 1 ; x ; e. If e · x=x, then e ; (x ; 1 ; x)= (e · x) ; 1 ; x=x ; 1 ; x=
x ; 1 ; x ; e. Therefore, x ; 1 ; x is coherent.

LEMMA 5.3. Let A be a relation algebra. The following statements are equi6a-
lent :

(1) 1 is coherent in A.
(2) E6ery element in A is coherent.
(3) A satisfies the identity

(1’ · x) ; 1=1 ; (1’ · x). (33)

(4) A satisfies the identity

y ; 1=1 ; y, (34)

(5) A is a subdirect product of integral relation algebras.
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In particular, a relation algebra is integral if and only if it is simple and 1 is coherent.

Proof. The first statement is a special case of the second, but the first also
implies the second by Lemma 5.2. The equivalence of the first and third statements
is immediate from the definition of coherence. The fourth statement obviously
implies the third. For the converse, assume (33) holds for all x. Then

y ; 1=y ; (1’ · y# ; y) ; 1 (23)

=y ; ((1’ · y# ; y) ; 1) (5)

=y ; (1 ; (1’ · y# ; y)) (33) with x=y# ; y

51 ; (1 ; (1 ; y)) (15)

=1 ; y (5), (17)

and, similarly, 1 ; y5y ; 1, so (34) holds. In an integral relation algebra, the
identity (33) holds since 1’ is an atom, hence (1’ · x) ; 1 and 1 ; (1’ · x) are either
both 0 or both 1. All subdirect products of integral relation algebras also satisfy
(33). Thus the fifth statement implies the third. We complete the proof by showing
the third and fourth statements imply the fifth. Suppose A is a relation algebra
satisfying (33) or (34). Every relation algebra is a subdirect product of simple
relation algebras [7, Corollary 4.6]. Suppose A is a subdirect product of simple
relation algebras Bi, i � I. Each Bi is a homomorphic image of A, so Bi also satisfies
(33) or (34). We prove that 1’ is an atom in Bi. Assume 0"e51’. We have
e ; 1=1 ; e by (33) or (34), so e ; 1 ; (e) · 1’)=0 since, by (5), (21), and (16),

e ; 1 ; (e) · 1’)=1 ; e ; (e) · 1’)=1 ; (e ; (e) · 1’))=1 ; (e · e) · 1’)=1 ; (0 · 1’)=0.

Bi is simple, so e=0 or e) · 1’=0 by Lemma 3.1. But e"0 by assumption, so
e) · 1’=0, hence e=1’. Thus 1’ is an atom and Bi is integral by Theorem 1.2. 

The identity (33) in the previous theorem can be replaced by the identity
(1’ · x) ; y=y ; (1’ · x), for if (33) holds then

(1’ · x) ; y= (1’ · x) ; (y · 1)

=y · (1’ · x) ; 1 (22)

=y · 1 ; (1’ · x) (33)

= (y · 1) ; (1’ · x) (22)

=y ; (1’ · x),



124 M. F. FRIAS AND R. D. MADDUX ALGEBRA UNIVERS.

but (34) cannot be replaced by x ; y=y ; x because there are noncommutative
integral relation algebras.

Next we have three technical lemmas. They are designed for application to the
five examples presented in the next section. In these algebras we can find elements
6, w, x, y, z such that

6=w# ; w · 0’ (35)

6 ; 6 · 6=0 (36)

6Bx ; y# (37)

w ; x · w ; y5w ; z (38)

x ; z# 50’ (39)

y ; z# 50’ (40)

The hypotheses for all three lemmas are that A is a relation algebra with elements
6, w, x, y, z satisfying conditions (35)–(40).

LEMMA 5.4. If w]w0 �A then (w0) # ; (w · w0)=0.

LEMMA 5.5. 6 is a coherent element of A.

LEMMA 5.6. If A is integral, then w is an atom of A.

Proof. First note that 6 is symmetric, since, by (14), (10), (18), and (8),

6# = (w# ; w · 0’) # = (w# ; w) # · 0" ’=w# ; w## · 0’=w# ; w · 0’=6.

Suppose w05w. Let w1=w0 · w. Then

w0 · w1=0 and w0+w1=w. (41)

We have

(w0) # ; w156 and (w1) # ; w056 (42)

since
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(w0) # ; w1= (w0) # ; (w0 · w) def. of w1

5 (w0) # ; w0 · w# ; w (15)

50’ · (1’+6) (19), (35)

56 0’ · 1’=0

and the other equation is proved similarly. By (42) and hypothesis (37) we get
(w0) # ; w15x ; y# , so (w0) # ; w1= (w0) # ; w1 · x ; y# . It follows by (28) that (w0) # ; w1=
0 iff w0 ; x · w1 ; y=0. We will prove the latter equality. By (41), (15), and
hypothesis (38) and we have

w0 ; x · w1 ; y5w ; x · w ; y5w ; z, (43)

hence

w0 ; x · w1 ; y=w0 ; x · w1 ; y · w ; z (43)

=w0 ; x · w1 ; y · (w0+w1) ; z (41)

=w0 ; x · w1 ; y · w0 ; z+w0 ; x · w1 ; y · w1 ; z (6)

5w0 ; x · w1 ; 1 · w0 ; z+w0 ; 1 · w1 ; y · w1 ; z. (15)

We can show that the last two terms are both 0, by two nearly identical proofs. The
first term is 0 since

w0 ; x · w1 ; 1 · w0 ; z

5w1 ; 1 · (w0 · w0 ; x ; z# ) ; z (24)

5w1 ; 1 · (w0 · w0 ; 0’) ; z (5), hypothesis (39), (15)

=(w0 · w1 ; 1 · w0 ; 0’) ; z (26)

5(w0 · w1 ; (1 · (w1) # ; w0) · w0 ; 0’) ; z (25), (15)

5(w0 · w1 ; 6 · w0 ; 0’) ; z (42), (15)

5(w1 ; 6 · w0 ; (0’ · (w0) # ; w0)) ; z (25), (15)

5(w1 ; 6 · w0 ; (0’ · w# ; w)) ; z (41), (15)

=(w1 ; 6 · w0 ; 6) ; z (35)

5w1 ; (6 · (w1) # ; w0 ; 6) ; z (25), (5), (15)
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5w1 ; (6 · 6 ; 6) ; z (42), (15)

=w1 ; 0 ; z hypothesis (36)

=0 (16)

and the second term is 0 since

w0 ; 1 · w1 ; y · w1 ; z

5w0 ; 1 · (w1 · w1 ; y ; z# ) ; z (24)

5w0 ; 1 · (w1 · w1 ; 0’) ; z (5), hypothesis (40), (15)

=(w1 · w0 ; 1 · w1 ; 0’) ; z (26)

5(w1 · w0 ; (1 · (w0) # ; w1) · w1 ; 0’) ; z (25),(15)

5(w1 · w0 ; 6 · w1 ; 0’) ; z (42), (15)

5(w0 ; 6 · w1 ; (0’ · (w1) # ; w1)) ; z (25), (15)

5(w0 ; 6 · w1 ; (0’ · w# ; w)) ; z (41), (15)

=(w0 ; 6 · w1 ; 6) ; z (35)

5w0 ; (6 · (w0) # ; w1 ; 6) ; z (25), (5), (15)

5w0 ; (6 · 6 ; 6) ; z (42), (15)

=w0 ; 0 ; z hypothesis (36)

=0 (16)

This completes the proof of (w0) # ; w1=0, and shows that Lemma 5.4 holds. For
Lemma 5.5, we show that 6 is coherent in A. Assume e51’. Let

w0=w ; e and w1=w ; (e) · 1’). (44)

Then, by (13) and (7),

w0+w1=w ; e+w ; (e) · 1’)=w ; (e+e) · 1’)=w ; 1’=w,

and

w0 · w1=w ; e · w ; (e) · 1’)
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= (w ; e · w) ; (e) · 1’) (22)

= ((w · w) ; e) ; (e) · 1’) (22)

=w ; (e ; (e) · 1’)) (5)

=w ; (e · e) · 1’) (21)

=w ; 0

=0. (16)

Hence

w1=w · w0.

It follows by Lemma 5.4 that 0= (w0) # ; w1, so

e ; 6 ; (e) · 1’)5e ; (w# ; w) ; (e) · 1’) (35), (15)

=e ; w# ; (w ; (e) · 1’)) (5)

=e# ; w# ; (w ; (e) · 1’)) (20)

= (w ; e) # ; (w ; (e) · 1’)) (10)

= (w0) # ; w1 (44)

=0.

This implies e ; 6=e ; 6 ; e since

e ; 6=e ; 6 ; 1’=e ; 6 ; (e+e) · 1’)=e ; 6 ; e+e ; 6 ; (e) · 1’)=e ; 6 ; e+0=e ; 6 ; e.

From e ; 6=e ; 6 ; e we also get 6 ; e=e ; 6 ; e as follows, using the symmetry of 6,
(20), (10), and (5).

6 ; e=6# ; e# = (e ; 6) # = (e ; 6 ; e) # =e# ; (6# ; e# )=e ; 6 ; e.

Thus e ; 6=6 ; e, which finishes the proof of Lemma 5.5. For Lemma 5.6, we prove
the contrapositive. Suppose w is not an atom of A. There there is some w0 �A such
that 0"w05w and 0"w · w) 0. By Lemma 5.4 we have 0= (w0) # ; (w · w) 0), so A is
not integral. 
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6. Five examples

In this section we present five finite integral nonrepresentable relation algebras
with four atoms. Four of these algebras, C1 –C4, are symmetric (satisfy x# =x),
while the fifth, C5, is not symmetric. In all of these algebras, 1’ and at least one
atom included in 0’ are persistent atoms. In three of them, all atoms are persistent.
C1 –C4 have the same Boolean part, namely, a 4-atom Boolean algebra whose
atoms are 1’, a, b, c. The atom 1’ is chosen as the distinguished element. Conversion
is trivial, in the sence that C1 –C4 satisfy x# =x. The tables below define relative
multiplication on the atoms. Plus signs are omitted to save space. For example,
‘‘abc ’’ replaces ‘‘a+b+c ’’. Relative products involving the remaining 12 elements
can be computed from these tables, using the fact that relative multiplication is a
normal operator, that is, it distributes over Boolean join and 0 ; x=0=x ; 0 for
every x. From the tables it is clear that the atom 1’ does happen to be a (two-sided)
identity for relative multiplication. Note that relative multiplication is commutative
in these algebras, so that the tables are symmetric about the main diagonal. By the
way, it follows immediately from (10) that relative multiplication is commutative in
any symmetric relation algebra.

C1 1’ a b c C2 1’ a b c

1’ 1’ a b c 1’ 1’ a b c
a a 1’c bc abc a a 1’c bc abc
b b bc 1’ac abc b b bc 1’abc abc
c c abc abc 1’ab c c abc abc 1’ab

C3 1’ a b c C4 1’ a b c

1’ 1’ a b c 1’ 1’ a b c
a a 1’c bc abc a a 1’c bc abc
b b bc 1’ab ac b b bc 1’a ac
c c abc ac 1’ab c c abc ac 1’ab

The atoms of the Boolean part of C5 are 1’, a, b, and b" . Again, 1’ is chosen as
distinguished element. Conversion in C5 is not trivial. It leaves 1’ and a unchanged,
i.e., 1" ’=1’ and a# =a, but it interchanges b and b" . The definition of conversion is
reflected in the choice of notation: we use ‘‘b" ’’ in place of ‘‘c ’’ as a reminder that
c is the converse of b. The restriction of relative multiplication to the atoms of C5

is given in the table below.

C5 1’ a b b"
1’ 1’ a b b"
a a 1’bb" abb" abb"
b b abb" ab" 1’a
b" b" abb" 1’a ab
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In the next section we prove that C3 is a relation algebra. Similar proofs show that
C1, C2, C4, and C5 are also relation algebras.

THEOREM 6.1. 1’ and a are persistent atoms of C1, C2, C3, and C4.

Proof. Suppose that A is a simple relation algebra that has one of C1, C2, C3, or
C4 as a subalgebra. Let w=a, x=a, y=b, z=c, and 6=w# ; w · 0’. Then

6=w# ; w · 0’=a# ; a · 0’=a ; a · 0’= (1’+c) · 0’=c

and conditions (36)–(40) hold, since

6 ; 6 · 6=c ; c · c= (1’+a+b) · c=0,

6=c5b+c=a ; b=a ; b" =x ; y# ,

w ; x · w ; y=a ; a · a ; b= (1’+c) · (b+c)=c50’=a ; c=w ; z.

x ; z# =a ; c# =a ; c=0’,

y ; z# =b ; c# =b ; c50’.

By Lemma 4.4, c is coherent in A. A is assumed to be simple, so by Lemma 5.2,
c+c ; c is coherent in A. But c+c ; c=c+c) =1, so 1 is coherent in A. By Lemma
5.3, A is integral. Hence 1’ must be an atom of A, and it follows from Lemma 5.6
that a is an atom of A. This shows 1’ and a are persistent atoms of C1–C4.

THEOREM 6.2. 1’, b, and b" are persistent atoms of C5.

Proof. Suppose that A is a simple relation algebra and C5¤A. Let w=b,
x=b, y=b, z=a and 6=b" ; b · 0’= (1’+a) · 0’=a. Then (35)–(40) hold, so from
Lemma 5.5, Lemma 5.2, and a+a ; a=a+1’+b+b" =1 we conclude that 1 is
coherent in A. A must be integral by Lemma 5.3, and b is an atom of A by Lemma
5.6. There happens to be an automorphism of C5 that interchanges b and b" , so we
can interchange b and b" in the previous argument. Hence b" is also an atom of A.
Thus 1’, b, and b" are persistent atoms of C5. 

We know that C1 and C2 have arbitrarily large proper integral (and hence
simple) extensions. On the other hand, C3, C4, and C5 have no such extensions.

THEOREM 6.3. C3, C4, and C5 ha6e no proper simple extensions.

Proof. Since the algebras involved are finite, it suffices to show that all the
atoms of C3, C4, and C5 are persistent. We have shown in Theorem 6.1 that 1’ and
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a are persistent in C3 and C4. Next we apply Lemma 4.1 to C3 and C4. Let z=c and
x=y=a. Then (29) holds since c5a ; a, (30) holds since c ; c · a ; a51’, and a is
persistent, so c is persistent. Apply Lemma 4.1 again, with z=b, x=c, and y=a.
Since b5c ; a, b ; b · a ; a51’, and c is persistent, we conclude that b is also
persistent. Apply Lemma 4.1 to C5 with z=a and x=y=b. Then (29) holds since
a5b ; b, (30) holds since a# ; a · b" ; b51’, and b is persistent by Theorem 6.2, so a
is persistent in C5. 

7. More examples

Let B be a set disjoint from {1’, a, c}. Let B [3] be the set of 3-element subsets of
B :

B [3]={{b, b %, b¦}: b, b %, b¦ �B, b"b %"b¦"b}.

Choose any D¤B [3]. For all b, b % �B let

fD (b, b %)={b, b %}@{b¦: {b, b %, b¦} �D}.

Note that, for every such choice of B, D, and any b, b % �B, we have fD (b, b)={b}
and {b, b %}¤ fD (b, b %)= fD (b %, b)¤B. If B has fewer than three elements then
{b, b %}= fD(b, b %) for all b, b % �B. Let {1%, a, c}@B be the set of atoms of an atomic
Boolean algebra A0. Let the atom 1’ be the distinguished element. Define conver-
sion on A0 by setting x# =x for every x. Define the binary operation ; on A0 by first
defining it on the atoms of A0 in the table below, and extending it to arbitrary
elements x and y according to the formula

x ; y= %
p,q �At A0
x]p, y]q

p ; q. (45)

The values for ; given in the table apply whenever b and b % are any two distinct
elements of B.

DB
D 1’ a c b b %

1’ 1’ a c b b %
a a 1’+c 0’ 0’ · b( 0’ · a)
c c 0’ c) 0’ · b( 0’ · b %
b b 0’ · a) 0’ · b( c) a+c+ fD (b, b %)
b % b % 0’ · a) 0’ · b % a+c+ fD (b %, b) c)
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An alternative way to define ; is to specify the set of triples �x, y, z� such that
x, y, z � {1’, a, c}@B and x ; y · z=0. To do so, first let

F={�1’, x, y�: x, y � {1’, a, c}@B, x"y}

@{�a, a, b�: b �B}

@{�c, c, c�}

@{�b, b, c�: b �B}

@{�b, b %, b¦�: {b, b %, b¦} �B [3]�D}.

Then

0=x ; y · z

U ®"FS{�x, y, z�, �x, z, y�, �y, x, z�, �y, z, x�, �z, x, y�, �z, y, x�}.
(46)

Let DB
D be the Boolean algebra with operators obtained by supplementing the

Boolean algebra A0 with the binary operation ;, trivial conversion, and the
distinguished element 1’. It is easy to see from the table and (45) that 1’ is an
identity element for ;. It is obvious from (46) that (27) holds. Rather more tedious
is the task of proving (46) from the table, or of deriving the table from (46). Once
this is done, it is easy to see that ; is associative, since one need only check that (28)
holds whenever 6, w, x, y are atoms of DB

D. Indeed, pairwise comparison of the
entries in the table shows that if 6 ; x · w ; y=0 then one of 6, w, x, y must be 1’, in
which case (28) holds by (7), (12), and (27).

If B has only one element, then B [3]=® and the table for DB
D reduces to the table

for C3. We indicate this by writing D1
®=C3.

D1
® 1’ a c b C3 1’ a c b

1’ 1’ a c b 1’ 1’ a c b
a a 1’+c 0’ 0’ · a) = a a 1’c abc bc
c c 0’ c) 0’ · b( c c abc 1’ab ac
b b 0’ · a) 0’ · b( c) b b bc ac 1’ab

If B is a two-element set, then B [3]=® and the only algebra we get is D2
®. When B

has exactly three elements, there are two choices for D, namely ® and {B}, giving
two (nonisomorphic) algebras, D3

® and D3
{B}. If B is a finite set of cardinality k, then

DB
D is a relation algebra with 3+k atoms. There are 2

1
6k(k−1)(k−2) such algebras,

since the number of 3-element subsets of B is 1
6k(k−1)(k−2), but the number of

isomorphism types is smaller, since DB
D and DB

D% are isomorphic whenever there is a
permutation of B that carries D onto D %.
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THEOREM 7.1. If B is a finite and D¤B [3], then DB
D is a finite symmetric

integral nonrepresentable relation algebra with no proper simple extensions.

Proof. Simply repeat those parts of the proofs of Theorems 6.1 and 6.3 which
show that C3 has no proper simple extensions. (The parts of those proofs that
concern b apply to every element of B.) It follows that DB

D is not representable, but
it is also easy to give a direct proof. Consider the equation

t ; u · 6 ; w · x ; y5 t ; [t" ; 6 · u ; w# · (t" ; x · u ; y# ) ; (x# ; 6 · y ; w# )] ; w. (L)

This equation was involved in the initial discovery of nonrepresentable relation
algebras by Lyndon [9] ; see Chin-Tarski [2, p. 354]. It is not difficult to show that
(L) holds in every representable relation algebra. However, (L) fails in DB

D when
t=a, u=a, 6=a, w=b, x=a, and y=c, since

t ; u · 6 ; w · x ; y=a ; a · a ; b · a ; c= (1’+c) · (0’ · a) ) · (0’)=c

but

t ; [t" ; 6 · u ; w# · (t" ; x · u ; y# ) ; (x# ; 6 · y ; w# )] ; w

=a ; [a# ; a · a ; b" · (a# ; a · a ; c# ) ; (a# ; a · c ; b" )] ; b

=a ; [a ; a · a ; b · (a ; a · a ; c) ; (a ; a · c ; b)] ; b

=a ; [(1’+c) · (0’ · a) ) · ((1’+c) · 0’) ; ((1’+c) · (0’ · b( ))] ; b

=a ; [c · c ; c ] ; b

=a ; [c · c) ] ; b

=a ; 0 ; b

=0.

The proof of Theorem 7.1 shows that (L) fails in C3 when t=a, u=a, 6=a,
w=b, x=a, and y=c. (L) fails in C1, C2, and C4 under the same assignment of
variables. (L) also fails in C5 when t=b, u=a, 6=b, w=b, x=b, and y=b" .

THEOREM 7.2. Assume that B is finite, �B �=n, and D is either DB
B [3] or DB

® .
(i) If {1’, a, c}¤C¤D and C is closed under the Boolean operations then C is

a subuni6erse of D.
(ii) D cannot be generated by fewer than log2(3+n)−3 elements.
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(iii) If m5 log2(3+n)−3 then D cannot be embedded in any n-generated
relation algebra.

Proof. (i): By assumption, C is a subuniverse of the Boolean part of D and
C contains 1’. Let C0 be the Boolean subalgebra of the Boolean part of D

whose universe is C. Since D is symmetric, C is closed under conversion, so we
need only show that the relative product of any two atoms of C0 is the join of
elements of C. Note that 1’, a, and c are atoms of C0, and that almost every
entry in the two possible tables for D, shown below, is obtained solely from 1’,
a, and c by Boolean operations. The only exceptions are relative products
involving c and another atom x �At C0�{1’, a, c}. There are just two cases.
Either there are distinct b, b % �B such that x]b+b %, in which case c ; x]
c ; (b+b %)=0’ so c ; x=0’ �C, or else x �B and c ; x=0’ · x) �C.

DB
B [3] 1’ a c b b %

1’ 1’ a c b b %
a a 1’+c 0’ 0’ · b( 0’ · a)
c c 0’ c) 0’ · b( 0’ · b %
b b 0’ · a) 0’ · b( c) 0’
b % b % 0’ · a) 0’ · b % 0’ c)

DB
® 1’ a c b b %

1’ 1’ a c b b %
a a 1’+c 0’ 0’ · b( 0’ · a)
c c 0’ c) 0’ · b( 0’ · b %
b b 0’ · a) 0’ · b( c) a+c
b % b % 0’ · a) 0’ · b % a+c c)

(ii): The subuniverse of D generated by X¤D is contained in the closure
of {1’, a, c}@X under the Boolean operations, and hence contains no more
than 223+ �X� elements. But D has 23+n elements, so if X generates D then X
must have at least log2(3+n)−3 elements.

(iii): Suppose D¤A �RA. Every relation algebra is semisimple, i.e., it is a
subdirect product of simple relation algebras [7, Corollary 4.6]. It follows
that there is a homomorphism h from A onto a simple relation algebra B.
Since D is simple, the restriction h % of h to D is an isomorphism from D

to a subalgebra of B. By Theorem 7.1, h % is actually an isomorphism onto
B, so composing its inverse with h produces a homomorphism h¦ from A

onto D:

h¦(x)= (h %)−1(h(x)).
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In general, homomorphic images of k-generated algebras are k-generated. It
follows that A cannot be generated by fewer than log(3+n)−3 elements. 

8. Conclusions

Let p(w) be the formula 0"w ; 1 ; w# +w# ; 1 ; w51’. It has been known for
decades that p(w) defines atoms in simple relation algebras. It was natural to
wonder whether there are other such formulas. Our work shows that there are. Let
8(w) be the formula

(w# ; w · 0’) ; (w# ; w · 0’)=w# ; w+1’�

×x, y, z [(w# ; w · 0’5x ; y# )� (w ; x · w ; y5w ; z)� (x ; z# +y ; z# 50’)].

The proofs of Theorems 6.1 and 6.2 show that 8(w) defines atoms in simple
relation algebras. Another such formula, c(w), obtained from the use of Lemma
4.1 in the proof of Theorem 6.3, is

×6 [8(6)�×x [(0"w56 ; x)� (w# ; w · x# ; x51’)]].

One interesting contrast between these formulas is that, with trivial exceptions,
atoms that satisfy p can occur only in nonintegral simple relation algebras, while
atoms that satisfy 8 or c can occur only in integral relation algebras. Atoms that
satisfy p, 8, or c in simple relation algebras are persistent, but it seems unlikely
that these formulas exhaust the ways in which persistent atoms can arise. Some of
the problems solved here have simple formulations, requiring only ‘‘yes’’ or ‘‘no’’ as
an answer. On the other hand, Jónsson posed the problem of finding all finite
simple relation algebras in which every atom is persistent [12, Problem P6]. Our
construction of large numbers of such algebras suggests that this goal is probably
unattainable.
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Laboratório de Métodos Formais
Departamento de Informática
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