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On subtractive varieties III: From ideals to congruences

P. AGLIANO AND A. URSINI

Abstract. As a sequel to [2] and [15] we investigate ideal properties focusing on subtractive varieties.
Here we probe the relations between congruences and ideals in subtractive varieties, in order to give
some means to recover the congruence structure from the ideal structure. To do so we consider mainly
two operators from the ideal lattice to the congruence lattice of a given algebra and we classify
subtractive varieties according to various properties of these operators. In the last section several
examples are discussed in details.

0. Introduction

The aim of this paper is to investigate the relation ‘‘congruences-ideals’’ in
subtractive algebras. In a sense we want to see how short the algebras fall from
being 0-regular (in which case the relation is the best possible: a lattice isomor-
phism), and also give a sensible way to control the set

CON(I)={u �Con(A): 0/u=I}

of the congruences associated to an ideal I, in order to ascertain something of the
structure of the family {CON(I): I � I(A)}.

A variety V has normal ideals if for all A �V every ideal of A is a congruence
class; subtractive algebras do have normal ideals. In particular we consider the two
natural mappings ( )d and ( )o which associate to any ideal I the least (resp. the
greatest) congruence in CON(I). If V is a variety with normal ideals we set
Vo={A/(0)o

A: A �V}; then algebraic properties of V and closure properties of Vo

turn out to be connected with logical properties of the assertional logic ALV (in the
sense of Blok and Pigozzi [6]). For instance if V has normal ideals, then

� V is subtractive iff ALV is protoalgebraic iff Vo is closed under subdirect
products iff ( )o is monotonic.

� V is ideal determined iff Vo is a variety iff ( )o is a homomorphism iff ALV is
strongly algebraizable.
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The last section of the paper is devoted to examples of varieties with (strongly)
normal ideals; this serves both to illuminate the entire subject and also to emphasize
that the concept of an algebra with (strongly) normal ideals applies to a fairly
broad spectrum of structures.

We tried to make the present paper as self-contained as possible; the few results
in [2], [15] to which we refer are easily proved if needed.

1. Preliminaries

All algebras (and varieties) considered will be of a signature with a fixed
constant 0. If R is a binary relation on a set A and a �A we set a/R={x : a R x}.
If �L,5� is a poset, a, b �L, then [a, b ]={x �L : a5x5b} (the closed inter6al
from a to b).

If A is an algebra a semicongruence [2] of A is a reflexive subalgebra of A×A;
Con(A) is the congruence lattice of A.

We now recall the main notions from the theory of ideals [15]. If K is a class
of similar algebras, a term p(x1, . . . , xm, y1, . . . , yn ) is a K-ideal term in y� (and we
write p(x� , y� ) � ITK(y� )) if the identity p(x� , 0, . . . , 0):0 holds in K. A nonempty
subset I of A �K is a K-ideal of A if for any p(x� , y� ) � ITK(y� ), for a� �A and bb � I,
p(a� , bb ) � I. Under inclusion, the set IK(A) of all K-ideals of A is an algebraic
lattice; if H¤A, the ideal �H�K generated by H is easily seen to be the set
{p(a� , bb ): p(x� , y� ) � ITK(y� ), a� �A, bb �H}; likewise one easily sees that if S is a
semicongruence of A, then 0/S � I(A). If H={a1, . . . , an } we will write
�a1, . . . , an�A but, in (apparent) contrast with the previous notation, we will write
(a)KA whenever H={a}; note that (0)KA ={0}.

When K is {A} (or, equivalently, the variety VA generated by A), then a
K-ideal of A will be called an ideal and we drop all the affixes and suffixes in sight.
By N(A) we denote the set {0/u : u �Con(A)} and trivially N(A)¤I(A)¤IK(A)
whenever A �K. N(A) inherits in a natural way the lattice structure of Con(A).
One can easily check that for any A �K the following are equivalent:

(1) The mapping from Con(A) into IK (A) defined by u � 0/u is a lattice
homomorphism.

(2) N(A) is a sublattice of IK(A).

For X¤A we denote by s(X) the smallest congruence which makes all elements
of X congruent, namely

s(X)=CgA(X×X).
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Note that X �N(A) iff X=0/s(X), iff for every unary polynomial g(x) and for any
a �X, g(a) �X iff g(0) �X.

PROPOSITION 1.1. For any X¤A

CgA({0}×X)=CgA({0}×�X�)=s(�X�).

If moreo6er 0 �X, then

s(X)=CgA({0}×X)=s(�X�).

Proof. It is enough to show that

�X�×�X�¤CgA({0}×X).

Let p, p % be ideal terms, a=p(bb , x� ), c=p %(db , y� ) with bb , db �A and x� , y� �X.
Then (p(bb , x� ), 0) �CgA({0}×X) and similarly for (p %(db , y� ), 0). Hence (a, c) �
CgA({0}×X); if 0 �X, then CgA({0}×X)=CgA(X×X). 


Most often we are interested in the restriction of s to I(A).

PROPOSITION 1.2. The map I � s(I) is a join homomorphism from I(A) into
Con(A): for any I, J � I(A),

s(I�J)=s(I)�s(J).

Proof. One inclusion is trivial. Next observe that

s(I�J)¤CgA(I×J)¤s(I)�s(J).

In fact s(I�J)=s(�I@J�)=s(I@J). Let then h � I@J ; then (0, h) � I×J or
(0, h) � J×I, hence {0}× (I@J)¤ (I×J)@ (J×I)¤CgA(I×J). Now pick i � I,
and j � J : then (0, i) � s(I), (0, j) � s(J) which implies (i, j) � s(I) $ s(J). 


Thus the interplay of the two mappings

0/: u �Con(A) � 0/u � I(A)

s : I � I(A) � s(I) �Con(A)
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is a key tool for our aim: 0/ is of course a meet-homomorphism and s is a join
homomorphism.

Next we move toward subtractive varieties, but a weaker condition deserves
some attention. A variety V (resp. an algebra A) has normal ideals if IV(A)=N(A)
for all A in V (resp. if I(A)=N(A)). The following are equivalent (cfr. [1]):

(1) A has normal ideals;
(2) I=0/s(I) for I � I(A);
(3) I/s(J)=I�J for I, J � I(A);
(4) s is injective from I(A) into Con(A).

For I � I(A) let us define

CON(I)={u �Con(A): 0/u=I}

Id=/ CON(I)

I o=0 CON(I).

Observe that for u �CON(I), I=I/u. Moreover 0/Id=I, hence Id �CON(I). Also if
a I o 0, then for some u1, . . . , un �CON(I), b1, . . . , bn �A we have

0=b1 u1 b2 u2 b3 u3 · · · un bn=a.

Hence b2 � I, b3 � I/u2=I . . . and finally a � I ; hence also 0/I o �CON(I). We have
thus proved the following:

PROPOSITION 1.3. If A has normal ideals, then CON(I)= [Id, I o] is an inter6al
in Con(A).

Also observe that

PROPOSITION 1.4. If A has normal ideals and u �Con(A) then

0/u=0/s(0/u).

Proof. In fact one inclusion holds trivially. Let a � 0/s(0/u); then there are
a0=0, a1, . . . , an=a, (0, ui ) � {0}×0/u (i=0, . . . , n) and unary polynomials
f0, . . . , fn such that
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{ai, ai+1}={fi (0), fi (ui )}.

Thus fi (0) u fi (ui ), and ai u ai+1; hence 0 u a. 


Observe that, for u �Con(A), (0/u)d is the least congruence c such that
0/c=0/u ; thus we have

s(0/u)= (0/u)d.

In fact 0/u=0/s(0/u), thus (0/u)d¤s(0/u); on the other hand 0/(0/u)d=0/u, thus
s(0/u)=s(0/(0/u)d)¤ (0/u)d.

Let us define, for u �Con(A)

u0= (0/u)d=s(0/u)

u1= (0/u)o

u. =CON(0/u)

hence u. = [u0, u1]. Note that (u0)0= (u1)0=u0, (u1)1= (u0)1=u1 and that u0=80

iff 0/u=0/8 iff 0/u0=0/80 iff u1=81 iff 0/u1=0/81 for all u, 8 �Con(A).
Next observe that {u. :u �Con(A)} is a partition of Con(A), corresponding to the

equivalence relation defined by

u�8 iff 0/u=0/8.

Also remark that for u, 8 �Con(A)

(u�8)05u0�80 (*)

since

{a�b : 0/a=0/u, 0/b=0/8}¤{g : 0/g=0/(8�u)}

and consequently

if u58 then u0580.

To get something more we now move to subtractive algebras. A variety V is
subtracti6e if for some binary term s(x, y)
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s(x, 0):x s(x, x):0

hold in V (we also say that V is s-subtractive); an algebra A is subtractive if VA
is. In a subtractive algebra there is an important derived ternary term u(x, y, z)=
s(x, s(s(x, y), z)) (see [15]) satisfying

u(x, 0, 0):0 u(x, x, 0):x

u(x, y, s(x, y)):x.

Several characterizations of subtractive varieties can be found in [1] and [15]. Here
we are mainly interested in recalling that the following are equivalent:

(1) V is subtractive;
(2) for any A �V the congruences of A permute at 0;
(3) for A �V, the mapping 0/ is a lattice homomorphism from Con(A) into

I(A).

Moreover any subtractive variety has normal ideals, thus 0/ is in fact a complete
epimorphism.

PROPOSITION 1.5. Let A be subtracti6e ; then
(1) � is a congruence of Con(A) and I(A) is isomorphic with Con(A)/�.
(2) For u, 8 �Con(A)

u1�815 (u�8)1.

Hence if u58, then u1581.

Proof. While (1) is trivial, for (2) observe that

0/(u1�81)=0/u1�0/81=0/u�0/8=0/(u�8). 


Thus the structure of Con(A)/�, which coincides with {u. : u �Con(A)}, can be
described as follows

u. 58/ iff u58

u. �8/ = (u�8)�=[(u�8)0, (u�8)1]

u. �8/ = (u�8)�=[(u�8)0, (u�8)1].
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Hence when A is subtractive, I(A) is isomorphic with this lattice of intervals of
Con(A) via the lattice isomorphism

CON: I�CON(I)

where for any u �CON(I)

CON(I)= [Id, I o]= [u0, u1].

In general this representation is not very perspicuous (even in this kind of
‘‘explosion’’ of a lattice into a lattice of intervals may deserve further inquiry),
because we would like to be able to choose ‘‘uniformly’’, or at least homomorphi-
cally, a representative in u. for the ideal 0/u.

Given a mapping F from I(A) into Con(A) we set for u �Con(A), uF=F(0/u)
and

ConF (A)={uF : u �Con(A)}.

For instance

Cond (A)={(0/u)d: u �Con(A)}=Cons (A)={s(0/u): u �Con(A)}.

We say that F is a normalizer for A if

(1) F is a lattice homomorphism from I(A) into Con(A);
(2) 0/F(I)=I for I � I(A).

A complete normalizer will be a normalizer which is a complete lattice homomor-
phism. Thus if A is subtractive, and hence 0/ is a homomorphism from Con(A)
onto I(A), then a complete normalizer F is a section of 0/ in the category of
complete lattices. Observe that any normalizer F for A is in fact an embedding of
I(A) into Con(A):

F(I)=F(J) implies I=J

for I, J � I(A); so I(A) is isomorphic with ConF (A).

PROPOSITION 1.6. If A is subtracti6e and F is a mapping from I(A) into
Con(A) then the following are equi6alent :

(1) F is a (complete) normalizer for A;
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(2) the mapping sending u � uF is a (complete) lattic endomorphism of Con(A)
and 0/uF=0/u.

Proof. (1) implies (2), simply because the mapping is the composition of the
hoomorphisms 0/ and F.

Assume (2) and let I=0/u, J=0/8 ; then

F(I�J)=F(0/u�0/8)=F(0/u�8)

= (u�8)F=uF�8F=F(0/u)�F(0/8)

=F(I)�F(J)

thus F is a homomorphism. Moreover, if I=0/u, then

0/F(I)=0/uF=0/u=I.

For the complete case the proof is similar. 


We will say that A has strongly normal ideals if there is a normalizer for A; a
variety V has strongly normal ideals if any algebra in V has strongly normal ideals.
Pointed sets show at once that, for a variety, having strongly normal ideals is not
a Mal’cev condition.

If A is a subtractive algebra and F is a normalizer for A, then we have the lattice
isomorphisms

I(A)$Con(A)/�$ConF (A)

whence I(A) is both a sublattice and a quotient of Con(A). As a matter of fact we
have a homomorphic choice function on Con(A)/�, namely a morphism

C : Con(A)/��Con(A)

such that C(u. ) � u. for u �Con(A).
In fact, define F0 (u. )=F(0/u); this is a well defined mapping F0 from Con(A)/�

into Con(A). Moreover F0 (u. ) � u. and F0 is a homomorphism: F. preserves meets
trivially and also

F0 (u. �8/ )=F0 ((u�8)�)=F(0/u�8)

=F(0/u�0/8)=F(0/u)�F(0/8)

=F0 (u. )�F0 (8/ ).
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Conversely, if C is a homomorphic choice function on Con(A)/�, then let us define

C0 (I)=C(CON(I)).

Then C0 is easily shown to be a homomorphism from I(A) into Con(A) and
moreover

0/C0 (I)=I

(in fact C(CON(I)) �CON(I)). Notice also that, if F is a normalizer, then

F00 =F0 $ CON=F

and if C is a homomorphic choice function on Con(A)/�, then

C00 =C.

Thus if A is a subtractive algebra and F is a normalizer then the following diagram
commutes in the category of lattices:

Thus we conclude:

PROPOSITION 1.7. If A is subtracti6e the following are equi6alent :
(1) A has strongly normal ideals ;
(2) there is a homomorphic choice function on Con(A)/�.

While the mappings ( )d and ( )o satisfy
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0/Id=0/I o=I

they are not in general normalizers. In the next sections we will study them, giving
conditions under which they are normalizers, and consequences thereof. The
behavior of the commutator of ideals ([2], [15]) will be investigated in a different
paper.

2. The least congruence

We begin investigating the operator on Con(A)

( )0: u � u0.

Let us call Con0(A) its codomain {u0: u �Con(A)}. If we want ( )d to be a
normalizer for a subtractive algebra A, then surely ( )0 is to be an endomorphism of
Con(A), being the composition of ( )d with 0/.

PROPOSITION 2.1. If A is any algebra then ( )0 preser6es meets in Con(A) iff
Con0(A) is closed under meets.

If A is subtracti6e then ( )0 preser6es joins in Con(A) iff Con0(A) is closed under
joins.

Proof. Certainly if ( )0 preserves meets, then the conclusion holds. Conversely if
u0�80=c0 for some c �Con(A), then by (�) in Section 1

u0�805c0=c00= (u0�80)0

5 (u�8)05u0�80

Again if ( )0 preserves joins then Con0(A) is closed under joins. Conversely let
u0�80=c0 for some c �Con(A). Then c0=c00= (u0�80)] (u�8)0; in fact

0/(u�8)=0/u�0/8=0/u0�0/80=0/(u0�80)=0/(u0�80)0.

On the other side trivially (u�8)0]u0�80. 


Thus we conclude that in a subtractive algebra A the following are equivalent:

(a) ( )0 is a lattice homomorphism;
(b) Con0(A) is a sublattice of Con(A).
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Next we show that ( )d is a join homomorphism on any subtractive algebra.

PROPOSITION 2.2. If A is subtracti6e and I, J � I(A) then
(1) if I¤J then Id¤Jd;
(2) (I�J)d=Id�Jd.

Proof. Note that Id=u0 whenever u �CON(I); but u0=s(I) and (1) follows.
One inclusion in (2) follows from (1); moreover

0/Id�Jd=0/Id�0/Jd=I�J,

hence (I�J)d¤Id�Jd. 


PROPOSITION 2.3. If A is subtracti6e than the following are equi6alent :
(1) ( )d preser6es meets ;
(2) ( )0 preser6es meets.

Proof. Assume (1) and compute

u0�80= (0/u)d� (0/8)d= (0/uS0/8)d

= (0/u�8)d= (u�8)0.

Assume (2) and compute

Id�Jd= (Id)0� (Jd)0= (Id�Jd)0= (0/(Id�Jd))d

= (0/IdS0/Jd)d= (I�J)d. 


We summarize our findings in the following:

THEOREM 2.4. For a subtracti6e algebra A the following are equi6alent :
(1) ( )d is a (complete) normalizer for A;
(2) ( )d preser6es (arbitrary) meets in I(A);
(3) ( )0 is a (complete) lattice endomorphism of Con(A);
(4) Con0(A) is a (complete) sublattice of Con(A);
(5) Con0(A) is closed under (arbitrary) meets in Con(A).

Proof. (1) and (3) are clearly equivalent by Proposition 1.6 and surely (3)
implies (4) and (4) implies (5). By Proposition 2.3, (5) implies (2) and by Proposi-
tion 2.2, (2) implies (1). In the complete case one has of course to prove that
Propositions 2.1, 2.2 and 2.3 hold for complete homomorphisms and arbitrary
meets; but this is just routine. 




Vol. 37, 1997 On subtractive varieties III: From ideals to congruences 307

Now we investigate necessary and sufficient conditions for a class of subtractive
algebras to be strongly normal with respect to ( )d. First we recall that, if
u, 8 �Con(A) with u58 and I � I(A)

I/u={a/u : a � I} � I(A/u)

8/u={(a/u, b/u): (a, b) �8} �Con(A/u).

PROPOSITION 2.5. Let A be any algebra with a constant 0 in its type ; then
(1) If u, 8 �Con(A) and 8]u then (0/u)/(8/u)= (0/8)/u.
(2) If u �Con(A) then the mapping I � I/u is a complete lattice isomorphism

between I(A/u) and {I � I(A): 0/u¤I}.
(3) If A is also subtracti6e, I � I(A) and u �Con(A) and u5Id, then (I/u)d=

(Id)/u.

Proof. (1) and (2) can be proved with easy calculations. For (3) note that, by (1)

(0/u)/(Id/u)= (0/Id)/u=I/u

hence (Id/u)d¤Id/u.
Conversely let a �Con(A/u) with 0/a=I/u ; then there exists a 8 �Con(A) with

8]u such that a=8/u hence

(0/u)(8/u)= (0/8)/u=I/u.

Since u58 we have 0/u50/8 and hence by (2) and the above equation 0/8=I.
But then 8]Id, implying 8/u=a]Id/u ; so Id/u5 (I/u)d and in fact equality
holds. 


In parallel with the notion of subdirect irreducibility an algebra is ideal
irreducible if I(A) contains a minimal nonzero ideal, which of course must be
principal, generated by a monolithic element ; it is finitely ideal irreducible if the meet
of two nonzero ideal is not (0). In general subdirect irreducibility and ideal
irreducibility are independent concepts, even in subtractive varieties (see [2] for
examples of this fact). However:

THEOREM 2.6. Let K be a class of subtracti6e algebras closed under homomor-
phic images ; then the following are equi6alent.

(1) ( )d is a complete normalizer for K.
(2) For any A �K and any family (Il )l �L of ideals of A
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/
l �L

Il= (0) implies /
l �L

Id
l =0A.

Moreo6er each of (1) and (2) implies :
(3) Any subdirectly irreducible algebra in K is also ideal irreducible.

Proof. Since (0)d=0A, via Theorem 2.4 above we get that (1) implies (2).
Conversely assume (2); let A �K and (Il )l �L¤I(A). Let u= (/l �L IL )d; then

by Proposition 2.5(2) I � I/u is a complete lattice isomorphism between I(A/u) and
{K � I(A): /l �L Il¤K}. Hence (/l �L Il )/u=/l �L (Il /u)= (0)/u and so by hy-
pothesis /l �L (Il /u)d=0A/u=u/u. But by Proposition 2.5(3), since Id

l]u

u/u= /
l �L

(Il /u)d= /
l �L

Id
l /u=

� /
l �L

Id
l

�,
u.

Hence /l �L Id
l =u= (/l �L Il )d which, in view of Theorem 2.4, gives (1).

Assume now (2) and let A be a subdirectly irreducible algebra in K. Suppose
(Il )l �L¤I(A) with /L Il= (0); then by hypothesis /l �L Id

l =0A and since A is
subdirectly irreducible Id

l 0
=0A for some Il 0

. It follows that Il 0
= (0) and A is ideal

irreducible. 


By a similar proof we get:

PROPOSITION 2.7. Let K be a class of subtracti6e algebras closed under
homomorphic images ; then the following are equi6alent.

(1) ( )d is a normalizer for K.
(2) For any A �K and I, J � I(A)

I�J= (0) implies Id�Jd=0A.

Moreo6er each of (1) and (2) implies :
(3) Any finitely subdirectly irreducible algebra in K is also finitely ideal irre-

ducible.

The problem whether (3) implies (2) in Theorem 2.6 and Proposition 2.7
remains open. A first step would be to find a semisimple subtractive variety which
is not ideal determined; in that setting then one might be able to select the proper
counterexample. However Remarks (2) in Section 3 seems to indicate that such a
variety is hard to find.
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3. The greatest congruence

The problem of getting a reasonable algebraic description of the operators
u � u1 and I � I o is harder to solve. We can give a description of them, albeit very
generic, in case of algebras with normal ideals.

PROPOSITION 3.1. Let A be any algebra and u �Con(A); then (a, b) � u1 iff for
e6ery unary polynomial p(x)

p(a) u1 0 iff p(b) u1 0.

Proof. Let c be the relation defined by: (a, b) �c iff they satisfy the conclusion
of the statement above. It is straightforward to check that it is a congruence and
u¤c ; Moreover 0/u=0/c, hence c¤u1. Let now 8 �Con(A) be such that
0/8=0/c ; then of course 8¤c. 


COROLLARY 3.2. If A has normal ideals and I � I(A), then (a, b) � I o iff for
e6ery unary polynomial p, p(a) � I iff p(b) � I.

PROPOSITION 3.3. Let A, B two algebras and h an epimorphism of A onto B.
Then, for any u �Con(B),

h−1(u1)= (h−1(u))1.

Proof. It is easy to see that

0/h−1(u1)=h−1(0/u)

and

0/h−1(u1)=0/h−1(u);

hence h−1(u1)¤ (h−1(u))1.
To prove that (h−1(u))1¤h−1(u1) it is enough to show that h((h−1(u))1)¤u1.

Let q(x, y1, . . . , yn ) be any term and let

p(x)=q(x, h(a1), . . . , h(an ))
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(for suitable a1, . . . , an �A) be a unary polynomial of B. Let (u, 6) � h−1(u)1 and
assume p(h(u)) u 0; observe that p(h(u))=h(p(u, a1, . . . , an )) and p(h(6)))=
h(p(6, a1, . . . , an )). Thus (p(u, a1, . . . , an ), 0) � h−1(u) and so (p(6, a1, . . . , an ), 0) �
h−1(u) and finally p(h(6))u0. 


COROLLARY 3.4. If A, B ha6e normal ideals and h : A�B is an epimorphism,
then for any I � I(B)

h−1(I o)= (h−1(I))o.

Proof. We have that I o=81 for some 8 �Con(B) such that 0/8=I. But then
h−1(I)=h−1(0/8)=0/h−1(8) and Proposition 3.3 applies. 


In the sequel we will deal with a family D={dl (x, y, z� l): l �L} of terms
dl (x, y, z� l) in the shown variables in the algebraic language considered. For any
algebra A, I � I(A) we define ID¤A×A as follows

(a, b) � ID iff Öl �L, Öc� l �A, dl (a, b, c� l) � I.

If u �Con(A) we define uD= (0/u)D.

PROPOSITION 3.5. If h is an epimorphism from A onto B and I � I(B), then

(h−1(I))D=h−1(ID).

Proof. We have

(a, b) � (h−1(I))D iff for all l �L and c� l �A, dl (a, b, c� l) � h−1(I)

iff for all l �L and db l �B, dl (h(a), h(b), db l) � I

iff (h(a), h(b)) � ID. 


We say that D={dl (x, y, z� l): l �L} is a system of 0-terms with parameters for
a class K of algebras if

(1) K � dl (x, x, z� l):0, for l �L ;
(2) for A �K and a �A, if dl (0, a, c� l)=0 for all l �L, c� l �A, then a=0.
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PROPOSITION 3.6. Let K be a class of algebras with normal ideals and let D
be a system of 0-terms with parameters for HK. Then for e6ery A �K

(1) if U¤A, then

�U�A=�dl (0, u, c� l): l �L, c� l �A, u �U�

(in particular, for a �A, (a)=�dl (0, a, c� l): l �L, c� l �A�);
(2) the congruences of A permute at 0.

Proof.
(1) Let I=�dl (0, u, c� l): l �L, c� l �A, u �U�; since K � dl (0, 0, z� l):0 we get

dl (0, u, c� l) � �U� for u �U and c� l �A, so that I¤�U�. On the other hand
let I=0/8 for some 8 �Con(A); in A/8, dl (0/8, u/8, c� l/8)=0/8, hence
u/8=0/8, i.e. u � I.

(2) Now let 8, c �Con(A) and 08a c b. For c� l �A, l �L

dl (0, b, c� l) 8 dl (a, b, c� l) c dl (b, b, c� l)=0,

hence dl (0, b, c� l) � 0/c $ 8. By (1), since 0/c $ 8 � I(A), we conclude that b � 0/c $ 8

i.e. for some c, 0 c c 8 b. 


For a class K of algebras, we say that D={dl (x, y, z� l): l �L} is a system of
ideal congruence terms with parameters for K (shortly: an IC-system with parame-
ters for K) if uD � u. for all A �K and u �Con(A) (i.e. uD �Con(A) and 0/uD=
0/u). If K has normal ideals, then D is an IC-system for K iff for all A �K and
I � I(A), ID �CON(I) (i.e. ID �Con(A) and 0/ID=I).

PROPOSITION 3.7. Let D be an IC-system with parameters for a class K.
Then D is a system of 0-terms for K and moreo6er for A �K, 8 �Con(A), 8¤8D.

Proof. For any A �K and a �A, 0/(0A)D= (0) and (a, a) � 0A; then dl (a, a, c� l)=
0 for all c� l �A. By the same token if dl (0, a, c� l) for all l �L and c� l �A, then
a � 0/(0A)D, so a=0.

Finally if (a, b) �8, then dl (a, b, c� l) 8 dl (a, a, c� l)=0, thus dl (a, b, c� l) � 0/8 for
l �L and c� l �A. Thus (a, b) �8D. 


Our interest in IC-systems stems from the following:

PROPOSITION 3.8. For a family D of terms and a class K of algebras the
following are equi6alent.
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(1) D is an IC-system for K.
(2) For A �K and u �Con(A), uD=u1

If moreo6er K has normal ideals then they are also equi6alent to
(3) For A �K and I � I(A), ID=I o.

Proof. Assume (1); then u¤uD¤u1 by Proposition 3.7. Since u � u. , if
8 �Con(A) and 0/8=0/u, then 8¤8D=uD; in particular u1¤uD.

Since u1 � u. , (2) trivially implies (1). That (1) and (3) are equivalent is shown in
a similar way. 


PROPOSITION 3.9. Let K be a class of algebras with normal ideals and let D
be a system of 0-terms with parameters for HK; then the following are equi6alent.

(1) For all A �K, I � I(A), ID is a subalgebra of A×A.
(2) For all A �K, I � I(A), I=0/SubA×A(ID).
(3) D is an IC-system with parameters for K.
(4) D is an IC-system with parameters for HK.
(5) For A �HK, (0)D �Con(A).
(6) For A �HK, (0)D is a subalgebra of A×A.

Proof. We will first show that (1) and (2) are equivalent. Assuming (1),
Proposition 3.6(1) yields I=0/ID and hence (2) holds. Conversely assume (2); from
(a, b) � SubA×A(ID) we get (0, dl (a, b, c� l)) � SubA×A(ID) for c� l �A and l �L, hence
dl (a, b, c� l) � I for c� l �A and l �L and finally (a, b) � ID.

Now assume (1) (and (2)). To prove (3) observe that for A �K and I � I(A) we
have I=0/ID. Thus we need only to show that ID is an equivalence. Reflexivity is
obvious; from (u, 6) � ID and (u, u) � ID we get (dl (u, u, c� l), dl (6, u, c� l)) � ID for
l �L and c� l �A. Thus (0, dl (6, u, c� l)) � ID i.e. dl (6, u, c� l) � 0/ID=I hence (6, u) � ID.
Finally if (u, 6), (6, w) � ID, then (6, u) � ID, so (dl (6, 6, c� l), dl (u, w, c� l)) � ID and so
eventually (u, w) � ID.

Assume now (3); to prove (4) let A �K, u �Con(A), B=A/u and J � I(B). Let
h be the natural epimorphism of A onto B; by Corollary 3.4 and Proposition 3.8 we
have that

h−1(JD)= (h−1(J))D= (h−1(J))o=h−1(J o)

whence JD=J o which of course implies JD �CON(J).
Trivially (4) implies (5) and (5) implies (6). Assume then (6) and let A �K,

I � I(A), I=0/8 for some 8 �Con(A). If B=A/8 and h is the natural epimorphism
from A onto B, then I=h−1(0) and by Proposition 3.5 ID=h−1((0)D). So clearly ID

is a subalgebra of A×A and (1) holds. 
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THEOREM 3.10. For a 6ariety V with normal ideals the following are equi6a-
lent :

(1) V is subtracti6e ;
(2) V has an IC-system with parameters.
(3) V has a system of 0-terms with parameters.

Proof. Since (2) implies (3), by Proposition 3.7 and (3) implies (1) by Proposi-
tion 3.6, we need only to prove that (1) implies (2). Let s(x, y) be a subtraction term
for V and let

DV={d(x, y, u� ): for some term t of Vd(x, y, u� )=s(t(y, u� ), t(x, u� ))}.

Observe that V � d(x, x, u� ):0, and if d(0, a, c� )=0 for any such d, then in
particular a=s(a, 0)=0. Thus DV is a system of 0-terms for V and by Proposition
3.9 it is enough to show that IDV=I o. By Corollary 3.2 this reduces to proving that
for A �V, a, b �A and I � I(A)

(a, b) � IDV iff for every unary polynomial p(x), p(a) � I iff p(b) � I.

Suppose (a, b) � IDV and let p(x)= t(x, a1, . . . , an ) for a1, . . . , an �A ; then
s(p(a),p(b))=s(t(a, a1, . . . , an ), t(b, a1, . . . , an )) � IDV and similarly s(p(b), p(a)) �
IDV. If p(a) � I then (the term u(x, y, z) was defined above Proposition 1.5)

p(b)=u(p(b), p(a), s(p(b), p(a)) � I

and similarly if p(b) � I, then p(a) � I.
Conversely for any d(x, y, z� )=s(t(y, z� ), t(x, z� )) �DV let

pd,c� (x)=s(t(b, c� ), t(x, c� )).

Then pd,c� (b)=s(t(b, c� ), t(b, c� ))=0 � I and hence

pd,c� (a)=s(t(b, c� ), t(a, c� ))=d(a, b, c� ) � I

for any d �DV and c� �A. So (a, b) � IDV. 


REMARKS. (1) Theorem 3.10 shows that the existence of an IC-system with
parameters characterizes subtractive varieties among varieties with normal ideals.
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(2) If V is a subtractive variety the set DV is the largest set of terms from which
we can get an IC-system for V. In fact suppose D is another such set and let
d %(x, y, u� ) �D ; then

d %(x, y, u� )=s(d %(x, y, u� ), 0)=s(d %(x, y, u� ), d %(y, y, u� )) �DV.

To obtain more information on the operator ( )o one has to make a connection
with Blok and Pigozzi’s work in abstract algebraic logic (see [4], [6] and the
bibliographies therein).

A deducti6e system CS in a language L is a structural and finitary closure
operator on the term algebra FML. If G@{8}¤FML then it is customary to write
G �S 8, for 8 �CS(G). If A is an algebra in the same language as L and F¤A,
then �A, F� is called an L-matrix or simply a matrix. A congruence u �Con(A) is
compatible with F if F is a union of u-blocks; the largest congruence compatible
with F (which always exists) is called the Leibniz congruence and it is denoted by
VA(F). If CS is a deductive system and A an algebra, then F¤A is an S-filter if for
any G@{8}¤FML

G �S 8 iff Öa1, . . . , an �A, G(a1, . . . , an ) � F [ 8(a1, . . . , an ) � F.

A matrix �A, F� is a matrix model for CS if F is an S-filter; a matrix model is
reduced if VA(F)=0A.

If M is a class of matrices then one can define a deductive system CM associated
with M in the following way: for G@{8}¤FML

G �M 8 iff Ö�A, F� �M, Öa1, . . . , an �A,

G(a1, . . . , an ) � F [ 8(a1, . . . , an ) � F.

If V is a pointed variety then the assertional logic of V, in symbols ALV, is the
deductive system defined by the class of matrices

MV={�A, {0}�: A �V}.

If V has normal ideal one sees easily that the ALV-filters are exactly the ideals and
that for A �V and I � I(A), VA(I)=I o. Keeping [6] at hand the reader can easily
determine the class of reduced matrix models of ALV; accordingly we will say that
an algebra A �V reduced if (0)o

A=0A. We denote by Vo the class of reduced
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algebras of V and of course

Vo={A/(0)o
A: A �V}.

It is a trivial exercise to show that A/u is reduced iff (0/u)o=u ; it follows that
A/u �Vo iff u=I o for some I � I(A).

In [6] Blok and Pigozzi classified deductive systems according to the behavior of
the Leibniz congruence; it turns out that this depends on the existence of what they
call equi6alence systems with parameters. Again one easily shows that in case V has
normal ideals an equivalence system with parameters for ALV is just an IC-system
with parameters for V. With this in mind we can start the translation of Blok and
Pigozzi’s results in our framework.

THEOREM 3.11. For a 6ariety with normal ideals the following are equi6alent.
(1) V is subtracti6e ;
(2) for all A �V and I � I(A), (0)o

A¤I o;
(3) ( )o is monotonic in V, i.e. for any A �V and any I, J � I(A)

I¤J implies I o¤J o.

(4) ALV is protoalgebraic ([6], 7.1).
(5) Vo is closed under subdirect products.

Proof. (1) implies (2) by Proposition 1.5(2). Assume then (2) and let A �V and
I, J � I(A) with I¤J ; if u=s(I), then, by (3) before Proposition 1.3,

J=I�J=J/u.

Let now h : A�A/u be the natural homomorphism; by Corollary 3.4 we have

h−1((hI)o)= (I/u)o=I o

h−1((hJ)o)= (J/u)o=J o.

Now hI= (0/u)A/u hence by assumption, (hI)o¤ (hJ)o; but then I o¤J o and hence ( )o

is monotonic in V. Assume now (3), let A �V and u �Con(A) with 0/u¤I. Then
(0/u)o¤I o which implies (in view the above remarks about ( )o) that I is a union of
u-blocks. From now on a standard Mal’cev argument on the free 2-generated
algebra in V yields terms to guarantee subtractivity (but see [1], Theorem 2.4, for
a complete proof). Therefore (1), (2) and (3) are equivalent.
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That (3) and (4) are equivalent follows from the definition of protoalgebraic
deductive system in [6] and our remarks previous to the theorem.

Assume now that (3) holds. Let A be a subdirect product of algebras in Vo ; this
means that there is a family (ul : l �L) of congruences of A such that -l �L ul=0A

and (0/ul )o=ul. Since (0)A=0/0A=0/(-l �L ul ) by monotonicity we get

(0)o
A=

�
0
,� -

l �L

ul

��o

¤ -
l �L

(0/ul )o= -
l �L

ul=0A.

Therefore A �Vo and (5) holds.
Assume now (5); let A �V, I, J � I(A) with I¤J and let u=I oSJ o. Clearly A/u

is a subdirect product of A/I o, A/J o �Vo, hence A/u �Vo. It follows that (0/u)o=u

and moreover 0/u=0/(I oSJ o)=0/I oS0/J o=ISJ=I. We conclude that I o=u=
I oSJ o and so I o¤J o. Thus ( )o is monotonic in V and (3) holds. 


A variety V is (finitely) congruential if it has a (finite) IC-system without
parameters. In other words V is congruential iff there is a set D={dl (x, y): l �L}
of binary terms such that for any A �V and any u �Con(A)

u1=uD;

it is finitely congruential iff �L �Bv. For varieties with normal ideals being (finitely)
congruential is equivalent to saying that

I o={(a, b): dl (a, b) � I, l �L};

a (finitely) congruential variety with normal ideals is always subtractive by Theorem
3.10. We remark the obvious fact that Proposition 3.9 continues to hold for
IC-systems (and sets of 0-terms) without parameters.

THEOREM 3.12. For a 6ariety V with normal ideals the following are equi6a-
lent.

(1) V is congruential ;
(2) ALV is weakly congruential ([6], 13.11);
(3) ( )o is monotonic on V and for any A �V, any B subalgebra of A and any

I � I(A)

(ISB)o=I oSB2.

(4) Vo is closed under subalgebras and direct products.
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Proof. (1) and (2) are equivalent by the definition of weakly congruential in [6]
and our remarks. The equivalence of (1), (3) and (4) comes really from Theorems
13.12 and 13.13 in [6]; however we display a complete argument in this case, which
can help the reader to prove some parts of Theorem 3.13 below.

Assume (1); by Theorem 3.11 Vo is closed under subdirect products and hence
direct products. Let D={dl (x, y): l �L} be the set of terms defining the equational
IC-system for V and let A �Vo. Let B5A and observe that

(0)o
B={(a, b) �B2: dl (a, b)=0, l �L};

since B is a subalgebra of A we have

(0)o
B¤0ASB2=0B,

since A is reduced. But then B is reduced as well, Vo is closed under S and (4) holds.
Assume now (4); then Vo is closed under subdirect products and so by Theorem

3.11 ( )o is monotonic on V. Next let A �V, B5A and I � I(A); then I oSB2 �
Con(B) and B/(I oSB2) is (isomorphic to) a subalgebra of A/I o. Since the latter
belongs to Vo by assumption B/(I oSB2) is reduced as well; it follows that

I oSB2= (0/(I oSB2))o= (ISB)o.

Finally assume (3); then since ( )o is a monotonic on V, by Theorem 3.11 V has
an equational IC-system defined by {dl (x, y, u� ): l �L}. Let A �V, I � I(A), a, b �A
and let B=SubA(a, b). Then

(a, b) � I o iff (a, b) � I oSB2

iff (a, b) � (ISB)o

iff dl (a, b, c� ) � I for all l �L and c� �B

iff dl (a, b, t1(a, b), . . . , tnl
(a, b)) � I for all l �L and all

binary terms t1, . . . , tnl
.

it follows that if one sets

D %={d %(x, y): d %(x, y)=dl (x, y, t1(x, y), . . . , tnl
(x, y)), l �L

and t1, . . . , tnl
binary terms}
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then D % defines an equational IC-system without parameters for V, which is then
congruential. 


THEOREM 3.13. For a 6ariety V with normal ideals the following are equi6a-
lent.

(1) V is finitely congruential.
(2) ALV is algebraizable ([6], 13.12).
(3) ( )o is continuous, i.e. for any A �V and any upward directed family

(Ig : g �G) of ideals of A

� .
g �G

Ig

�o

= .
g �G

I o
g.

(4) Vo is a quasi6ariety, i.e. it is closed under subalgebras, direct products and
ultraproducts.

(5) There are binary terms {d1, . . . , dn }, an n+3-ary term q and, for e6ery
m-ary operation f and i=1, . . . , n there is a (2+n)m-ary term ri

f such that
the identities

di (x, x):0 (i= , . . . , n)

q(x, y, 0, . . . , 0):0

q(x, y, y, d1(x, y), . . . , dn (x, y)):x

di (f (x� ), f(y� )):r i
f (x� , y� , db (x1, y1), . . . , db (xm, ym ))

r i
f (x� , y� , 0a , . . . , 0a ):0

hold in V.

Proof. Assume (1); since V is finitely congruential there is a finite set D=
{d1, . . . , dn } of binary terms such that ID=I o for any I � I(A) and A � I. It follows
that

A �Vo iff (0)o
A=0A

iff d1(a, b)= · · ·=dn (a, b)=0 implies a=b.

Hence Vo is axiomatized (relative to V) by the quasi-equation

d1(x, y): · · ·:dn (x, y):0�x:y.
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This shows that Vo is a quasivariety and (4) holds. The reader can supply the proofs
that (4) implies (1) and that (1) and (3) are equivalent by looking at Theorems 13.12
and 13.13 in [6]. Moreover, since the operator ( )o is always injective, from Theorem
13.15 in [6] we get that (2) and (3) are equivalent.

Assume again (1) and work in the algebra freely generated in V by x, y. From
Proposition 3.9 we get the term q and its identities. The consider the algebra freely
generated in V by x� , y� ; again from Proposition 3.9 we get the terms r i

f and their
identities.

Finally assume (5) and observe that the set D={d1(x, y), . . . , dn (x, y)} is a
system of 0-terms without parameters for V. In fact di (x, x):0 for i=1, . . . , n
and if di (x, 0):0 for i=1, . . . , n, then x:q(x, 0, 0, 0, . . . , 0):0. By using the
terms in an appropriate way, one shows again that (0)D

A is a subalgebra of A×A,
for any A �V. Hence (1) holds and the proof is finished. 


We are now ready to answer the question: when is ( )o a normalizer for a variety
V with normal ideals? According to Section 1, if D is an IC-system for V, then for
any A �V

Cono (A)={(0/u)D: u �Con(A)}={u : A/u �Vo }.

So Cono (A) is the set of the so called relati6e congruences of Vo. It is folklore that
in general the set of relative congruences of a class of algebras K can be given an
algebraic lattice structure if K happens to be a quasivariety. In this particular case
the relative congruence lattice coincides with the ideal lattice.

PROPOSITION 3.14. Let V be a 6ariety and let D={d1, . . . , dn } be a finite
IC-system without parameters for V. Then for any A �V

Cono (A)$I(A).

Proof. Consider the mapping from Cono (A) to I(A) defined by u � 0/u ; the
mapping is onto, since for I � I(A), I=0/ID and ID �Cono (A). The mapping is
one-to-one, since from 0/u=0/8, with u, 8 �Cono (A) one deduces

(a, b) � u iff di (a, b) � (0/u)D i=1, . . . , n

iff di (a, b) � (0/8)D i=1, . . . , n

iff (a, b) �8.
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Finally the map is clearly order preserving, as well as its inverse I � ID; this is
enough to conclude that it is a lattice homomorphism. 


The following proposition mirrors Theorem 2.4.

PROPOSITION 3.15. For a subtracti6e algebra A the following are equi6alent :
(1) ( )o is a normalizer for A;
(2) ( )o is a complete normalizer for A;
(3) ( )o preser6es joins in I(A);
(4) ( )o is a lattice homomorphism ;
(5) Cono (A) is a sublattice of Con(A);
(6) Cono (A) is closed under joins of Con(A).

Proof. (1) is equivalent to (2) simply because ideal generation is an algebraic
closure operator. (1) and (4) are equivalent by Proposition 1.6 and clearly (4)
implies (5) and (5) implies (6). Next note that, by Theorem 3.11, both ( )o and ( )1

are monotonic. Assume then (5) and note that this is really equivalent to saying
that ( )1 is a join endomorphism. Let then I, J � I(A); to show (2) compute

I o�J o= (I o)1�(J o)1= (I o�J o)1

= (0/(I o�J o))o= (0/I o�0/J o)o= (I�J)o.

Assume now (2) and note that this is equivalent to saying that ( )o is a join
homomorphism; since it is clearly a meet homomorphism we get (1). 


THEOREM 3.16. For a 6ariety V with normal ideals the following are equi6a-
lent.

(1) ( )o is a lattice homomorphism for any algebra in V.
(2) ( )o is a normalizer for V.
(3) ( )o is a complete lattice homomorphism for any algebra in V.
(4) ( )o is a complete normalizer for V.
(5) Vo is a 6ariety.
(6) For any A �V, Cono (A)= [(0)o

A, 1A].
(7) ALV is strongly algebraizable ([3]).

Proof. Note that 0/I o=I by definition; moreover each of (1)–(4) (via Theorem
3.11) implies that V is subtractive. Hence, using Proposition 3.15 when necessary,
we quickly conclude that (1)–(4) are equivalent.

Assume then that ( )o is a complete normalizer; in particular ( )o must be a
complete lattice homomorphism, so by Theorem 3.13 V is finitely congruential.
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Hence there is a finite set {d1, . . . , dn } of binary terms such that V witnessing this
fact. By Proposition 3.15 this means that for any A �V Cono (A) is closed under
joins (evaluated in Con(A)). Let hence A �Vo and let u �Con(A); let B=u regarded
as a subalgebra of A×A. Since V is finitely congruential, Vo is a quasivariety,
hence B �Vo. Let p1, p2 be the canonical projections of B onto A; then B/p1$
B/p2$A, hence p1, p2 �Cono (A) and by assumption p1�p2 �Cono (A). It follows
that

A/u$B/(p1�p2) �Vo

and so Vo is a variety1.
Next assume that Vo is a variety; then by Theorem 3.11 ( )o is monotonic. This

clearly yields Cono (A)¤ [(0)o
A, 1A]. Conversely if u] (0)o, then u/(0)o

A �Con(A/(0)o)
and by the second homomorphism theorem

(A/(0)o
A)(u/(0)o

A)$A/u.

But the left hand side belongs to Vo, since A/(0)o
A �Vo and Vo is a variety; hence

u �Cono (A) and (6) holds.
Assume now (6); then V is subtractive via Theorem 3.11(2) and Cono (A) is

closed under joins; applying Proposition 3.15 we conclude that ( )o is a normalizer.
Finally the equivalence of (7) and (5) is again a consequence of the definition of

strong algebraizability and our remarks about ALV. 


Note that from the proof one easily sees that the variety Vo is in fact ideal
determined. Hence as a corollary we get a further characterization of ideal
determinacy.

COROLLARY 3.17. For a 6ariety V with normal ideals the following are
equi6alent.

(1) ( )o is a lattice isomorphism for any A �V.
(2) V is ideal determined.
(3) V=Vo.
(4) ALV is strongly algebraizable and its equivalent algebraic semantics ([4]) is

exactly V.

1 This part of the proof is a corollary of a more general result which will appear in [8]; we thank K.
Kearnes for making us aware of this fact.
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REMARKS. (1) In our classification of IC-systems we did not consider finite
IC-systems with parameters. The reason lies in the fact that any variety with normal
ideals having a finite IC-system with parameters has in fact a finite IC-system
without parameters. The proof of this claim is left to the reader.

(2) Our second remark deals with one more characterization of IC-systems: we
claim that, if V is a variety with normal ideals, then D={dl (x, y, z� l): l �L} is an
IC-system if and only if for any A �V and any a, b �A

0/q(a, b)=�dl (a, b, c� l): l �L, c� l �A�A.

In fact if the above equation holds, then one easily checks that D is a system of
0-terms with parameters for V. Suppose now that (a, b) � (0)D

A and p(x) be a unary
polynomial of A; then dl (a, b, c� l)=0 for l �L and c� l �A. This of course implies
that 0/q(a, b)= (0)A. Now for any l �L and c� l �A

dl (p(a), p(b), c� l) q(a, b) dl (p(a), p(a), c� l)=0

which implies (p(a), p(b)) � (0)D
A. Hence (0)D

A is a subalgebra of A×A. Thus by
Proposition 3.9 D is an IC-system for V.

Conversely let D be an IC-system for V, A �V, a, b �A and I=
�dl (a, b, c� l): l �L, c� l �A�A. Then dl (a, b, c� l) qA(a, b) dl (a, a, c� l)=0 so I¤
0/q(a, b); on the other hand (a, b) � ID by definition so 0/q(a, b)¤0/ID=I.

(3) As a consequence of (2) we get that an IC-system D={dl (x, y, z� l)c : l �L}
for a variety V behaves like a set of ‘‘implications’’ satisfying ‘‘modus ponens’’: for
any A �V and I � I(A), if b � I and dl (a, b, c� l) � I for l �L and c� l �A, then a � I. In
fact by (2) 0/q(a, b)¤I and thus

a � 0/q(a, 0)¤0/(q(a, b) $ q(b, 0))=0/q(a, b)�0/q(b, 0)

=0/q(a, b)�(b)A¤I.

(4) The above remarks imply that, for a subtractive variety, having an
IC-system can be seen as a generalization of having 0-regular congruences. The
connection is made once one recalls that, if V is ideal-determined and the
terms t1(x, y), . . . , tn (x, y) witness 0-regularity for V, then for any A �V and
a, b �A

q(a, b)=q(t1(a, b), 0)�· · ·�q(tn (a, b), 0).
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Then ideal determinacy implies

0/q(a, b)=�t1(a, b), . . . , tn (a, b)�A.

(5) If V is congruential, witness D={dl (a, x): l �L}, then for any A �V and
a, b �A

(a)= (b) iff dl (a, b) � (a)S (b) l �L.

In fact, from dl (0, 0)=0 and (a)= (b) we get dl (a, b) � (a)S (b) for l �L.
Conversely from dl (a, b) � (a)S (b) for l �L, we get

0/q(a, b)¤ (a)S (b).

If s is a subtractive term for V, from (a, b) � q(a, b) and (a, a) � q(a, b) we get
(0, s(a, b)) � q(a, b), i.e. s(a, b) � (a)S (b) and similarly s(b, a) � (a)S (b). Then a=
u(a, b, s(a, b)) � (b) and b=u(b, a, s(b, a)) � (a).

4. Examples

4.1. The s-subtractive varieties for which D={s(x, y)} happens to be an IC-system
have been investigated in [15] and [2] under the name of d-subtracti6e 6arieties. Such
varieties have the interesting property that the congruence lattices of algebras
therein are in fact arguesian (Corollary 1.9 of [15]). We remark also that Theorem
3.13 clearly generalizes 1.7 in [15].

Many examples of d-subtractive varieties come either from classical algebras or
the algebraization of logical systems. Clearly all these varieties are ideal determined:
we will produce later on an example of a non ideal determined d-subtractive
variety. In the first class we quote groups, rings, Lie algebras. Banach algebras and
in general any variety of algebras which is classically ideal determined [15].

For the second class we can start with left-complemented monoids: a left-com-
plemented monoid [7] is an algebra �A,�, · , 1� such that �A, · , 1� is a monoid and
moreover for a, b, c �A

a�a=1

(a�b)a= (b�a)b

ab�c=a� (b�c).
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One sees easily that 1�a=a holds as well so the variety LM of left complemented
monoids is subtractive with witness term x�y. The fact that LM is d-subtractive
is essentially contained in [7].

A hoop is a commutative left complemented monoid; the variety of hoops is
d-subtractive and so is any variety consisting of algebras having a hoop reduct:
Brouwerian semilattices, relatively pseudocomplemented lattices, Heyting algebras,
Wajsberg algebras (sometimes called MV-algebras) [10], Post algebras, Boolean
algebras, interior algebras, Magari algebras (former diagonalizable algebras),
monadic algebras, cylindric algebras etc.

A large class of varieties coming from logic not sharing the above property
stems from BCK-algebras; a BCK-algebra is an algebra �A,�, 1� satisfying the
following identities and quasi identities:

x�x=1

x�1=1

1�x=x

(x�y)� ((z�x)� (z�y))=1

x� (y�z)=y� (x�z)

x�y=1 and y�x=1 imply x=y.

These algebras arise from the algebraization of the pure implicative logic BCK [12];
it is not trivial to see that the quasi variety of BCK-algebras is not a variety [16].
However any nontrivial variety of BCK-algebras is clearly ideal determined; we will
show that no variety of BCK-algebras is d-subtractive for any binary term s(x, y).
Let V be such a variety and let A �V; we will prove that for no s(x, y) do we have
that s(a, b)=1 implies a=b for all a, b �A ; in view of the (3) of the Remarks in
Section (3) this will be enough. We will proceed by induction on the number of �
appearing in s(x, y).

The initial step is easily proven by cases. Suppose now we have proved the
statement for any terms containing less than n arrows and let

s(x, y)=r(x, y)� t(x, y).

Since t(x, y) contains less than n arrows, there must be a, b �A, with a"b and
t(a, b)=1. Therefore

s(a, b)=r(a, b)� t(a, b)=r(a, b)�1=1

and the induction step is complete.



Vol. 37, 1997 On subtractive varieties III: From ideals to congruences 325

Many interesting varieties of BCK-algebras may be obtained in the following
way; let V be any variety of hoops (possibly with dual normal operators) and let
SV� be the class of all subalgebras of {�, 1}-reducts of algebras in V. It is easy
to see that SV� is a class of BCK-algebras; it is harder to prove, but still true [5],
that SV� is a variety of BCK-algebras for any variety V of hoops. There are two
important varieties of this kind arising from the algebraization of pure implica-
tional logic, where for V we take the variety BS of Brouwerian semilattices and
the variety BA of Boolean algebras respectively. The algebras in SBS� are called
Hilbert algebras [9] and arise from the algebraization of Hilbert and Bernay’s
positive implicative logic. The algebras in SBA� are called Tarski algebras (or
implication algebras [14]) and arise from the algebraization of classical implica-
tive logic. It is obvious that all these varieties are finitely congruential witness
{x�y, y�x}.

Varieties of BCK-algebras with lattice operations added are also not d-subtrac-
tive; for instance the variety of lower BCK-semilattices [13] is ideal determined but
not d-subtractive (this can be shown with an inductive argument similar to the one
for BCK-algebras).

4.2. Consider the algebra A=�{0, a, b, c, d}, +� where + is defined by the table

+ 0 a b c d

0 0 a b c d

a a 0 c b b

b b c 0 a a

c c b a 0 0

d d b a 0 0

This algebra was presented also in [2] (Example 6.3) in a slightly different
context. The reader can easily check that Con(A) is
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where, denoting the congruences by the associated partitions,

DA= (0)(a)(b)(cd) u= (0a)(bcd) c= (0cd)(ab) 8= (0b)(acd).

This shows at once that V(A) is not ideal determined, since it is not 0-regular, being
0/DA= (0). Moreover A is subdirectly irreducible but, if I={0, a} and J={0, b},
then I�J= (0). Hence A is not ideal irreducible and so by Theorem 2.6 ( )d is not
a normalizer for V(A). However V(A) has strongly normal ideals; in fact it is
d-subtractive witness x+y (see [2]).

4.3. Let V be the variety of algebras having a single binary operation s(x, y) and
a constant 0 satisfying the equations

s(x, x):0 s(x, 0):x.

V is clearly subtractive; let A=�{0, a, b, 1}, s� be the algebra whose s-table is

s 0 a b 1

0 0 0 0 0

a a 0 1 0

b b 0 0 1

1 1 0 0 0

One easily sees that A is simple, hence reduced; however B=�{0, a, 1}, s� is a
subalgebra of A and 0/qB(a, 1)={0}. Hence B is not reduced, so Vo is not closed
under S ; it follows that V is not congruential.

4.4. Let L be a meet semilattice with a bottom element 0; L is pseudocomplemented
if for any a �L there is an a* �L such that

b5a* iff a�b=0.

Pseudocomplemented semilattices are well-known structures; for the properties
below and for any other claim we refer the reader to [11], Chapter I.6 and to the
extensive bibliography therein. If A is a pseudocomplemented semilattice and
a, b �A, then
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(1) a5a**
(2) a*=a***
(3) a5b [ b*5a*
(4) (a�b)**=a**�b**.

A pseudocomplemented semilattice has always a top element in the order, namely
0*; we will denote this element by 1. In a pseudocomplemented semilattice one can
define a binary operation a�b by

a�b= (a*�b*)*.

The skeleton of L is S(L)={a*: a �L}; it is well-known that a � S(L) iff a**=a
and that S(L)=�S(L), �,�, *, 0, 1� is a Boolean algebra. However � is ‘‘almost’’
a join even in L; the following proposition shows some of its properties.

PROPOSITION 4.1. For any pseudocomplemented semilattice L and a, b, c �L
we ha6e :

(1) a�b=b�a
(2) a� (b�c)= (a�b)�c
(3) a�a=a**
(4) a�0=a**
(5) a�1=1
(6) a�a*=1
(7) (a�b)**=a**�b=a�b**=a**�b**=a�b
(8) if b5c then a�b5a�c
(9) if a, b5c then a�b5c**

(10) a**5a�b and hence a5a�b
(11) (a�b)�c5a� (b�c)
(12) a� (b�c)5 (a�b)� (a�c)
(13) a� (b�c)= (a�b)� (a�c)
(14) a**� (b�c)= (a�b)� (a�c).

Proof. (1)–(7) are obvious. For (8) let b5c ; then c*]b* implying a*�c*]
b*�c*. Hence a�b= (a*�b*)*5 (a*�c*)*=a�c. (9) and (10) and (12) are
consequences of (8).

For (11) we have by (10)

a�c5a� (b�c)

b�c5a� (b�c)
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therefore

a�c� (a� (b�c))*=0 [ c� (a� (b�c))*5a*

b�c� (a� (b�c))*=0 [ c� (a� (b�c))*5b*

and hence

c� (a� (b�c))*¤a*�b*

c� (a� (b�c))*� (a*�b*)*=0

(a�b)�c5 (a� (b�c))**=a� (b�c).

For (13) apply (11) (in x, y, z) with a=x, b=y and a�c=z, to get

(a�b)� (a�c)5a� (b� (a�c))

5a� (a� (b�c))

=a**� (b�c)=a� (b�c).

Hence by (12) we are done.
For (14) apply (12) (in x, y, z) with x=a�b, y=a and z=c to get

(a�b)� (a�c)= ((a�b)�a)� ((a�b)�c))

= (a�a)� (a�b)� (a�c)� (b�c)

=a**� (b�c). 


The variety PS of type ��, *, 0� is defined by the following identities

(1) a set of identities defining meet semilattices;
(2) x� (x�y)*=x�y*;
(3) x�0*=x ;
(4) 0**=0.

Note that by (3) 1=0* is the top element in the semilattice ordering. It is easy to
see that the variety PS is a subtractive variety and every semilattice in PS is
pseudocomplemented. Conversely any pseudocomplemented semilattice, once we
throw in * as a operation, belongs to PS.
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The term witnessing subtractivity is x�y*; in fact x�0*=x and

x�x*=x� (x�0*)*=x�0**=x�0=0.

Moreover if L �PS and a, b �L ; then

b5a* [ 0=a�a*]a�b

and

a�b=0 [ b=b�0*=b� (b�a)*=b�a* [ b5a*.

PROPOSITION 4.2. Let L �PS; a subset I¤L is an ideal iff
(a) I is a semilattice ideal ;
(b) a � I implies a** � I ;
(c) a, b � I implies a�b � I.

Proof. That an ideal of L has to satisfy (a), (b), (c) follows from the identities

0�x=0�0=0**=0�0=0.

On the other hand let I be a subset of L satisfying (a), (b), (c) and let

uI={(a, b): a�b*, a*�b � I}.

uI is clearly reflexive, since 0 � I ; suppose (a, b) � uI. Then a�b* � I implies
(a�b*)** � I, hence a**�b* � I. Similarly a*�b � I implies a*�b** � I. Hence
(a*, b*) � I.

Let now (a, b), (c, d) � uI, then

(a�c)*� (b�d)5 (a**�c**)*� (b�d)**

= (a*�c*)� (b�d)**

= (a*�b�d)� (c*�d�b) � I.

Symmetrically we obtain (a�c)� (b�d)* � I and hence (a�c, b�d) � uI.
We conclude that uI is a semicongruence and hence I=0/uI is an ideal. 


Since D={x�y*, y�x*} is a set of 0-terms for PS by Proposition 3.9 we
have:
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COROLLARY 4.3. PS is finitely congruential, witness D={x�y*, y�x*}.

Observe also that the variety PS is not ideal determined; consider the pseudo-
complemented (semi)lattice below:

Then 0/u(1, c)={0}, hence PL is not 0-regular and hence not ideal determined.

PROPOSITION 4.4. For any L �PS and a, b �L
(1) (a, b) � (0)D

L iff a*=b*;
(2) �L/(0)D

L, �,�, 0, 1� is a Boolean algebra isomorphic with S(L).

Proof. (1) If a*=b*, then from b*5a* we get a�b*=0; similarly b�a*=0
and (a, b) � (0)D

L. Conversely if a�b*=b�a*=0 we get a*=b*.
(2) Consider the mapping a/(0)D

L � a**; it is clearly well-defined; it is onto since
if c � S(L), then c=a*=a*** for some a �L and a/(0)D

L =a*/(0)D
L. It is one-to-one

by (1), since from a**=b** we get a*=b* and it preserves meets and * because
of the axioms of pseudocomplemented semilattices. Finally it preserves � because
of Proposition 4.1(7). 


By the above proposition and the trivial fact that any Boolean algebra B is a
pseudocomplemented semilattice where DB=0B, we conclude that PSD is the
variety of Boolean algebras. By Theorem 3.16 we conclude that PS is strongly
normal with normalizer ( )D.

4.5. For the next two examples consider the following equations in the language
��, 1�:

(1) x�x:1
(2) x�1:1
(3) 1�x:x
(4) (x� (y�z))� ((x�y)� (x�z)):1
(5) (x�y)� ((y�z)� (x�z)):1
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(6) (y�z)� ((x�y)� (x�z)):1
(7) x� (y�z):y� (x�z).

Observe that (2), (3) and (4) imply (1) and that (7) and any of (5) or (6) imply the
other; any variety satisfying (1) and (3) is subtractive with respect to 1.

PROPOSITION 4.5. Let V be the 6ariety axiomatized by (1), (2), (3), (5) and
(6). Then V is finitely congruential witness D={x�y, y�x}.

Proof. Let A �V; we will show that a subset I of A is an ideal of A iff
(i) 1 � I ;

(ii) if a � I and a�b � I, then b � I.
Since V is subtractive, witness y�x, any ideal has the above properties.

For the converse, suppose that I¤A satisfies (i) and (ii) and let

ID={(a, b): a�b, b�a � I}.

Since D={x�y, y�x} is a set of 0-terms for V, by Proposition 3.9 we have only
to show that ID is a subalgebra of A×A. First we show that ID is transitive; if
(a, b), (b, c) � ID by (5).

(a�b)� ((b�c)� (a�c))=1 � I.

Then by (ii) we get that (b�c)� (a�c) � I and again a�c � I ; c�a � I is proven
similarly and we conclude that (a, c) � ID.

Suppose now that (a, b), (a %, b %) � ID. Then by (6)

(a %�b %)� ((a�a %)� (a�b %))=1 � I

and by (ii) (a�a %)� (a�b %) � I. Reversing the role of a % and b % above we get
(a�b %)� (a�a %) � I and hence (a�a %, a�b %) � ID. Similarly by (5)

(b�a)� ((a�b %)� (b�b %))=1 � I

and applying (ii) we get (a�b %)� (b�a %) � I. Reversing the role of a and b we get
(b�b %)� (a�b %) � I and hence (a�b %, b�b %) � I. By transitivity we conclude that
(a�a %, b�b %) � ID which is therefore compatible; we have thus proved that V is
finitely congruential. Finally observe that

1/ID={a : a�1, 1�a � I}=I,

hence I is an ideal. 
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Let now W be the variety axiomatized by (2), (3), (4), (5) and (6); we claim that
WD is the variety of Hilbert algebras. In fact the variety of Hilbert algebras is clearly
contained in WD ; in any Hilbert algebra H, (0)D

H=0H. On the other hand suppose
that A �WD ; to prove that it is an Hilbert algebra we only have to show that

x� (y�x)=1 (W)

holds in A. Of course (x� (y�x))�1=1 always; on the other hand

1� (x� (y�x))= (y�1)� ((1�x)� (y�x))=1

by (5), hence (1, x� (y�x)) � (0)D
A; but A �WD, hence (W) holds in A. By Theorem

3.16 we conclude that the variety W is strongly normal with normalizer ( )o.
Let now U be the variety axiomatized by (1), (2), (3), (5), (7); the reader can see

at once that UD coincides with the quasivariety of BCK-algebras. Since it is a
quasivariety that is not a variety we conclude again by Theorem 3.16 that ( )o is not
a normalizer for U.

Note that W, U are not ideal determined. Consider the algebra A=
�{1, a, b},�, 1� where

a�b=
!b

1
if a=1
otherwise.

We leave it to the reader to check that (1)–(7) hold in A and a congruence of A is
simply a partition to which {1} belongs. Hence V(A) is not ideal determined, since
it is not 1-regular.
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