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Ideals and the binary discriminator in universal algebra

I. Chajda, R. Halaš and I. G. Rosenberg

Abstract. We introduce the binary discriminator and the dual binary discriminator and the corresponding universal
algebras with 0. The latter are related to permutability and distributivity at 0. ForA finite the dual binary
discriminator is in the intersection of all maximal subclones of the clone of allf satisfyingf (0, . . . , 0) = 0
(except certain maximal subclones ifA is of prime power cardinality). An algebra with a special binary term
function and a special unary term function is a dual binary discriminator algebra if and only if it is ideal-free.
Finally we characterize binary and dual binary discriminator varieties.

Pixley’s well-known result shows that the ternary discriminator, introduced in [12], is
a term function on an algebraA if and only if every subalgebra ofA is simple andV(A),
the variety generated byA, is arithmetic. Moreover, if every function onA compatible
with ConA is a term function ofA (i.e. A is hemi-primal [14]) and ifConA is finite then
V(A) is arithmetic [12, 14]. Although these results were milestones in the development
of universal algebra, there still exist algebras satisfying weaker but interesting conditions,
see e.g. E. Fried and A. F. Pixley [6]. Further, the universal algebra ideals, introduced by
A. Ursini [20] and K. Fichtner [5], are well behaved in varieties which need not be arithmetic
but only arithmetic at 0, see [4] for this concept and basic properties. Investigations of ideals
of an algebra with 0 focus on the neighbourhood of the constant 0 whereby some conditions
like compatibility of functions or primality could be “localized” at 0. The aim of this paper
is to show how this “localization” works and what parts of Pixley’s result can be generalized
to this local case.

1. Basic concepts

Let A = (A; F) be an algebra of similarity typeτ . We say thatA is analgebra with
0 if 0 is a nullary term function onA. A varietyV is with 0 if 0 is either a nullary basic
operation ofV or an equationally defined constant.
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Let A andV be an algebra and a variety with 0. Following [20], an(n + m)-ary term
p(x1, . . . , xn, y1, . . . , ym) of A (of V) is called anideal term ofA (of V) in y1, . . . , ym if

p(x1, . . . , xn, 0, . . . , 0) ≈ 0

is an identity ofA (of V). Clearly, the nullary operation 0 is an ideal term in every algebra
with 0. Denote byIT (A) andIT (V) the sets of all ideal terms ofA andV, respectively.

A nonvoid subsetI of A is closed under the ideal termp(x1, . . . , xn, y1, . . . , ym) of
A in y1, . . . , ym wheneverp(a1, . . . , an, b1, . . . , bm) ∈ I for all a1, . . . , an ∈ A and
b1, . . . , bm ∈ I . Next I is an ideal of A (of V) if I is closed under all ideal terms from
IT (A) (from IT (V)). A finite subsetB of IT (A) (of IT (V)) is afinite ideal-term basis
of A (of V) if every nonempty subsetI of A closed under everyp ∈ B is an ideal ofA(V).

As usual,ConA denotes the congruence lattice ofA andωA denotes the least element
of ConA. Thekernelof a binary relation2 onA is the set

[0]2 = {a ∈ A; 〈a, 0〉 ∈ 2}.
The kernel of a congruence onA is an ideal ofA, but, in general, the converse is not true [7].

An algebraA with 0 ispermutable at0 if for all 2, 8 ∈ ConA the relations2 ◦ 8 and
8 ◦2 have the same kernel (here, as usual,2 ◦8 = {〈x, y〉; 〈x, z〉 ∈ 2 and〈z, y〉 ∈ 8 for
somez ∈ A}). NextA is distributive at0 if for all 21, 22, 9 ∈ ConA both congruences
(21∨22)∧9 and(21∧9)∨(22∧9) have the same kernel andA isdually distributive at
0 if for all 21, 22, 9 ∈ ConA both congruences(21 ∧22)∨9 and(21 ∨9)∧ (22 ∨9)

have the same kernel. In general, distributivity at 0 does not imply dual distributivity at 0.
It was shown by J. Duda [4] that distributivity at 0 and dual distributivity at 0 coincide for
algebras that are permutable at 0.

Following [4], we say thatA isarithmetic at0 if it is both permutable at 0 and distributive
at 0. A varietyV with 0 is permutable at0, distributive at0, and arithmetic at0 if each
A ∈ V has the corresponding property at 0. It was shown by H. -P. Gumm and A. Ursini
[7] that in a varietyV permutable at 0 every ideal is a congruence kernel. The following
Mal’tsev conditions were found in [1, 4, 7]:

PROPOSITION 1.1.LetV be a variety with0. Then

1. V is permutable at0 if and only if there exists a binary term s ofV such thats(x, x) ≈ 0
ands(x, 0) ≈ x.

2. V is arithmetic at0 if and only if there exists a binary term s ofV such thats(x, x) ≈
0 ≈ s(0, x) ands(x, 0) ≈ x.

3. V is distributive at0 if and only if there existn > 1 and binary termsd0, . . . , dn of V
such that

d0(x, y) ≈ 0, dn(x, y) ≈ x,

di(0, x) ≈ 0 for i = 1, . . . , n − 1,
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di(x, 0) ≈ di+1(x, 0) for i even, 0 ≤ i < n;
di(x, x) ≈ di+1(x, x) for i odd, 0 ≤ i < n.

Examples.

(1) The variety of all pseudocomplemented∧-semilattices with 0 is arithmetic at 0.
Indeed in 2. it suffices to sets(x, y) ≈ x ∧ y∗.

(2) The variety of all∧-semilattices with 0 is distributive at 0. Indeed in 3. choose
n = 2, d0(x, y) ≈ 0, d1(x, y) ≈ x ∧ y, d2(x, y) ≈ x.

A varietyV with 0 distributive at 0 isn-distributive at0 if n is the least integer for which
the condition 3. of Proposition 1.1 holds.

2. The binary discriminator

Recall that theternary discriminatortA and theternary dual discriminatordA on a set
A are defined by setting

tA(x, x, z) ≈ z, tA(x, y, z) = x,

dA(x, x, z) ≈ x, dA(x, y, z) = z

for all x, y, z ∈ A, x 6= y. As it was pointed out in [6],

dA(x, y, z) ≈ tA(z, tA(x, y, z), x)

but tA is not a term operation of(A; dA).
For a fixed element 0∈ A thebinary discriminatorbA

0 and thedual binary discriminator
hA

0 onA are the binary functions onA defined by

bA
0 (x, y) =

{
x if y = 0,
0 otherwise

(1)

hA
0 (x, y) =

{
0 if y = 0,
x otherwise.

(2)

We abbreviatetA, dA, bA
0 , hA

0 by t, d, b, h wheneverA and 0 are clear from the context.
The following facts are evident:

(F1) b(x, y) ≈ t (0, y, x),

(F2) h(x, y) ≈ d(0, y, x),

(F3) h(x, y) ≈ b(x, b(x, y)).
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An algebraA is called adiscriminator algebra,a dual discriminator algebra, abinary
discriminator algebra, and adual binary discriminator algebra, if the corresponding func-
tion is a term function onA. We exhibit (dual) binary discriminator algebras which are not
(dual) discriminator algebras:

Examples.

(1) Let (S, ≤) be a chain with a least element 0 and a greatest element 1 (where 06= 1)
and let∧ be the meet in(S, ≤). Set 0∗ = 1 anda∗ = 0 otherwise. Then the
termb(x, y) = x ∧ y∗ is the binary discriminator of the pseudocomplemented∧-
semilatticeS = (S; ∧, ∗, 0). It is well known [13] that the ternary discriminator is
not a term function onS whenevercard S >2.

(2) For the two-element chain({0, 1}, ≤), the operationx ∧y is the dual binary discrim-
inator of the∧-semilatticeR = ({0, 1}, ∧). However,b is not a term operation ofR
becauseb is not even monotone. Consequently, neithert norb are term operations
of R.

Call an algebraA with 0 ideal-freeif {0} andA are the only ideals ofA. Let Z be a set
andf : Z → A. As usual,

suppf := {z ∈ Z; f (z) 6= 0}.

THEOREM 2.1. LetA be an algebra with0 andV the variety generated byA. Then

(1) A is a binary discriminator algebra if and only if

(a) V is permutable at0, and
(b) A is a dual binary discriminator algebra.

(2) If A is a dual binary discriminator algebra, then

(i) V is 2-distributive at0, and
(ii) Every ideal I of anyB ∈ SPA satisfies

f ∈ I, g ∈ B, suppg ⊆ suppf H⇒ g ∈ I. (∗)

In particular, every subalgebra ofA is ideal-free.

Proof. (1) Letb be a term function ofA. In Proposition 1.1 (1) sets := b to obtain that
V is arithmetic at 0 and hence permutable at 0. By (F3) clearlyh is a term function ofA.
Conversely, letV be permutable at 0 andh a term function ofA. From Proposition 1.1 (1)
we obtain that there exists a binary terms of V with s(x, x) ≈ 0 ands(x, 0) ≈ x. Set

p(x, y) :≈ s(x, h(x, y)).
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Notice thatp(x, 0) ≈ s(x, h(x, 0)) ≈ s(x, 0) ≈ x while for y 6= 0 we have

p(x, y) = s(x, h(x, y)) = s(x, x) = 0.

This shows thatb = p is a term ofA.
(2) Let h be a term function ofA. To prove thatV is 2-distributive at 0 setd0(x, y) ≈

0, d1(x, y) ≈ h(y, x) andd2(x, y) ≈ x. Notice that

d1(0, x) ≈ h(x, 0) ≈ 0,

d0(x, 0) ≈ 0 ≈ h(0, x) ≈ d1(x, 0),

d1(x, x) ≈ h(x, x) ≈ x ≈ d2(x, x).

By Proposition 1.1 (3) the varietyV is 2-distributive at 0.
Now, let I, B, f andg be as in (ii) and letB ⊆ AZ. Let Y := AZ. Denote byc0 the

constant map fromZ into A with value 0. We show thathY
c0

(x, y)(z) := hA
0 (x(z), y(z)) is

an ideal term ofY in its second variable. For everyx ∈ Y = AZ clearlyd := hY
c0

(x, c0)

satisfiesd(z) = hA
0 (x(z), 0) = 0 for everyz ∈ Z whenced = c0 proving the claim.

Sincef ∈ I , we obtain thate := hY
c0

(g, f ) ∈ I . For everyz ∈ Z\ supp f we get
e(z) = hA

0 (g(z), 0) = 0 while for z ∈ supp f clearly e(z) = hA
0 (g(z), f (z)) = g(z).

Togethere = g due tosupp g ⊆ supp f .
For the last statement letB be a subalgebra ofA andI an ideal ofB. If there exists

f ∈ I\{0} then by what has been shown above (for|Z| = 1) everyg ∈ B belongs toI and
henceI = B. ¨

COROLLARY 2.2. If A is a binary discriminator algebra thenV(A) is arithmetic at0
and every subalgebra ofA is ideal-free.

Proof. It follows directly from Theorem 2.1 and (F3). ¨

3. 0-preserving functions

Let A be an algebra with 0. A functionf on A is 0-preservingif f (0, . . . , 0) = 0.

All 0-preserving functions onA form a cloneZA. It is a large clone; in fact a coatom of
the lattice of all clones onA ordered by containment ([8] forA finite, [17] for A infinite).
Clearly the setId A of all ideals ofA is solely determined by the clone of all 0-preserving
term functions ofA. This raises the problem of studyingId(C) for the various subclones
C of ZA. A particular subproblem is the determination of all ideal-free subclonesC of
ZA (i.e., such that (A; C) is ideal-free). The latticeZA of all subclones ofZA is explicitly
known only for|A| = 2, see [16]; it is countable and essentially consists of four interlaced
infinite descending chains. For 2< |A| < ℵ0 the latticeZA contains a copy of the direct
power 2N (of all 0–1 sequences ordered componentwise) and hence|ZA| = 2ℵ0, [3]. For
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A infinite we have|ZA| = 2(2|A|); in fact a slight modification of an argument from [17, 18]
shows that there are already that many essentially unary subclones ofZA.

An algebraA is 0-primal if ZA is the clone of all term functions ofA. For 2< |A| < ℵ0

D. Lau [10] found a general 0-primality criterion. It is based on the full list of all coatoms
of ZA, i.e., of the clones covered byZA, calledmaximal subclonesof ZA. The criterion
states that(A; F) with F ⊆ ZA is 0-primal if and only ifF is a subset ofno maximal
subclone ofZA. It follows from the fact that each proper subclone ofZA is included in
a maximal subclone ofZA (equivalently,ZA is a compact element ofZA or alsoZA is
a finitely generated clone). To describe Lau’s maximal subclones ofZA, we recall the
following concept due to Kuznetsov [9]. For a positive integerm anm-ary relation onA
is subsetρ of Am. An n-ary function onA preservesρ if ρ is a subuniverse of(A; f )m.
Denote byPol ρ the set of all functions onA preservingρ. Here is Lau’s list divided into
7 natural groups:

1. The clonesC = ZA ∩ Pol ρ wherem = 1 and∅ 6= ρ ⊂ A andρ 6= {0} (i.e. the
clone of all 0-preserving functionsf on A such thatf (r1, . . . , rn) ∈ ρ whenever
r1, . . . , rn ∈ ρ).

2. The clonesC = ZA ∩ Pol ρ wherem = 2 andρ is a nontrivial equivalence relation
on A having{0} as its class (thusC is the set of all 0-preservingf such thatρ ∈
Con(A; f )).

3. The clonesC = ZA ∩ Pol (≤) where≤ is an order relation onA with the least
element 0 and a greatest element. HereC is the set of all 0-preserving isotone
functions (i.e. functionsf onA such thatf (a1, . . . , an) ≤ f (b1, . . . , bn) whenever
a1 ≤ b1, . . . , an ≤ bn).

An m-ary relationρ is totally symmetricif it is invariant under all coordinate exchanges;
i.e., for every permutationπ of {1, . . . , m}

〈a1, . . . , am〉 ∈ ρ H⇒ 〈aπ(1)
, . . . , aπ(m)

〉 ∈ ρ.

The relationρ is totally reflexiveif 〈a1, . . . , am〉 ∈ ρ whenevera1, . . . , am are not pairwise
distinct; i.e., ifai = aj for some 1≤ i < j ≤ m. An elementc ∈ A is central for ρ if
〈c, a2, . . . , am〉 ∈ ρ for all a2, . . . , am ∈ A.

4. The clonesC = ZA ∩ Pol ρ where 1< m < |A| andρ ⊆ Am is totally symmetric
and totally reflexive and 0 is a central element forρ.

5. The clonesC = Pol{〈a, s(a)〉; a ∈ A} wheres is a permutation ofA with a unique
fixed point 0 and all cycles of the same prime lengthp.

6. The clonesC = Pol(γ ∪ {〈0, 0〉}) whereγ is a binary symmetric and areflexive
relation onA with 〈a, 0〉 ∈ γ and〈0, a〉 ∈ γ for all a ∈ A\{0} (i.e., a graph with a
star at 0).

7. The clonesC = Pol{〈x, y, x + y〉; x, y ∈ A} whereG = (A; +, 0) is an elementary
abelian 2-group (i.e., the additive structure of vector space over the field GF(2)).
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The clones listed in 1.–4. and 7. are meet reducible in the latticeL of clones while those
listed in 5. and 6. are meet irreducible.

THEOREM 3.1. If 1 < |A| < ℵ0 then the dual binary discriminatorh belongs to the
clones listed in1.–6.

Proof. Seth = hA
0 . We prove thath preserves all the relations from 1.–6. We proceed

by contraposition.

1. Letρ ⊆ A andh(a, b) /∈ ρ for somea, b ∈ A. If b 6= 0 thena = h(a, b) /∈ ρ and
we are done. Thus letb = 0. Thenb = 0 = h(a, 0) /∈ ρ.

2. Let ρ be an a nontrivial equivalence relation onA with a class{0} and α :=
〈h(a, b), h(c, d)〉 6∈ ρ. If b 6= 0 6= d then〈a, c〉 = α 6∈ ρ. Thus let 0∈ {b, d}. By
symmetry we may assumeb = 0. From〈0, h(c, d)〉 = α /∈ ρ we obtaind 6= 0 and
〈b, d〉 = 〈0, d〉 /∈ ρ.

3. Let≤ be an order onA with the least element 0 and leth(a, b) 6≤ h(c, d). Clearly
h(a, b) 6= 0 and soa 6= 0 6= b. If d 6= 0 thena = h(a, b) 6≤ h(c, d) = c. Thus let
d = 0. Thenb 6≤ 0 = d. (In fact, we have proved thath ∈ Pol ≤ for every order≤
with the least element 0).

4. Letρ be a totally symmetricm-ary relation and let 0 be a central element ofρ. Let
α := 〈h(a1, b1), . . . , h(am, bm)〉 /∈ ρ. Thenh(ai, bi) 6= 0 for all i = 1, . . . , m and
soh(ai, bi) = ai for all i = 1, . . . , m. Then〈a1, . . . , am〉 /∈ ρ.

5. Let s be a permutation ofA with a fixed point 0. Leth(c, d) 6= s(h(a, b)). Then
h(c, d) = 0 = h(a, b) does not hold and therefored = 0 = b is impossible. If
d 6= 0 6= b thenc = h(c, d) 6= s(h(a, b)) = s(a) and we are done. Ifd = 0 6= b

thend = 0 6= s(b) and finally ifd 6= 0 = b thend 6= 0 = s(0) = s(b).
6. Let (A; γ ) be a graph onA with a star at 0. Supposeα = 〈h(a, b), h(c, d)〉 /∈

γ ∪ {〈0, 0〉}. Thenh(a, b) 6= 0 6= h(c, d) and so〈a, c〉 = α /∈ γ ∪ {〈0, 0〉}.
¨

REMARK. Denote byM the intersection of all the maximal clones listed above in
1.–6. It can be proved thatM is the cloneClo(h) generated byh. In fact Clo(h) is even
the intersection of smaller sets of clones maximal inZA; e.g., of allPol{a}(a ∈ A) and all
Pol ρ whereρ is a bounded order onA with the least element 0. It can be shown thath

does not belong to any of the maximal subclones ofZA of type 7. Note that the clones of
type 7 exist only for|A| = pm, p prime.

Let the universeA be infinite. The clones listed in 1–7 are well defined but in general not
maximal inZA (i.e., not covered byZA in the lattice of clones). Nevertheless Theorem 3.1
is also valid forA infinite.

THEOREM 3.2. Every maximal clone inZA is ideal-free.
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Proof. For the clones listed in 1–6 this follows from Theorem 3.1 and Theorem 2.1 (2).
Thus consider the clones from 7. It is well known that we can identifyA with the set2m

(of all 0–1m-dimensional vectors) and+ with the componentwise mod 2 addition on2m.
Setλ = {〈x, y, x +y〉; x, y ∈ 2m}. Let I be an ideal of(2m; Polλ) distinct from{0}̄, where
0
¯

= 〈0, . . . , 0〉, and leti ∈ I\{0}̄. Let A be anm × m 0 − 1 matrix andh(x) :≈ xA

(wherexA is the product of the 1× m matrixx and the matrixA overGF(2)). It is almost
immediate thath ∈ Polλ. As h(0

¯
) ≈ 0

¯
, clearlyh(y) is an ideal term iny and soh(i) ∈ I .

Now varyingA we can get thatI = 2m. Thus the clone is ideal-free as well. ¨

For infiniteA we do not know any analogue of Lau’s theorem.

COROLLARY 3.3. If A is a0-primal algebra then

(i) {0} is the only proper subalgebra ofA;
(ii) A is simple;

(iii) AutA = {idA}, and
(iv) A is ideal-free.

Proof. (i)–(iii) are proved by constructing appropriate unary 0-preserving operations.
(iv) follows directly by Theorem 3.2. ¨

LEMMA 3.4. If A is a binary discriminator algebra then every ideal ofA is a congru-
ence kernel.

Proof. Evident since, by Corollary 2.2,A is ideal-free, i.e.{0} andA are the only ideals
of A. ¨

Let ∅ 6= B ⊆ A. For ann-ary functionf onA we denote by

f (B, . . . , B) = {f (b1, . . . , bn); b1, . . . , bn ∈ B}.

REMARK. LetA = (A, F ) be an algebra,2 ∈ ConA andK = [0]2. If f is ann-ary
function onA such thatf (K, . . . , K) ⊆ K for each2 ∈ ConA, thenf is 0-preserving
since{0} = Ker ωA.

We say that ann-ary functionf onA is anideal-compatible functionofA if f (I, . . . , I ) ⊆
I for each idealI of A.

COROLLARY 3.5. An algebraA with0 is0-primal if and only if every ideal-compatible
function ofA is a term function ofA.

Proof. It follows directly by Lemma 6, the foregoing Remark and the fact that every
congruence kernel of2 ∈ ConA is an ideal ofA, see [7]. ¨
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4. Main ideal term algebras

Although Corollary 2.2 provides a kind of a 0-version of Pixley’s Theorem 3.1 from [13],
we do not have its converse, i.e., an adaption of Theorem 5.1 from [12] to ideals, which is
perhaps due to the complex structures of ideals in the general case. We have a converse if
we impose a condition on the similarity type and a condition on the ideal terms.

From now on we assume thatA is an algebra with 0 containing a binary term function
◦ and a unary term function denoted by′. Instead of(x′)′ we writex′′. Denote byI (c) the
ideal ofA generated by the singleton{c}. Call A a main ideal term algebraif

(x ◦ y′′) ◦ y′ ≈ 0 and x ◦ 0′ ≈ x, (∗)

I (c) = {a ◦ c′′; a ∈ A} for everyc ∈ A\{0}. (∗∗)

THEOREM 4.1. LetA be a main ideal term algebra. ThenA is a binary discriminator
algebra if and only ifA is ideal-free.

Proof. (⇐) Let A be ideal-free. We show thatx ◦ y′ is the binary discriminator onA.
Firstx ◦ 0′ ≈ x and so it remains to prove thatx ◦ y′ = 0 for all x ∈ A and ally ∈ A\{0}.
SinceA has no proper ideals,I (y) = A and thus by (∗∗) we havex = a ◦ y′′ for some
a ∈ A. Hencex ◦ y′ = (a ◦ y′′) ◦ y′ = 0 by (∗). ¨

(⇒): Corollary 2.2.
Although Theorem 4.1 provides a converse of Corollary 2.2 for main ideal term algebras,

the verification of (∗∗) may be far from obvious.

THEOREM 4.2. LetA satisfy(∗) and

x ◦ x′′ ≈ x, (x ◦ y′′)′′ ≈ (x ◦ y′′)′′ ◦ y′′, (x ◦ y) ◦ z′′ ≈ x ◦ (y ◦ z′′).

If {y′′, x ◦ y} is a basis of ideal terms ofA thenA is a main ideal term algebra.

Proof. We must verify (∗∗). Let z ∈ A\{0}. SetJ = {a ◦ z′′; a ∈ A}. By assumption,
z = z ◦ z′′ and soz ∈ J . We prove thatJ = I (z). Since{y′′, x ◦ y} is a basis ofIT (A), it
suffices to show thatJ is closed under the ideal termsy′′ andx ◦ y. Let c ∈ J be arbitrary.
Thenc = a ◦ z′′ for somea ∈ A andc′′ = (a ◦ z′′)′′ = (a ◦ z′′)′′ ◦ z′′ = c′′ ◦ z′′ ∈ J . Let
x ∈ A. Thenx ◦ c = x ◦ (a ◦ z′′) = (x ◦a)◦ z′′ ∈ J . TogetherJ is an ideal ofA containing
z, i.e., I (z) ⊆ J . However, for everya ∈ A we havea ◦ z′′ ∈ I (z) thus alsoJ ⊆ I (z)

proving (∗∗). ¨

Example.LetS = (S; ∧,∗ , 0) be a pseudocomplemented∧- semilattice,x ◦y := x ∧y

andx′ := x∗. A routine verification shows thatS satisfies the conditions of Theorem 4.2.
By Theorem 4.1, the binary discriminator onS is a term function onS if and only if S is
ideal-free. It can be verified that this just happens whenS is finite with exactly one atom.
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REMARK. By Pixley’s theorem, if the ternary discriminator is a term function on
A thenA is quasi-primal, i.e., every function onA preserving its subalgebras and inner
isomorphisms is a term function ofA. This is not valid for the binary discriminator.

Example.Let S = {0, a, 1} and S = (S; ∧,∗ , 0) be the pseudocomplemented
∧-semilattice with the induced order 0< a < 1. By the preceding examplex ∧ y∗ is
the binary discriminator onA andA is ideal-free. Consider the binary functionf (x, y)

defined by settingf (a, a) = 1 andf (x, y) = 0 otherwise. As{0, 1} is the only proper
subalgebra ofS, clearlyf preserves all the subalgebras ofS and, trivially, also all inner
isomorphisms ofS. We show that the relation

ρ := {〈0, 0〉, 〈a, 1〉, 〈1, 1〉}

is a subuniverse ofS2. It is easy to see that both 0 andx∗ are compatible withρ (use
0∗ = 1 anda∗ = 1∗ = 0). Finallyρ is a subuniverse of(S; ∧)2 due to〈0, 0〉 ∧ 〈a, 1〉 =
〈0, 0〉∧〈1, 1〉 = 〈0, 0〉 and〈a, 1〉∧〈1, 1〉 = 〈a, 1〉 and soρ is compatible with∧. However,
ρ is not a subuniverse of(S, f )2 because〈f (a, a), f (1, 1)〉 = 〈1, 0〉 6∈ ρ. Thusf is not a
term function ofS.

5. Binary discriminator varieties

A variety V with 0 of typeτ is a binary discriminator varietyif V is generated by a
nontrivial classK of typeτ with a binary termq such thatqA is the binary discriminator
bA

0 for eachA ∈ K.
For the ternary discriminator, the similarly defineddiscriminator varietieswere studied

by McKenzie [11]. We characterize the binary discriminator varieties:

THEOREM 5.1. The following conditions are equivalent for a varietyV with 0:

(1) V is a binary discriminator variety;
(2) there exists a binary termb(x, y) satisfying

(i) b(x, 0) ≈ x, b(0, x) ≈ 0 ≈ b(x, x);
(ii) b(x, b(y, x)) ≈ x;

(iii) everyn-ary operationf in the type ofV satisfies

b(f (x1, . . . , xn), y) ≈ b(f (b(x1, y), . . . , b(xn, y)), y)

(iv) V is generated by a classK whose algebras are ideal-free;

(3) there exist a binary termb(x, y) of V satisfying(i)–(iii) above andV is generated by
a classK whose algebras have no proper congruence kernels.
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Proof. (1) ⇒ (2): It is an easy exercise to verify that for eachA ∈ K the binary
discriminatorbA

0 satisfies (i)–(iii) and whence (i)–(iii) hold inV. (iv) By Corollary 2.2
everyA ∈ K is ideal-free.

(2) ⇒ (3): Immediate because every congruence kernel is an ideal.
(3) ⇒ (1): Let A ∈ K. By (i) it remains to show thatz := b(x, y) = 0 for all

x, y ∈ A\{0}. Suppose to the contrary thatz 6= 0. Set

γz := {〈c, d〉 ∈ A2; b(c, z) = b(d, z)}. (+)

Clearlyγz is an equivalence relation onA induced by the right translationrz(x) :≈ b(x, z)

of b. Notice that by (i)

rz(0) = b(0, z) = 0 = b(z, z) = rz(z) (×)

and by (ii)

rz(y) = b(y, z) = b(y, b(x, y)) = y 6= 0. (××)

Moreover,γz is a congruence onA because (iii) guarantees the substitution property. From
(×) and (××) we see that 0, z ∈ [0]γz while y 6∈ [0]γz . Thus {0} 6= [0]γz 6= A and
soγz has a proper congruence kernel. This contradiction showsz = 0 and thenb is the
binary discriminator. ¨

Example.Every variety is generated by all its subdirectly irreducible(SI) members. It
is easy to show that in the varietyV of pseudocomplemented∧-semilattices generated by
the 3-element chain the onlySI members are the 2- and 3-element chains. By the above
examples in both of theseSI membersx ∧ y∗ is the binary discriminator. HenceV is a
binary discriminator variety.

REMARK. There are essential differences between the (ternary) discriminator varieties
and the binary discriminator varieties. For example, every discriminator variety is regular
and congruence uniform. This does not hold for the binary discriminator varieties as one
can observe in the previous example. Indeed, the 3-element chain 0< a < 1 has two
congruences with the same 0-class, namelyω and 2(a, 1) (where2(c, d) denotes the
least congruence ofA containing〈c, d〉). Further,2(a, 1) has two blocks of unequal size.
Moreover, ifV is a discriminator variety, forA ∈ V anda, b, c ∈ A there existsd ∈ A with
2(a, b) = 2(c, d). It is an easy exercise to show that

d = t (t (a, b, c), t (a, b, t (a, c, b)), t (a, c, b)).

However, for the above mentioned 3-element chain (considered as a pseudocomplemented
∧-semilattice)2(a, 1) 6= 2(0, x) for eachx ∈ A.
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We define adual binary discriminator varietyas the variety with 0 generated by a
classK of nontrivial similar algebras with a binary termq such thatqA is the dual binary
discriminatorhA

0 for eachA ∈ K.
We characterize the dual binary discriminator varieties:

THEOREM 5.2. LetV be a variety with0. ThenV is a dual binary discriminator variety
if and only if there exists a binary termh of V such that

(i) h(x, x) ≈ x, h(x, 0) ≈ 0 ≈ h(0, x);
(ii) h(h(x, y), y) ≈ h(x, y);

(iii) V is generated by a classK such that for eachA ∈ K and everyy ∈ A\{0} the
right translationry(x) ≈ h(x, y) is injective.

Proof. (⇒): Let V be a dual binary discriminator variety andK its generating class.
Then for eachA ∈ K the term operationhA is the dual binary discriminatorhA

0 . It is easy
to check that it satisfies (i) and (ii); consequently (i) and (ii) hold inV. To prove (iii) let
A ∈ K andy ∈ A\{0}. Thenry(x) ≈ hA

0 (x, y) ≈ x and sory(x) is injective.
(⇐): Let V satisfy the conditions (i)–(iii). Suppose to the contrary that there exist

A ∈ K andx, y ∈ A\{0} such thatz := hA(x, y) 6= x. Consider the right translation
ry(x) :≈ hA(x, y). By (ii) ry(z) = hA(z, y) = hA(hA(x, y), y) = hA(x, y) = z = ry(x)

in contradiction to (iii). ThushA(x, y) = x for all x, y ∈ A\{0}. Moreover from (i) also
hA(x, 0) ≈ 0 ≈ hA(0, x) and sohA = hA

0 . ¨

THEOREM 5.3. LetV be a dual binary discriminator variety,h the corresponding term,
A ∈ V andy ∈ A. Thenγy := {〈x, z〉 ∈ A2; hA(x, y) = hA(z, y)} satisfies

γy ◦ 2(0, y) = A2.

Proof. By (i) of Theorem 5.2 clearlyγ0 = A2 and so the assertion holds fory = 0. Thus
let y 6= 0 andx ∈ A. By (ii) of Theorem 5.2 we have

〈x, hA(x, y)〉 ∈ γy.

Observe that by (i)

〈hA(x, y), 0〉 = 〈hA(x, y), hA(x, 0)〉 ∈ 2(0, y)

〈0, y〉 = 〈hA(y, 0), hA(y, y)〉 ∈ 2(0, y)

and so〈hA(x, y), y〉 ∈ 2(0, y). Hence〈x, y〉 ∈ γy ◦ 2(0, y) provingγy ◦ 2(0, y) = A2.
¨
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