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Ideals and the binary discriminator in universal algebra

1. CHAIDA, R. HALAS AND I. G. ROSENBERG

Abstract. We introduce the binary discriminator and the dual binary discriminator and the corresponding universal
algebras with 0. The latter are related to permutability and distributivity at 0. AFbnite the dual binary
discriminator is in the intersection of all maximal subclones of the clone of ahtisfying f(0,...,0) = 0
(except certain maximal subclonesAfis of prime power cardinality). An algebra with a special binary term
function and a special unary term function is a dual binary discriminator algebra if and only if it is ideal-free.
Finally we characterize binary and dual binary discriminator varieties.

Pixley’s well-known result shows that the ternary discriminator, introduced in [12], is
a term function on an algebra if and only if every subalgebra o4 is simple and/(A),
the variety generated hyl, is arithmetic. Moreover, if every function ad compatible
with ConA is a term function ofA (i.e. A is hemi-primal [14]) and iConA is finite then
V(A) is arithmetic [12, 14]. Although these results were milestones in the development
of universal algebra, there still exist algebras satisfying weaker but interesting conditions,
see e.g. E. Fried and A. F. Pixley [6]. Further, the universal algebra ideals, introduced by
A. Ursini[20] and K. Fichtner [5], are well behaved in varieties which need not be arithmetic
but only arithmetic at 0, see [4] for this concept and basic properties. Investigations of ideals
of an algebra with 0 focus on the neighbourhood of the constant 0 whereby some conditions
like compatibility of functions or primality could be “localized” at 0. The aim of this paper
is to show how this “localization” works and what parts of Pixley’s result can be generalized
to this local case.

1. Basic concepts

Let A = (A; F) be an algebra of similarity type. We say thatd is analgebra with
0 if 0 is a nullary term function otd. A variety V is with 0 if O is either a nullary basic
operation ofY or an equationally defined constant.
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Let A andV be an algebra and a variety with 0. Following [20], @ m)-ary term
p(x1, ..., X, Y1, - - -, ym) Of A (0f V) is called anideal term ofA4 (of V) in y1, ..., y, If

p(x1,...,x,,0,...,00~0

is an identity ofA (of V). Clearly, the nullary operation 0 is an ideal term in every algebra
with 0. Denote byZ7 (A) andZ7 (V) the sets of all ideal terms of andV, respectively.

A nonvoid subset of A is closed under the ideal term(x1, ..., x4, y1, ..., ym) Of
Ain y1,...,yn Wheneverp(as,...,a,, b1,...,by) € I forall ay,...,a, € A and
b1,...,by, € I. NextI is anideal of A (of V) if I is closed under all ideal terms from
IT(A) (fromZ7 (V)). A finite subset3 of 77 (A) (of Z7 (V)) is afinite ideal-term basis
of A (of V) if every nonempty subsétof A closed under every € B is an ideal ofA(V).

As usual,ConA denotes the congruence lattice4fandw, denotes the least element
of ConA. Thekernelof a binary relatior® on A is the set

[0l = {a € A; (a,0) € ©}.

The kernel of a congruence ohis an ideal of4, but, in general, the converse is not true [7].
An algebraA with 0 ispermutable a0 if for all ®, & € ConA the relation® o ® and
® o O have the same kernel (here, as us@ead,® = {(x, y); (x,z) € ® and(z, y) € ® for
somez € A}). Next A is distributive atO if for all ®1, ®2, ¥ € ConA both congruences
(©1VO) AV and(®1 A W) v (2 A W) have the same kernel antis dually distributive at
Oifforall ®1, ®2, ¥ € ConA both congruence@®; A ©2) VW and(©1 VvV W) A (O2 Vv W)
have the same kernel. In general, distributivity at 0 does not imply dual distributivity at O.
It was shown by J. Duda [4] that distributivity at 0 and dual distributivity at O coincide for
algebras that are permutable at 0.
Following [4], we say tha#l is arithmetic a0 if it is both permutable at 0 and distributive
at 0. A varietyV with 0 is permutable a0, distributive atO, and arithmetic al if each
A € V has the corresponding property at 0. It was shown by H. -P. Gumm and A. Ursini
[7] that in a varietyy permutable at O every ideal is a congruence kernel. The following
Mal'tsev conditions were found in [1, 4, 7]:

PROPOSITION 1.1LetV be a variety wittD. Then

1. Vispermutable adif and only if there exists a binary term sbuch thak (x, x) ~ 0
ands(x, 0) ~ x.

2. Vis arithmetic atO if and only if there exists a binary term s¥fsuch thats (x, x) =
0~ 5(0,x) ands(x, 0) ~ x.

3. Visdistributive at0 if and only if there exist > 1 and binary termsl, ..., d, of V
such that

dO(x» y) ~ Oa dn(-xv y) %xa
di(0,x) ~0fori=1,...,n—1,
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di(x,0) ~ dj;1(x,0) fori even0 <i < n;
di(x,x) ~ diy1(x,x)foriodd, 0 <i < n.
Examples.

(1) The variety of all pseudocomplementedsemilattices with O is arithmetic at O.
Indeed in 2. it suffices to setx, y) ~ x A y*.

(2) The variety of allan-semilattices with 0 is distributive at 0. Indeed in 3. choose
n=24do(x,y)~0,di(x,y) = x Ay, d2(x,y) = x.

A variety V with O distributive at 0 i:1-distributive a0 if » is the least integer for which
the condition 3. of Proposition 1.1 holds.

2. The binary discriminator

Recall that theernary discriminator“ and theternary dual discriminatoe/ on a set
A are defined by setting

A, x,2) & oz, 1Ay, 2) = x,

d(x,x,2) ~ x, d*x,y,2) =z
forall x,y,z € A, x # y. As it was pointed out in [6],
d*(x,y,2) ~ 4z, 14 (x, ¥, 2), x)

buts4 is not a term operation afd; d4).
For afixed element @ A thebinary discriminatorbg and thedual binary discriminator
hg on A are the binary functions oA defined by

ify=0
by = 15 Try="> 1
0¥y {0 otherwise @
0 ify=0
hg(x,y) = ’ 2
0lx.y) {x otherwise. @

We abbreviate”, d4, bg, h§ by, d, b, h wheneverA and O are clear from the context.
The following facts are evident:

(F1) b(x,y) = 1(0,y,x),
(F2) h(x,y) =~ d(0,y,x),
(F3) h(x,y) = b(x,b(x,y)).



242 I. CHAJDA, R. HALAS AND I. G. ROSENBERG ALGEBRA UNIVERS.

An algebraA is called adiscriminator algebraa dual discriminator algebraabinary
discriminator algebraand adual binary discriminator algebraf the corresponding func-
tion is a term function otd. We exhibit (dual) binary discriminator algebras which are not
(dual) discriminator algebras:

Examples.

(1) Let(S, <) be a chain with a least element 0 and a greatest element 1 (wherB 0
and letA be the meet in(§, <). Set & = 1 anda™ = 0 otherwise. Then the
termb(x, y) = x A y* is the binary discriminator of the pseudocomplemented
semilatticeS = (S; A, %, 0). Itis well known [13] that the ternary discriminator is
not a term function o wheneveicard S >2.

(2) Forthe two-element chaif0, 1}, <), the operation A y is the dual binary discrim-
inator of theAn-semilatticeR = ({0, 1}, A). Howeverp is not a term operation 62
because is not even monotone. Consequently, neitheor b are term operations
of R.

Call an algebrad with 0 ideal-freeif {0} andA are the only ideals ofi. Let Z be a set
andf : Z — A. Asusual,

suppf :={z € Z; f(z) # 0}.

THEOREM 2.1. Let A be an algebra witl) andV the variety generated hyl. Then

(1) Ais abinary discriminator algebra if and only if

(a) Vis permutable a0, and
(b) Ais a dual binary discriminator algebra.

(2) If Ais adual binary discriminator algebra, then

(i) Vis 2-distributive at0, and
(i) Everyideal | of any5 € SPA satisfies

fel, geB,suppg Csuppf —= g e l. ()
In particular, every subalgebra od is ideal-free.

Proof. (1) Letb be a term function ofd. In Proposition 1.1 (1) set:= b to obtain that
V is arithmetic at 0 and hence permutable at 0. By (F3) cleaitya term function ofA.
Conversely, leV be permutable at 0 arida term function ofd. From Proposition 1.1 (1)
we obtain that there exists a binary tesraf V with s(x, x) &~ 0 ands(x, 0) ~ x. Set

p(x,y) = s(x, hx,y)).
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Notice thatp(x, 0) ~ s(x, h(x, 0)) =~ s(x, 0) ~ x while for y £ 0 we have

px,y) =s(x, h(x,y) =s(x,x)=0.

This shows thab = p is a term of A.
(2) Leth be a term function ofd. To prove thad is 2-distributive at 0 sefp(x, y) =~
0, d1(x,y) =~ h(y, x) anddz(x, y) ~ x. Notice that

d1(0,x) ~ h(x,0)~0,
do(x,0) ~ 0~ h(0, x) ~ di(x,0),

di(x,x) = h(x,x) ~x =~ dy(x, x).

By Proposition 1.1 (3) the variety is 2-distributive at O.

Now, let7, B, f andg be as in (ii) and lelB € AZ. Let) := AZ. Denote byco the
constant map fronZ into A with value 0. We show that! (x, y)(z) := h{ (x(z), y(2)) is
an ideal term ofy in its second variable. For everye ¥ = AZ clearlyd = hfo(x, co)
satisfiesi(z) = hg(x(z), 0) = 0 for everyz € Z whenced = ¢g proving the claim.

Since f € I, we obtain that := h%(g, f) € I. Foreveryz € Z\ supp f we get
e(z) = hé(g(z),O) = 0 while forz € supp f clearlye(z) = hg(g(z), @) = g@.
Togethere = g due tosupp g C supp f.

For the last statement I&t be a subalgebra ofl and/ an ideal of 3. If there exists
f € I\{0} then by what has been shown above (f6f = 1) everyg € B belongs ta/ and
hencel = B. O

COROLLARY 2.2. If Ais a binary discriminator algebra thevi(A4) is arithmetic at0
and every subalgebra of is ideal-free.

Proof. It follows directly from Theorem 2.1 and (F3). O

3. O-preserving functions

Let A be an algebra with 0. A functiogf on A is Opreservingif f(0,...,0) = 0.
All O-preserving functions ot form a cloneZ,4. It is a large clone; in fact a coatom of
the lattice of all clones oA ordered by containment ([8] fot finite, [17] for A infinite).
Clearly the sefd A of all ideals ofA is solely determined by the clone of all 0-preserving
term functions ofA. This raises the problem of studyidg (C) for the various subclones
C of Z4. A particular subproblem is the determination of all ideal-free subclahe$
Z 4 (i.e., such that4; C) is ideal-free). The lattic& 4 of all subclones of 4 is explicitly
known only for|A| = 2, see [16]; it is countable and essentially consists of four interlaced
infinite descending chains. For2 |A| < Rg the latticeZ 4 contains a copy of the direct
power 2V (of all 0-1 sequences ordered componentwise) and hehge= 2%, [3]. For
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A infinite we havgd Z 4| = Z(Z'A‘); in fact a slight modification of an argument from [17, 18]
shows that there are already that many essentially unary subcloégs of

An algebraA is Oprimalif Z 4 is the clone of all term functions of. For2 < |A] < Rg
D. Lau [10] found a general O-primality criterion. It is based on the full list of all coatoms
of Z4, i.e., of the clones covered ¥4, calledmaximal subclonesf Z4. The criterion
states thatA; F) with F C Z, is O-primal if and only if F is a subset oho maximal
subclone ofZ 4. It follows from the fact that each proper subcloney is included in
a maximal subclone of 4 (equivalently,Z, is a compact element a£4 or alsoZ, is
a finitely generated clone). To describe Lau’s maximal subclonessofwe recall the
following concept due to Kuznetsov [9]. For a positive integean m-ary relation onA
is subsefp of A™. An n-ary function onA preserve if p is a subuniverse ofA; f)™.
Denote byPol p the set of all functions oA preservingo. Here is Lau’s list divided into
7 natural groups:

1. The cloneC = Z4 N Pol p wherem = 1 and@ # p C A andp # {0} (i.e. the
clone of all 0-preserving functiong on A such thatf (r1, ..., r,) € p whenever
T, ...,y € P).

2. The clonex” = Z4 N Pol p wherem = 2 andp is a nontrivial equivalence relation
on A having{0} as its class (thu€ is the set of all O-preserving such thatp €
Con(A4; f)).

3. The cloneC = Z4 N Pol (<) where< is an order relation oM with the least
element 0 and a greatest element. He€rés the set of all O-preserving isotone
functions (i.e. functiong on A such thatf (a1, ..., a,) < f(b1, ..., b,) Whenever
a1 < bi,...,a, < by).

An m-ary relationp is totally symmetrigf it is invariant under all coordinate exchanges;
i.e., for every permutation of {1, ..., m}

(ala~~-7am) Epﬁ (aﬂ(1)9~--aaﬂ(m)> eIO

The relatiorp istotally reflexivef (a1, ..., a,) € p wheneveurs, ..., a, are not pairwise
distinct; i.e., ifa; = a; for some 1< i < j < m. An elemenic € A is centralfor p if
(c,az,...,ay) € pforallay,...,a, € A.

4. The clones” = Z4 N Pol p where 1< m < |A] andp C A,, is totally symmetric
and totally reflexive and O is a central element sor

5. The clonex” = Pol{{(a, s(a)); a € A} wheres is a permutation oA with a unique
fixed point 0 and all cycles of the same prime length

6. The clone<C = Pol(y U {{0, 0)}) wherey is a binary symmetric and areflexive
relation onA with (a, 0) € y and(0, a) € y for alla € A\{O} (i.e., a graph with a
star at 0).

7. The clone€ = Pol{(x, y, x + y); x, y € A} whereG = (A; +, 0) is an elementary
abelian 2-group (i.e., the additive structure of vector space over the field GF(2)).
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The clones listed in 1.—4. and 7. are meet reducible in the |aftioBclones while those
listed in 5. and 6. are meet irreducible.

THEOREM 3.1.If 1 < |A] < Rg then the dual binary discriminator belongs to the
clones listed in.—6.

Proof. Seth = hg. We prove that preserves all the relations from 1.—6. We proceed
by contraposition.

1. Letp € A andh(a, b) ¢ p forsomea, b € A. If b # 0 thena = h(a, b) ¢ p and
we are done. Thus lét= 0. Thenb =0 = h(a, 0) ¢ p.

2. Let p be an a nontrivial equivalence relation egnwith a class{0} and o :=
(h(a,b), h(c,d)) &€ p.If b #0 #£ dthen{a,c) = a ¢ p. Thus let Oc {b, d}. By
symmetry we may assunbe= 0. From(0, i(c, d)) = o ¢ p we obtaind # 0 and
(b,d) =(0,d) & p.

3. Let< be an order om with the least element 0 and leta, b) £ h(c, d). Clearly
h(a,b) #0and st # 0 # b. If d # 0thena = h(a, b) £ h(c,d) = c. Thus let
d =0. Thenb £ 0=d. (In fact, we have proved thate Pol < for every order<
with the least element 0).

4. Letp be a totally symmetrier-ary relation and let O be a central elemenpofLet
o = (h(a1, b1), ..., h(am, by)) ¢ p. Thenh(a;, b;) #0foralli =1,...,m and
Soh(a;, b;) = a; foralli =1,...,m. Then(as, ..., an) ¢ p.

5. Lets be a permutation oft with a fixed point 0. Leti(c,d) # s(h(a, b)). Then
h(c,d) = 0 = h(a, b) does not hold and therefore = 0 = b is impossible. If
d # 0 # bthenc = h(c,d) # s(h(a,b)) = s(a) and we aredone. H =0 # b
thend = 0 # s(b) and finally ifd #= 0 = b thend # 0 = 5s(0) = s(b).

6. Let (A; y) be a graph om with a star at 0. Suppose = (h(a, b), h(c,d)) ¢
y U{(0,0)}. Thenh(a, b) # 0 # h(c,d) and so(a, c) = a ¢ y U {{0, 0)}.

O

REMARK. Denote byM the intersection of all the maximal clones listed above in
1.-6. It can be proved that is the cloneClo(h) generated by:. In fact Clo(h) is even
the intersection of smaller sets of clones maximatj e.g., of allPol{a}(a € A) and all
Pol p wherep is a bounded order oA with the least element 0. It can be shown that
does not belong to any of the maximal subcloneZ gfof type 7. Note that the clones of
type 7 exist only folA| = p™, p prime.

Let the universel be infinite. The clones listed in 1-7 are well defined but in general not
maximal inZ4 (i.e., not covered by 4 in the lattice of clones). Nevertheless Theorem 3.1
is also valid forA infinite.

THEOREM 3.2. Every maximal clone ix 4 is ideal-free.
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Proof. For the clones listed in 1-6 this follows from Theorem 3.1 and Theorem 2.1 (2).
Thus consider the clones from 7. It is well known that we can identifyith the set2™
(of all 0-1m-dimensional vectors) ang with the componentwise mod 2 addition 2.
Seth = {{x, y, x+y); x, y € 2"}. LetI be anideal of2™; Polr) distinct from{Q}, where
0= (0,...,0), and leti € I\{Q}. Let A be anm x m 0 — 1 matrix andh(x) =~ xA
(wherex A is the product of the ¥ m matrixx and the matrixA overG F (2)). Itis almost
immediate thak € Polir. Ask(Q) ~ Q, clearlyh(y) is an ideal term iry and soh(i) € I.
Now varyingA we can get that = 2. Thus the clone is ideal-free as well. O

For infinite A we do not know any analogue of Lau’s theorem.

COROLLARY 3.3. If Ais a0-primal algebra then
(i) {0} isthe only proper subalgebra of;

(i) Ais simple;

(iii) Aut A ={ida}, and

(iv) Aisideal-free.

Proof. (i)—(iii) are proved by constructing appropriate unary 0-preserving operations.
(iv) follows directly by Theorem 3.2. O

LEMMA 3.4. If Ais a binary discriminator algebra then every ideal.dfis a congru-
ence kernel.

Proof. Evident since, by Corollary 2.24 is ideal-free, i.e {0} andA are the only ideals
of A. O

Let® # B C A. For ann-ary functionf on A we denote by
f(B,....,B)={f(b1,...,by);b1,...,b, € B).

REMARK. LetA = (A, F) be an algebra® € Cond andK = [0]e. If f is ann-ary
function onA such thatf (K, ..., K) € K for each® € ConA, then f is 0-preserving
since{0} = Ker wa.

We say that an-ary functionf on A is anideal-compatible functioof Aif f(1,..., 1) C
I for each ideal of A.

COROLLARY 3.5. Analgebrad with0isO-primalif and only if every ideal-compatible
function ofA is a term function of4.

Proof. It follows directly by Lemma 6, the foregoing Remark and the fact that every
congruence kernel @ € ConA is an ideal of4, see [7]. O
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4. Main ideal term algebras

Although Corollary 2.2 provides a kind of a 0-version of Pixley’s Theorem 3.1 from [13],
we do not have its converse, i.e., an adaption of Theorem 5.1 from [12] to ideals, which is
perhaps due to the complex structures of ideals in the general case. We have a converse if
we impose a condition on the similarity type and a condition on the ideal terms.

From now on we assume thdtis an algebra with O containing a binary term function
o and a unary term function denoted byinstead of(x")’ we writex”. Denote byl (c) the
ideal of A generated by the singletdn}. Call A a main ideal term algebré

(xoy)oy ~0 and xo0 ~x, (%)

I(c)={aoc";a e A) foreveryc e A\(O}. ()

THEOREM 4.1. Let A be a main ideal term algebra. Thedis a binary discriminator
algebra if and only it4 is ideal-free.

Proof. (&) Let A be ideal-free. We show thato y’ is the binary discriminator od.
Firstx o 0’ &~ x and so it remains to prove that y’ = 0 for allx € A and ally € A\{0}.
Since A has no proper ideald,(y) = A and thus by £x) we havex = a o y” for some
ac A Hencexoy = (aoy”)oy =0hby (). O

(=): Corollary 2.2.
Although Theorem 4.1 provides a converse of Corollary 2.2 for main ideal term algebras,
the verification of £x) may be far from obvious.

THEOREM 4.2. Let A satisfy(x) and
X o x// ~ X, ()C o y//)// ~ (x ° y//)// ° y//’ (X ° y) ° Z// X xo (y ° Z//)-
If {y”, x o y} is a basis of ideal terms oA then.A is a main ideal term algebra.

Proof. We must verify ¢x). Letz € A\{0}. SetJ = {a 0 7”; a € A}. By assumption,
z=zoz"and saz € J. We prove that/ = I(z). Since{y”, x o y} is a basis off 7 (A), it
suffices to show that is closed under the ideal termé andx o y. Letc € J be arbitrary.
Thenc =aoz’forsomea ¢ Aandc” = (ao7”) =(@o7") 07" =c"07" € J. Let
x € A. Thenxoc=xo0(aoz”) = (xoa)oz” € J. Together/ is an ideal of4 containing
z, 1.e.,I(z) € J. However, for everys € A we havea o z” € I(z) thus alsoJ C I(z)
proving (x). O

Example.LetS = (S; A,*, 0) be a pseudocomplementadsemilatticexoy :=x Ay
andx’ := x*. A routine verification shows tha satisfies the conditions of Theorem 4.2.
By Theorem 4.1, the binary discriminator 8ris a term function orS if and only if S is
ideal-free. It can be verified that this just happens wes finite with exactly one atom.
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REMARK. By Pixley’s theorem, if the ternary discriminator is a term function on
A then A is quasi-primal, i.e., every function ot preserving its subalgebras and inner
isomorphisms is a term function of. This is not valid for the binary discriminator.

Example.Let S = {0,a4,1} and S = (S;A,*,0) be the pseudocomplemented
A-semilattice with the induced order @ a < 1. By the preceding example A y* is
the binary discriminator otd and A is ideal-free. Consider the binary functigi(x, y)
defined by settingf (¢, a) = 1 and f(x, y) = 0 otherwise. A0, 1} is the only proper
subalgebra of, clearly f preserves all the subalgebras®tnd, trivially, also all inner
isomorphisms of. We show that the relation

p:=1{(0,0),{a, 1), (1 1)}

is a subuniverse of?. It is easy to see that both 0 and are compatible withp (use
0* = 1 anda* = 1* = 0). Finally p is a subuniverse ofS; A)2 due t0(0, 0) A (a, 1) =
(0,0 A (1, 1) = (0, 0y and{a, 1) A (1, 1) = (a, 1) and sqo is compatible withn. However,
p is not a subuniverse @, f)2 becausé f(a, a), f(1,1)) = (1,0) € p. Thusf is nota
term function ofS.

5. Binary discriminator varieties

A variety V with O of type t is abinary discriminator varietyif V is generated by a
nontrivial classkC of type r with a binary termy such thay* is the binary discriminator
b§l for eachA € K.

For the ternary discriminator, the similarly defindidcriminator varietiesvere studied
by McKenzie [11]. We characterize the binary discriminator varieties:

THEOREM 5.1. The following conditions are equivalent for a variétywith O:
(1) Vis abinary discriminator variety;
(2) there exists a binary termi(x, y) satisfying

@) b(x,0) ~ x,b(0,x) ~ 0=~ b(x, x);
(i) b(x,b(y, x) ~ x;
(i) everyn-ary operationf in the type of) satisfies
b(f(x17 R} xn)’ )’) ~ b(f(b(xl, )’), LR} b(xnv )’))7 }’)
(iv) Vis generated by a clags whose algebras are ideal-free;

(3) there exist a binary terrh(x, y) of V satisfying(i)—(iii) above and is generated by
a classkC whose algebras have no proper congruence kernels.
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Proof. (1) = (2): It is an easy exercise to verify that for eagh € K the binary
discriminatorbg satisfies (i)—(iii) and whence (i)—(iii) hold iw. (iv) By Corollary 2.2
everyA € K is ideal-free.

(2) = (3): Immediate because every congruence kernel is an ideal.

(3) = (1): Let A € K. By (i) it remains to show that := b(x,y) = 0 for all
x,y € A\{0}. Suppose to the contrary thatt 0. Set

V. = {{c,d) € A% b(c, z) = b(d, 2)}. (+)

Clearlyy, is an equivalence relation ohinduced by the right translation(x) :~ b(x, z)
of b. Notice that by (i)

r:(0) =5b(0,2) =0=10b(z,2) = r;(2) (x)
and by (ii)
r.(y) =b(y,2) =b(y,b(x,y)) =y #0. (xx)

Moreover,y, is a congruence oA because (i) guarantees the substitution property. From
(x) and (x x) we see that & < [0],, while y & [0],,. Thus{0} # [0],, # A and
soy, has a proper congruence kernel. This contradiction shows0 and therp is the
binary discriminator. O

Example.Every variety is generated by all its subdirectly irreducitié) members. It
is easy to show that in the varietyof pseudocomplemented-semilattices generated by
the 3-element chain the on§/ members are the 2- and 3-element chains. By the above
examples in both of thes&/ membersc A y* is the binary discriminator. Hence is a
binary discriminator variety.

REMARK. There are essential differences between the (ternary) discriminator varieties
and the binary discriminator varieties. For example, every discriminator variety is regular
and congruence uniform. This does not hold for the binary discriminator varieties as one
can observe in the previous example. Indeed, the 3-element chaiO< 1 has two
congruences with the same 0-class, namelgnd ® (a, 1) (where®(c, d) denotes the
least congruence o4 containing(c, d)). Further,®(a, 1) has two blocks of unequal size.
Moreover, ifV is a discriminator variety, fall € V anda, b, ¢ € A there existgl € A with
®(a, b) = O(c,d). Itis an easy exercise to show that

d=t({(a,b,c),t(a,b,t(a,c,b)),t(a,c,b)).

However, for the above mentioned 3-element chain (considered as a pseudocomplemented
A-semilattice)®(a, 1) # ©(0, x) for eachx € A.
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We define adual binary discriminator varietyas the variety with 0 generated by a
classKC of nontrivial similar algebras with a binary tergnsuch thay 4 is the dual binary
discriminatori§ for eachA € K.

We characterize the dual binary discriminator varieties:

THEOREM 5.2. LetV be avariety wittD. ThenV is a dual binary discriminator variety
if and only if there exists a binary terinof V such that

i) h(x,x) =~ x,h(x,0)~ 0~ h(0, x);
(i) h(h(x,y),y) ~ h(x,y);
(i) V is generated by a clas§ such that for eactd € K and everyy € A\{0} the
right translationr, (x) ~ h(x, y) is injective.

Proof. (=): Let V be a dual binary discriminator variety aidits generating class.
Then for each4 € K the term operation is the dual binary discriminatdrg. Itis easy
to check that it satisfies (i) and (ii); consequently (i) and (ii) hold’inTo prove (iii) let
A e Kandy € A\{0}. Thenr,(x) = hg(x, y) & x and sor, (x) is injective.

(«): Let V satisfy the conditions (i)—(iii)). Suppose to the contrary that there exist
A € K andx, y € A\{0} such that; := h(x, y) # x. Consider the right translation
ry(x) i~ hAGx, ). By (i) ry(2) = h Az, y) = hAGAx, 3), y) = hAG, y) =2 =1y (x)
in contradiction to (iii). ThusiA (x, y) = x for all x, y € A\{0}. Moreover from (i) also
hA(x,0) ~ 0~ hA(0, x) and soht = hg. O

THEOREM 5.3. LetV be a dual binary discriminator variety, the corresponding term,
AeVandy € A. Theny, := {(x, z) € A% hA(x, y) = h"A(z, y)} satisfies

Yy 0 ©(0, y) = AZ.

Proof. By (i) of Theorem 5.2 clearlyp = A2 and so the assertion holds foe= 0. Thus
lety # 0 andx € A. By (ii) of Theorem 5.2 we have

(x, hA(x, y)) € y.
Observe that by (i)

(B, y),0 = (P (x, y), A (x, 0)) € ©(0, y)
0,y) = (h(,0), (v, ) € ©(0, y)

and so(h(x, y), y) € ©(0, y). Hence(x, y) € ¥y 0 ©(0, y) provingyy o ®(0, y) = A2,
O
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