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Abstract. We provide a simple natural duality for the varieties gener-

ated by the negation- and implication-free reduct of a finite MV-chain.

We study these varieties through the dual equivalences thus obtained.

For example, we fully characterize their algebraically closed, existentially

closed and injective members. We also explore the relationship between

this natural duality and Priestley duality in terms of distributive skeletons

and Priestley powers.
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1. Introduction

Just like distributive lattices are the negation-free subreducts of Boolean al-
gebras, positive MV-algebras (recently introduced in [1]), are the negation-free
subreducts of MV-algebras. While the variety MV of MV-algebras provides
algebraic semantics for �Lukasiewicz infinite-valued logic (see, e.g., [7, Chap-
ter 4]), its subvarieties MVn = HSP(�Ln), generated by finite MV-chains �Ln,
provide algebraic semantics for �Lukasiewicz finitely-valued logics (the subvari-
eties MVn were first studied in [16]). In this paper, we study the varieties
PMVn = HSP(P�Ln) generated by finite positive MV-chains P�Ln (that is,
negation-free reducts of �Ln). Our main tool for this study is the theory of
natural dualities.
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In its simplest form, natural duality theory [9] provides a general frame-
work to obtain a dual equivalence between a quasi-variety A = ISP(M) gen-
erated by a finite algebra M and a category of structured Stone spaces X =
IScP

+(˜M) consisting of closed subspaces of non-empty products of a discrete
structure ˜M based on the same set as M (and therefore called an alter ego of
M). Examples of natural dualities are Stone duality, which arises if M is the
two-element Boolean algebra and its alter ego ˜M is the two-element discrete
space, and Priestley duality, which arises if M is the two-element distribu-
tive lattice and its alter ego ˜M is the two-element discrete space with order
0 ≤ 1. The great utility of these dualities may be seen as a consequence of
the fact that the alter egos described above are very simple structures. A gen-
eral theme of natural duality theory may be phrased as simple structures yield
useful dualities.

For the varieties MVn, natural dualities were developed and studied in
[25]. Since finite MV-chains are semi-primal, it is easy to come up with simple
alter egos ˜�Ln. Indeed, by [9, Theorem 3.3.14] the only structure relevant for this
duality is given by the collection of subalgebras S(�Ln). One reason why this is
sufficient is that every subalgebra of �Ln× �Ln is a direct product of subalgebras.
This is not true anymore in the case of P�Ln (for example, the order relation ≤
itself is a subalgebra of P�Ln ×P�Ln). We show that, instead, a simple alter ego
of P�Ln can be obtained from a certain collection of subalgebras of the order
≤ which can be easily computed algorithmically.

To make the case for the utility of these alter egos, we investigate the
dualities they yield to derive various results about the varieties PMVn. For
example, we completely characterize the injective, algebraically closed and
existentially closed members of PMVn. We also explore the relationship to
Priestley duality, which can be expressed in terms of distributive skeletons and
Priestley powers. We show that these constructions give rise to an adjunction
between DL (the variety of distributive lattices) and PMVn, similar to the ad-
junction [21, Section 4] between BA (the variety of Boolean algebras) and MVn

obtained from functors taking the Boolean skeleton and the Boolean power,
respectively. We expect this to prove useful in future applications, exploring
modal logic over PMVn as an analogue of Dunn’s positive modal logic [12] in
the setting of modal finitely-valued �Lukasiewicz logic [17].

The paper is structured as follows. In Section 2, we recall the most im-
portant background information on MV- and MVn-algebras (Subsection 2.1)
and on natural dualities (Subsection 2.2). In Section 3, we begin our study of
finite positive MV-chains P�Ln and the varieties PMVn they generate (Sub-
section 3.1). We proceed to develop the natural dualities for these varieties
(Subsection 3.2). In Section 4, we explore some ramifications of this duality.
More specifically, we give an explicit axiomatization of the category dual to
PMV2 generated by the three-element chain (Subsection 4.1), we explore the
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relationship between PMVn and DL as described above (Subsection 4.2) and
we characterize the algebraically and existentially closed algebras in PMVn via
this relationship (Subsection 4.3). In the concluding Section 5, we collect some
open questions and ideas for further research.

2. Preliminaries

In this section, we give short overviews of the two most important topics
related to this paper. In Subsection 2.1, we recall the basics of MV-algebras,
with a focus on finite MV-chains and the varieties MVn they generate. In
Subsection 2.2, we recall important prerequisites from the theory of natural
dualities. For further information on these topics, the reader may consult the
textbooks [7] about MV-algebras and [9] about natural dualities (in particular,
we will often refer to the latter throughout this entire paper).

2.1. MV-algebras

It is well-known that Boolean algebras provide an appropriate algebraic coun-
terpart to classical propositional logic. Similarly, to �Lukasiewicz logic, an ap-
propriate algebraic counterpart is provided by MV-algebras, introduced by
Chang [6] in 1958. The variety MV of MV-algebras is generated by the standard
MV-algebra

〈[0, 1],�,⊕,∧,∨,¬, 0, 1〉
based on the real unit interval with its usual bounded lattice structure and
additional operations

x � y = max{0, x + y − 1}, x ⊕ y = min{1, x + y}, ¬x = 1 − x.

For a detailed overview of MV-algebras and their relationship to many-valued
logic, we refer the reader to [7] (and [24] for more advanced topics). In this
paper, we focus on the finite subalgebras of the standard MV-algebra, which
are all of the following form.

Definition 2.1. Let n ≥ 1 be a natural number. The (n+1)-element MV-chain
is given by

�Ln = 〈{0, 1
n , . . . n−1

n , 1},∧,∨,�,⊕,¬, 0, 1〉,
considered as a subalgebra of the standard MV-algebra. We use MVn to denote
the variety HSP(�Ln) generated by �Ln (these varieties were first axiomatized
by Grigolia in [16]).

Note that �L1 is simply the two-element Boolean algebra and, therefore,
MV1 is the variety of Boolean algebras, the algebraic counterpart to clas-
sical propositional logic. The varieties MVn with n ≥ 2 provide appropri-
ate algebraic counterparts to �Lukasiewicz finitely-valued logics. In particular,
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�Lukasiewicz three-valued logic with �L2 as algebra of truth-degrees is a popular
research topic in non-classical logic.

It was shown in [25, Proposition 2.1] that every finite MV-chain �Ln

is semi-primal [13], meaning that every operation f : {0, 1
n , . . . , n−1

n , 1}k →
{0, 1

n , . . . , n−1
n , 1} (k ≥ 1) which preserves subalgebras of �Ln (that is, f(Sk) ⊆

S for all subalgebras S ⊆ �Ln) is term-definable in �Ln (note that this is a
straightforward generalization of the two-element Boolean algebra �L1 being
primal, meaning that every operation f : {0, 1}k → {0, 1} can be expressed
by a Boolean term). Some important consequences of this are that the variety
MVn coincides with the quasi-variety ISP(�Ln) generated by �Ln, and that every
MVn-algebra is a Boolean product (see, e.g., [5, Chapter IV]) of subalgebras of
�Ln.

It is well-known that the subalgebras of �Ln are exactly given by

�Lk
∼= 〈{0, �

n , . . . , (k−1)�
n , 1},∧,∨,�,⊕,¬, 0, 1〉,

where n = k · �. Therefore, the lattice S(�Ln) of subalgebras of �Ln is isomorphic
to the bounded lattice of divisors of n.

It is also well-known (and another immediate consequence of �Ln being
semi-primal) that, for every d ∈ �Ln, the unary operation

τd(x) =

{

1 if d ≤ x,

0 otherwise

is term-definable in �Ln. This means that, as shown in [18], MVn can be iden-
tified with a (proper, for n ≥ 5) subvariety of the variety LMn of n-valued
�Lukasiewicz–Moisil algebras, generated by the n-element chain with ¬ defined
as for �Ln and all τd as fundamental operations (see [2] for an overview of
�Lukasiewicz–Moisil algebras).

The unary terms τd can be very useful, for example, they are important
in the algebraic study of modal extensions of �Lukasiewicz finitely-valued logic
[3,17]. Notably, as shown in [26, pp. 344–345], only the operations � and ⊕ are
required to define these unary terms in �Ln. Thus, they will still be available
in our study of finite positive MV-chains (also see Lemma 3.3).

2.2. Natural dualities

The theory of natural dualities provides a common framework to develop dual
equivalences between quasi-varieties of algebras and structured Stone spaces.
In particular, the theory encompasses and generalizes Stone duality for Boolean
algebras and Priestley duality for distributive lattices. In this subsection, we
give a selective overview of this theory. For more information, we refer the
reader to the book [9], which we often cite throughout this paper.
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Let M be a finite algebra (with underlying set M) and let A = ISP(M)
be the quasi-variety it generates. An alter ego of M is a discrete topological
structure (also with underlying set M) of the form

˜M = 〈M,G,H,R, Tdis〉,

where G is a collection of (total) homomorphisms Mn → M (possibly nullary,
which corresponds to constants), H is a collection of partial homomorphisms,
that is, homomorphisms from a subalgebra of Mn to M and R is a collection
of algebraic relations, that is, subalgebras R ⊆ Mn. Lastly, Tdis is the discrete
topology on M .

The topological quasi-variety X = IScP
+(˜M) generated by ˜M consists of

structured Stone spaces (recall that a Stone space is a topological space (X, T )
which is compact, Hausdorff and totally disconnected)

X = 〈X,GX,HX,RX, T 〉,

of the same type as ˜M which are isomorphic to a closed substructure of a non-
empty product of ˜M. The category X with structure-preserving continuous
maps as morphisms is often described using the Preservation Theorem [9,
Theorem 1.4.3] and the Separation Theorem [9, Theorem 1.4.3].

By the Preduality Theorem [9, Theorem 1.5.2], there exists a dual ad-
junction between A and X given by the contravariant hom-functors D : A → X
and E : X → A defined by

D(A) = A(A,M) and E(X) = X (X, ˜M)

for all A ∈ A and X ∈ X . The natural transformations e : 1A → ED and
ε : 1X → DE corresponding to this adjunction are given by evaluations

eA(a)(u) = u(a) for all A ∈ A, u ∈ D(A) and a ∈ A,

εX(x)(α) = α(x) for all X ∈ X , α ∈ E(X) and x ∈ X.

If e is a natural isomorphism, we say that ˜M yields a duality for A (this is
also known as dual representation). If ε is a natural isomorphism as well, we
say that ˜M yields a full duality for A (meaning that D and E establish a dual
equivalence). In fact, in this paper we exclusively deal with strong dualities
[9, Chapter 3], which are full dualities with the additional property that ˜M is
injective in X .

In particular, for lattice-based algebras, strong dualities can often be
obtained via the NU Strong Duality Corollary [9, Corollary 3.3.9].

Corollary 2.2 [9]. Let M have a majority term, and let all subalgebras of M
be subdirectly irreducible. Then

˜M = 〈M,K,P1, S(M × M), Tdis〉,



   37 Page 6 of 30 W. Poiger Algebra Univers.

yields a strong duality on A, where K is the union of trivial (i.e., one-element)
subalgebras of M, the set P1 consists of all unary partial homomorphisms M →
M and S(M × M) consists of all binary algebraic operations.

While this corollary narrows down the structure needed to obtain a strong
duality, this ˜M is usually still more complicated than it necessarily has to
be. This is where (strong) entailment comes into play. We say that another
alter ego ˜M′ = 〈M,G′,H′,R′, Tdis〉 strongly entails ˜M if whenever ˜M yields a
strong duality on A, the same is true for ˜M′. Similarly, we say that members
of G′ ∪H′ ∪R′ strongly entail members of G ∪H∪R. In the following, we give
a list of admissible constructs for strong entailment relevant for this paper (see
[9, Chapter 9] for a complete list of admissible constructs for entailment).

(1) Any set of relations strongly entails the full product M2, the diagonal
ΔM = {(m,m) | m ∈ M} of M and the identity idM on M.

(2) Any binary relation R strongly entails its converse R−1 = {(b, a) | (a, b ∈
R)} and pr1(R ∩ ΔM).

(3) Relations S,R ⊆ Mn strongly entail their intersection S ∩ R.
(4) Arbitrary relations S and R entail their product S × R.
(5) ˜M′ strongly entails ˜M if it is obtained from ˜M by deleting a partial

operation h ∈ H which has an extension in G and adding its domain as
unary relation to R.

We say that ˜M yields an optimal strong duality if G ∪ H ∪ R is not
strongly entailed by any of its proper subsets.

We illustrate the concepts introduced in this subsection by explaining
how to obtain natural dualities for MVn (these dualities have been explored
in [25]). This example is a specific instance of the proof of the Semi-primal
Strong Duality Theorem [9, Theorem 3.3.14].

Example 2.3. Let n ≥ 1. The discrete structure

˜�Ln = 〈{0, 1
n , . . . n−1

n , 1}, S(�Ln), Tdis〉,

where members of S(�Ln) are understood as unary relations, yields a strong
duality on MVn.

Proof. By Corollary 2.2, the structure

〈{0, 1
n , . . . n−1

n , 1},K, P1, S(�Ln × �Ln), Tdis〉

yields a strong duality on MVn (where K is the union of one-element subal-
gebras and P1 is the collection of all unary partial homomorphisms). Since
�Ln is based on a bounded lattice, it has no one-element subalgebras, therefore
K = ∅. Furthermore, the only homomorphism �Lk → �Ln defined on a subal-
gebra �Lk ⊆ �Ln is the natural embedding of �Lk. Using the strong entailment
constructs (1) and (5) above, it can be replaced by its domain �Lk ∈ S(�Ln).
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Every subalgebra R ∈ S(�Ln × �Ln) is simply a product of subalgebras of �Ln.
Therefore, by (4) above, they are strongly entailed by S(�Ln) as well. �

It follows from [9, Theorem 9.2.6] that modifying the structure from
Example 2.3 to only include the meet-irreducible members of the lattice S(�Ln)
yields an optimal strong duality (also see [9, Theorem 8.3.2]).

In the next section, we aim to come up with a similarly simple natural
duality for varieties generated by positive MV-chains.

3. Natural dualities for varieties generated by positive

MV-chains

In Subsection 3.1, we introduce the varieties PMVn of positive MVn-algebras,
generated by the positive MVn-chains P�Ln. We prove some basic facts about
congruences and subalgebras of P�Ln and show that the variety generated by
P�Ln coincides with the quasi-variety generated by P�Ln. In Subsection 3.2, we
develop our natural dualities for the varieties PMVn. In particular, to this end
the systematic study of subalgebras of the order relation ≤ (which is itself a
subalgebra of P�Ln × P�Ln) plays an important role.

3.1. Positive MV-chains

Following the recent paper [1], we use the term positive MV-algebra to refer to a
negation-free (and implication-free) subreduct of an MV-algebra. In particular,
we focus on finite positive MV-chains defined as follows.

Definition 3.1. Let n ≥ 1 be a natural number. The (n + 1)-element positive
MV-chain is given by

P�Ln = 〈{0, 1
n , . . . n−1

n , 1},∧,∨,�,⊕, 0, 1〉,
understood as a reduct of �Ln. We write PMVn for the variety HSP(P�Ln)
generated by P�Ln, and we refer to members of PMVn as positive MVn-algebras
or PMVn-algebras.

Our first result about P�Ln is that its subalgebras are the same as the
subalgebras of �Ln and, therefore (recall Subsection 2.1), the subalgebra-lattice
S(P�Ln) is isomorphic to the bounded lattice of divisors of n.

Proposition 3.2. The subalgebras of P�Ln are exactly given by the subuniverses

P�Lk
∼=

{

0, �
n , . . . , (k−1)�

n , 1
}

,

where n = k · �.

Proof. Let L ⊆ P�Ln be an arbitrary subalgebra and let �
n be the unique

minimal element of L which is not zero. If � = n, then L = P�L1 holds, so
assume � < n. Note that this implies �

n ≤ 1
2 , since otherwise �

n � �
n would be
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an element of L greater than zero but strictly smaller than �
n , contradicting

our choice of �. Furthermore, � needs to be a divisor of n, since otherwise
we can find natural numbers x ≥ 1 and 0 < r < � with n = x� + r. But
then x�

n � �
n = r

n is a member of L above zero but strictly below �
n , again

contradicting our choice of �. Thus we showed that � divides n and therefore,
by closure of L under ⊕, we showed that P�Lk as in the proposition is contained
in L.

Suppose towards contradiction that there is some s
n ∈ L\P�Lk. Then � < s

holds by the above assumption and we can find natural numbers k > x > 1
and 0 < r < � such that s = x� + r. This is equivalent to

r + n = s − x� + n = s + (k − x)�.

Therefore, we conclude that r
n = s

n � (k−x)�
n is in L, once more contradicting

minimality in our choice of �. �

As noted at the end of Subsection 2.1, the unary operations τd can be
defined from � and ⊕ alone. This fact will be of high importance in many
proofs later on.

Lemma 3.3 [26]. For every d ∈ P�Ln, the unary operation τd : �Ln → �Ln given
by

τd(x) =

{

1 if d ≤ x,

0 otherwise

is term-definable in P�Ln.

Remark 3.4. While we chose to exclusively focus on P�Ln in this paper, all
results up until Lemma 3.9 actually hold for every finite algebra D which has
a bounded-lattice reduct and in which τd defined as above is term-definable in
D for every d ∈ D. In particular, this encompasses the negation-free reducts
of the finite �Lukasiewicz–Moisil chains (see, e.g., [2]).

Our first goal is to show that the variety PMVn coincides with the quasi-
variety ISP(P�Ln) generated by P�Ln. For this, we essentially only have to show
the following.

Lemma 3.5. Every subalgebra P�Lk ⊆ P�Ln (including P�Ln itself ) is simple.

Proof. Let θ be a congruence relation on S and let c, d ∈ P�Lk be distinct
elements with (c, d) ∈ θ. We show that θ is the trivial congruence identifying
all members of P�Lk. Without loss of generality, we assume c < d. Since τd

from Lemma 3.3 is term-definable in P�Ln, we have (0, 1) = (τd(c), τd(d)) ∈ θ

and (1, 0) ∈ θ by symmetry. Now, for arbitrary x, y ∈ P�Lk, we have

(x, y) =
(

(1, 0) ∧ (x, x)
)

∨
(

(0, 1) ∧ (y, y)
)

∈ θ,

which implies θ = P�L2
k. �
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Since PMVn is congruence distributive (because P�Ln is lattice-based and
thus has a majority term), a standard application of Jónsson’s Lemma [20]
yields the following (see, e.g., [9, Theorem 1.3.6]).

Corollary 3.6. PMVn = ISP(P�Ln).

This allows us to study the variety PMVn via the theory of natural du-
alities in what follows.

3.2. The natural dualities

This subsection is dedicated to finding a simple alter ego ˜P�Ln of P�Ln which
yields a ‘useful’ [9, Chapter 6] strong duality on PMVn. Since P�Ln has a
bounded lattice reduct, it has a majority term and no trivial subalgebras. Fur-
thermore, by Lemma 3.5 we know that every subalgebra of P�Ln is subdirectly
irreducible. Therefore, we may use Corollary 2.2 (i.e., the NU Strong Duality
Corollary [9, Corollary 3.3.9]) as our starting point. This states that

〈{0, 1
n , . . . , n−1

n , 1}, P1, S(P�Ln × P�Ln), Tdis〉, (3.1)

yields a strong duality for PMVn, where P1 is the set of all unary partial
homomorphisms P�Ln → P�Ln. In the following we show that, as for �Ln, the
only partial homomorphisms of this kind are the identities of subalgebras of
P�Ln.

Lemma 3.7. For every subalgebra P�Lk ⊆ P�Ln, the inclusion map is the only
homomorphism P�Lk → P�Ln.

Proof. Let h : P�Lk → P�Ln be a homomorphism. Suppose there are some s ∈
P�Lk and d ∈ P�Ln such that h(s) = d and s �= d. Recall that τd and τs

from Lemma 3.3 are term-definable and thus preserved by h. If s < d then
1 = τd(h(s)) = h(τd(s)) = h(0) = 0 yields a contradiction. If r < s then
1 = h(τs(s)) = τs(h(s)) = τs(d) = 0 also yields a contradiction. Thus no
such elements s and d can exist and we showed that h(s) = s holds for all
s ∈ P�Lk. �

Therefore, as in Example 2.3, the collection P1 of unary partial ho-
momorphisms is strongly entailed by the collection of unary algebraic rela-
tions S(P�Ln). Now we take a closer look at the binary algebraic relations in
S(P�Ln ×P�Ln). Contrary to �Ln, the algebra P�Ln ×P�Ln has subalgebras which
are not direct products of subalgebras of P�Ln. For example, since all opera-
tions of P�Ln are order-preserving, the relation ≤ and its converse ≥ are clearly
subalgebras of P�Ln × P�Ln. In the following, we show that every other subal-
gebra of P�Ln which is not a direct product of subalgebras is contained in one
of those.

Lemma 3.8. Every subalgebra R ⊆ P�Ln × P�Ln which is not a direct product
of subalgebras of P�Ln is a subalgebra of ≤ or of ≥.
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Proof. Suppose that R is neither a subset of ≤ nor of ≥. We show that this
implies that R is a direct product of subalgebras of P�Ln. Since R is not a
subset of ≤, there is (x1, y1) ∈ R with x1 > y1. Similarly, there is (x2, y2) ∈ R
with x2 < y2. This implies that (1, 0) = τx1(x1, y1) and (0, 1) = τy2(x2, y2) are
both in R. As in the proof of Lemma 3.5, with this we can show that R is the
full direct product of its two projections pr1(R) and pr2(R). �

Since every binary relation strongly entails its converse and all products
of subalgebras of P�Ln are strongly entailed by S(P�Ln), it follows that the
structure

〈{0, 1
n , . . . , n−1

n , 1}, S(P�Ln) ∪ S(≤), Tdis〉 (3.2)

yields a strong duality for PMVn, since it strongly entails the structure from
(3.1).

While the structure given in (3.2) is already much simpler than that in
(3.1), it is still far from optimal. Therefore, we keep on studying S(≤) in order
to further simplify this alter ego.

A somewhat special role is played by the subalgebra � ∈ S(≤) given by

� = {(x, y) | x = 0 or y = 1}.

It is easy to see that this is a subalgebra since 0 ∧ x = 0 � x = 0 and 1 ∨ x =
1⊕x = 1 for all x ∈ P�Ln. Unfortunately, except for the case n = 2, this is not
the only non-diagonal proper subalgebra of the order relation. However, it is
minimal among those subalgebras in the following sense.

Lemma 3.9. Let R ⊆ P�Ln × P�Ln be a subalgebra of the order ≤, which is
not the diagonal of a subalgebra of P�Ln, and S = pr1(R) × pr2(R). Then
�|S ⊆ R ⊆ ≤|S.

Proof. Since R is not a diagonal, there is a pair (x, y) ∈ R with x �= y, implying
x < y. Therefore, τy(x, y) = (0, 1) ∈ R as well. Now, for any (x′, y′) ∈ R we
find that

(0, y′) = (x′, y′) ∧ (0, 1) and (x′, 1) = (x′, y′) ∨ (0, 1)

are also members of R, finishing the proof. �

Since diagonals of subalgebras are strongly entailed by S(P�Ln) already,
we only need to consider subalgebras in-between (restrictions of) � and ≤. In
order to describe these subalgebras, the following ‘closure’ downwards in the
first and upwards in the second component will be crucial.

Definition 3.10. Let S = P�Lk × P�Lk′ be a product of subalgebras of P�Ln

(recall Proposition 3.2). Let (x, y) ∈ S with x ≤ y. We denote by C(x,y),S the
following subset of S and ≤.

C(x,y),S = {(x′, y′) ∈ S | x′ ≤ x and y ≤ y′}.

If S = P�Ln × P�Ln, we simply use C(x,y) instead of C(x,y),S.



Nat. dual. for varieties gen. by positive MV-chains Page 11 of 30    37 

Figure 1. The sets C( 2
6 , 36 ) and C( 2

6 , 36 ),P�L3×P�L2
in the case

n = 6

For example, Figure 1 depicts the subsets C( 2
6 , 36 ) and C( 2

6 , 36 ),S for S =
P�L3 × P�L2 as subsets of P�L6 × P�L6.

In the next lemma, we show that non-diagonal subalgebras of the order
are closed under these subsets in the following sense.

Lemma 3.11. Let R ⊆ P�Ln ×P�Ln be a subalgebra of the order ≤ which is not
the diagonal of a subalgebra of P�Ln, and S = pr1(R) × pr2(R). If (x, y) ∈ R,
then C(x,y),S ⊆ R as well.

Proof. By Lemma 3.9 we know that �|S ⊆ R. Now let (x, y) ∈ R, and say
(x′, y′) ∈ S satisfies x′ ≤ x and y ≤ y′. Then (x′, y) = (x, y) ∧ (x′, 1) is in R
and, thus, (x′, y′) = (x′, y) ∨ (0, y′) is also in R. �

Therefore, clearly every R as in the above lemma is a union of sets of
the form C(x,y),S. However, not all unions of sets of this form necessarily yield
subalgebras. In the following, we identify exactly those unions which do give
rise to subalgebras of P�Ln × P�Ln.

Proposition 3.12. Let S = P�Lk × P�Lk′ be a product of subalgebras of P�Ln.

(1) Let R ⊆ P�Ln ×P�Ln be a subalgebra of ≤, which is not the diagonal of a
subalgebra of P�Ln, with pr1(R) × pr2(R) = S. Then R can be expressed
as

R =
k

⋃

i=0

C( i
k ,yi),S

where yi is the minimal element of P�Lk′ with ( i
k , yi) ∈ R (in particular,

y0 = 0 and yk = 1).
(2) Let y0, . . . , yk be an increasing sequence of elements of P�Lk′ with y0 =

0, yk = 1 and i
k ≤ yi for all i = 1, . . . , k − 1. Then

R =
k

⋃

i=0

C( i
k ,yi),S

is a subalgebra of S if and only if the conditions

( i
k , yi) � ( j

k , yj) ∈ R and ( i
k , yi) ⊕ ( j

k , yj) ∈ R

hold for all i, j ∈ {1, . . . , k − 1}.
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Proof. (1): By Lemma 3.11 we have
⋃k

i=0 C( i
k ,yi),S

⊆ R. Conversely, if ( i
k , y)

is in R, then yi ≤ y by minimality of yi and therefore ( i
k , y) ∈ C( i

k ,yi),S
.

(2): Clearly these conditions are necessary for R to be a subalgebra. We
show that they are also sufficient. First note that �|S = C(0,0),S∪C(1,1),S ⊆ R,
in particular this implies that both constants (0, 0) and (1, 1) are contained in
R. Now let (x, y) and (x′, y′) be two elements of R, say (x, y) ∈ C( i

k ,yi),S
and

(x′, y′) ∈ C( j
k ,yj),S

. Furthermore, without loss of generality we assume i ≤ j.
We first establish the closure under the lattice operations. To show closure

under meets, we note that

(x, y) ∧ (x′, y′) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(x, y) if x ≤ x′, y ≤ y′,

(x′, y′) if x′ ≤ x, y′ ≤ y,

(x′, y) if x′ ≤ x, y ≤ y′,

(x, y′) if x ≤ x′, y′ ≤ y.

In the first two cases the meet is obviously still in R. In the third case the two
inequalities x′ ≤ x ≤ i

k and yi ≤ y imply (x′, y) ∈ C( i
k ,yi),S

. In the fourth and
final case the two inequalities x ≤ x′ ≤ j

k and yj ≤ y′ imply (x, y′) ∈ C( j
k ,yj),S

.
Closure under joins is established analogously since

(x, y) ∨ (x′, y′) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(x, y) if x′ ≤ x, y′ ≤ y,

(x′, y′) if x ≤ x′, y ≤ y′,

(x′, y) if x ≤ x′, y′ ≤ y,

(x, y′) if x′ ≤ x, y ≤ y′.

Note that in the third case we get (x′, y) ∈ C( j
k ,yj),S

and in the fourth case we
get (x, y′) ∈ C( i

k ,yi),S
.

Now let ∗ ∈ {�,⊕}, and note that (x, y) ∈ C( i
k ,yi),S

and (x′, y′) ∈
C( j

k ,yj),S
together with monotonicity of ∗ imply

x ∗ x′ ≤ i
k ∗ j

k and yi ∗ yj ≤ y ∗ y′.

However, by assumption we have ( i
k ∗ j

k , yi ∗ yj) ∈ R say it is contained in
C( h

k ,yh),S. Thus

x ∗ x′ ≤ i
k ∗ j

k ≤ h
k and yh ≤ yi ∗ yj ≤ y ∗ y′

immediately implies that (x, y)∗(x′, y′) is also contained in C( h
k ,yh),S, finishing

the proof. �

For example, in Figure 2, on the left hand side the union

C(0,0) ∪ C( 1
6 , 26 ) ∪ C( 2

6 , 36 ) ∪ C( 3
6 , 56 ) ∪ C( 4

6 ,1) ∪ C( 5
6 ,1) ∪ C(1,1)

inside P�L6 ×P�L6 is depicted. By Proposition 3.12, we can easily confirm that
this is a subalgebra by checking that the ‘corner elements’ (1

6 , 2
6 ), ( 2

6 , 3
6 ) and
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Figure 2. Only the subset on the left is a subalgebra of
P�L6 × P�L6

( 3
6 , 5

6 ) are closed under the operations � and ⊕. On the right hand side of
Figure 2, the union

C(0,0) ∪ C( 1
6 , 26 ) ∪ C( 2

6 , 36 ) ∪ C( 3
6 ,1) ∪ C( 4

6 ,1) ∪ C( 5
6 ,1) ∪ C(1,1)

is depicted. This is not a subalgebra because ( 1
6 , 2

6 ) ⊕ ( 2
6 , 3

6 ) = (3
6 , 5

6 ) is not
contained in this union.

Now that we have a good grasp on the subalgebras of P�Ln × P�Ln, we
aim to show that, ultimately, only subdirect products R ⊆ P�Ln ×P�Ln (mean-
ing pr1(R) = pr2(R) = P�Ln) will be relevant for the natural duality. By
Lemma 3.9, this is equivalent to saying only the following relations will be
relevant to the natural duality.

Definition 3.13. Let Sn ⊆ S(P�Ln × P�Ln) be the collection of all subalgebras
R ⊆ P�Ln × P�Ln which satisfy � ⊆ R ⊆ ≤.

It is clear by definition that Sn is a bounded sublattice of S(P�Ln ×P�Ln)
with lower bound � and upper bound ≤.

In the next two (technical) lemmas, we show that the set of relations
Sn strongly entails S(≤) and S(P�Ln). The first lemma shows that relations
R ∈ S(≤) with pr1(R)×pr2(R) �= P�Ln ×P�Ln are strongly entailed by S(P�Ln)
and Sn.

Lemma 3.14. Let R ⊆ P�Ln ×P�Ln be a subalgebra of the order ≤, which is not
the diagonal of a subalgebra of P�Ln, and let S = pr1(R)×pr2(R) = P�Lk×P�Lk′

for some divisors k, k′ of n. Then there exists a subalgebra R ∈ Sn with R =
R ∩ S.

Proof. By Proposition 3.12(1), we know that R can be expressed as union

R =
k

⋃

i=0

C( i
k ,yi),S

where yi is the minimal element of P�Lk′ with ( i
k , yi) ∈ R. Let n = k · �. We

define R by

R =
n
⋃

j=0

C( j
n ,ŷj)
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where we stipulate ŷ0 = 0 and

ŷj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

y1 if 1 ≤ j ≤ �,

y2 if � + 1 ≤ j ≤ 2�,
...

...

yk−1 if (k − 2)� + 1 ≤ j ≤ (k − 1)�,

yk = 1 if (k − 1)� + 1 ≤ j ≤ n.

We show that R is a subalgebra of P�Ln ×P�Ln using Proposition 3.12(2). That
is, for any j1, j2 ∈ {1, . . . , n− 1}, we want to show that ( j1

n , ŷj1) ∗ ( j2
n , ŷj2) ∈ R

holds for the MV-operations ∗ ∈ {�,⊕}.
Let i1, i2 ∈ {1, . . . , k} be the unique elements satisfying

(i1 − 1)� < j1 ≤ i1� and (i2 − 1)� < j2 ≤ i2�,

which by definition means ŷj1 = yi1 and ŷj2 = yi2 . Since R is a subalgebra,
we know that ( i1

k , yi1) ∗ ( i2
k , yi2) ∈ R, say it is in C( h

k ,yh),S. Now because
j1
n ≤ i1�

n = i1
k and similarly for j2, i2, we have

j1
n

∗ j2
n

≤ i1
k

∗ i2
k

≤ h

k
=

h�

n

and furthermore
yh ≤ yi1 ∗ yi2 = ŷj1 ∗ ŷj2 .

Because ŷh� = yh, this shows that ( j1
n , ŷj1)∗( j2

n , ŷj2) ∈ C( h�
n ,ŷh�)

⊆ R, finishing
the proof. �

Our second lemma shows that the collection S(P�Ln) is strongly entailed
by Sn.

Lemma 3.15. For every P�Lk ∈ S(P�Ln), there exists a R ∈ Sn such that R ∩
ΔP�Ln = ΔP�Lk

(where ΔA denotes the diagonal of the corresponding algebra
A).

Proof. Let n = k · � and P�Lk be given as in Proposition 3.2. We define R by

R =
n
⋃

i=0

C( i
n ,yi)

where we stipulate y0 = 0 and

yi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�
n if 1 ≤ j ≤ �,
2�
n if � + 1 ≤ j ≤ 2�,
...

...
(k−1)�

n if (k − 2)� + 1 ≤ j ≤ (k − 1)�,

1 if (k − 1)� + 1 ≤ j ≤ n.
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By definition it is clear that R ∩ ΔP�Ln
= ΔP�Lk

, so we only have to show
that R is a subalgebra. For this, we again use Proposition3.12(2). Let i1, i2 ∈
{1, . . . , n − 1} and let j1, j2 be the unique elements of {1, . . . , k} with

(j1 − 1)� < i1 ≤ j1� and (j2 − 1)� < i2 ≤ j2�,

which means that yi1 = j1�
n and yi2 = j2�

n . Furthermore, let j1�
n ∗ j2�

n = h�
n

(note that such an h exists because P�Lk is a subalgebra). Then
i1
n

∗ i2
n

≤ j1�

n
∗ j2�

n
=

h�

n

implies
( i1

n , yi2) ∗ ( i2
n , yi2) ∈ C( h�

n , h�
n ) ⊆ R,

which finishes the proof. �

With these two lemmas at hand, we are ready to state and easily prove
the main theorem of this section.

Theorem 3.16. Let n ≥ 1. The discrete relational structure

˜P�Ln = 〈{0, 1
n , . . . , n−1

n , 1},Sn, Tdis〉
yields a strong duality for PMVn.

Proof. By the discussion after Lemma 3.8, we know that the structure given in
(3.2), that is 〈{0, 1

n , . . . , n−1
n , 1}, S(P�Ln) ∪ S(≤), Tdis〉, yields a strong duality

for PMVn. By Lemma 3.14, we know that every non-diagonal R ∈ S(≤) is
an intersection of (and thus strongly entailed by) a product of subalgebras of
P�Ln and a relation from Sn. By Lemma 3.15 and entailment construct (2)
from Subsection 2.2, diagonal subalgebras in S(≤) and subalgebras in S(P�Ln)
are strongly entailed by Sn as well. �

In light of Proposition 3.12, it is fairly straightforward to find the lattice
Sn in a systematic way. Indeed, in Appendix A we provide an easy algorithm
to compute this lattice. Also note that, to obtain an optimal duality (see [9,
Chapters 8 and 9]), we could simplify the above structure further by only in-
cluding meet-irreducible elements of Sn (this follows from [9, Theorem 9.2.6]).
However, since it won’t make a significant difference in this paper, we keep
working with the alter ego from Theorem 3.16.

Definition 3.17. For all n ≥ 1, let Xn = IScP
+( ˜P�Ln) be the topological

quasi-variety generated by the structure from Theorem 3.16. Furthermore,
let Dn : PMVn → Xn and En : Xn → PMVn be the (hom-)functors establishing
the corresponding dual equivalence.

Note that these dualities can be seen as many-valued generalizations of
Priestley duality, which is recovered in the case where n = 1.

In the following, we collect some consequences of Theorem 3.16 which
can be immediately derived from the general theory of natural dualities.
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Corollary 3.18. The categories PMVn and Xn have the following properties.

(1) P�Ln is injective in PMVn and ˜P�Ln is injective in Xn.
(2) The injectives in PMVn are exactly the Boolean powers P�Ln[B], where

B is a non-trivial complete Boolean algebra.
(3) PMVn has the amalgamation property.
(4) A morphism ϕ : X1 → X2 in Xn is an embedding (a surjection) if and

only if En(ϕ) is a surjection (an embedding). A homomorphism h : A1 →
A2 in PMVn is an embedding (a surjection) if and only if Dn(h) is a
surjection (an embedding).

(5) The congruence lattice of A ∈ PMVn is dually isomorphic to the lattice
of closed substructures of Dn(A).

(6) Coproducts in Xn are given by direct union (i.e., the duality is logarith-
mic).

Proof. The second part of statement (1) follows from the definition of strong
duality, the first part follows from [9, Lemma 3.2.10] and the fact that ˜P�Ln

is a total structure. Statement (2) follows from [9, Theorem 5.5.15] because
all relations R ∈ Sn avoid binary products. Statement (3) follows from [9,
Lemma 5.3.4]. Statement (4) follows from (1) and [9, Lemmas 3.2.6 and 3.2.8].
Statement (5) follows from [9, Theorem 3.2.1]. Lastly, statement (6) follows
from [9, Theorem 6.3.3], again because all relations R ∈ Sn avoid binary
products. �

This corollary already demonstrates how useful these dualities are. In the
next section, we investigate it further to derive more results about the varieties
PMVn.

4. Further explorations of the dualities

In this section, we delve deeper into various aspects of the natural dualities
established in the previous section. In Subsection 4.1, we give a concrete ax-
iomatization of the category X2 dual to the variety PMV2 generated by the
three-element positive MV-chain. In Subsection 4.2, we explore the relationship
between the natural duality for PMVn and Priestley duality. Lastly, in Subsec-
tion 4.3, we give complete characterizations of algebraically and existentially
closed algebras in PMVn.

4.1. The dual category for the three-element positive MV-chain

Among the finitely-valued �Lukasiewicz logics, arguably the most popular is the
three-valued logic corresponding to the variety MV2 generated by the three-
element MV-chain �L2. In this section, we focus on the variety PMV2 generated
by the positive three-element MV-chain P�L2. More specifically, we provide an
explicit description of the category X2 dual to PMV2.
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Theorem 4.1. A structured Stone space X = 〈X,�X,≤X, T 〉 with binary re-
lations �X and ≤X closed in X2 is a member of X2 if and only if it satisfies
the following axioms.

(a) x �X y ⇒ x ≤X y.
(b) (X,≤X, T ) is a Priestley space, that is, ≤X is a partial order and if

x �≤X y, then there exists a clopen upset U containing x but not y.
(c) If x �

X y but x ≤X y, then there exist a clopen upset U and a clopen
downset D with the following properties

• x /∈ D and y /∈ U ,
• For all z, z′ ∈ X, if z �X z′ then z ∈ D or z′ ∈ U .

Proof. First we show that every member X = 〈X,�X,≤X, T 〉 of X2 satisfies
(a)–(c). The formula (a) is quasi-atomic and holds in P�Ln, therefore, by the
Preservation Theorem [9, Theorem 1.4.3], it also holds for all members of X2.

To see condition (b) that (X,≤X, T ) is a Priestley space, assume that
x �≤ Xy. By the Separation Theorem [9, Theorem 1.4.4], there exists a X2-
morphism ϕ : X → ˜P�L2 with ϕ(x) > ϕ(y). If ϕ(x) = 1, choose U = ϕ−1({1})
and if ϕ(x) = 1

2 , choose U = ϕ−1{ 1
2} ∪ ϕ−1({1}). In both cases, U is a clopen

(because P�L2 carries the discrete topology and ϕ is continuous) upset (because
ϕ is order-preserving) which contains x but not y.

To see (c), assume x �
X y but x ≤X y. Then, again by the Separa-

tion Theorem, there exists a morphism ϕ : X → ˜P�L2 with ϕ(x) � ϕ(y) but
ϕ(x) ≤ ϕ(y). Since � = ≤\{(1

2 , 1
2 )}, this implies ϕ(x) = ϕ(y) = 1

2 . The clopen
upset U = ϕ−1({1}) and the clopen downset D = ϕ−1({0}) satisfy the two
subconditions of (c), the first one since ϕ(x) = ϕ(y) = 1

2 and the second one
since z � Xz′ and ϕ(z) = ϕ(z′) = 1

2 would yield a contradiction ϕ(z) � ϕ(z′)
to ϕ being a morphism.

For the converse, assuming that X = (X,�X,≤X, T ) satisfies (a)-(c), we
want to show that it is a member of X2. We apply the Separation Theorem
again.

Suppose x �≤X y. Using that (X,≤X, T ) is a Priestley space, we can find
a clopen upset U which contains x but not y. We define a continuous map
ϕ : X → {0, 1

2 , 1} by ϕ(z) = 1 if z ∈ U and f(z) = 0 otherwise. This clearly
is order-preserving, and it also preserves �, because � is a subset of ≤ by (a)
and, in ˜P�L2 the relations � and ≤ coincide on the subset {0, 1}. Clearly this
morphism satisfies ϕ(x) �≤ ϕ(y).

In particular, the above covers the case where x �= y and the case where
x �

X y and x �≤X y hold. Now assume x �
X y but x ≤X y. Take a clopen

upset U and a clopen downset D as given in (c). Replacing U by the clopen
upset U ′ := U\D, the properties of (c) are still satisfied, since z �X z′ and
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z /∈ D imply z′ ∈ U , and z′ ∈ D would yield the contradiction z ∈ D, so
z′ ∈ U ′. Let the continuous map ϕ : X → {0, 1

2 , 1} be defined via

ϕ(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if z ∈ D,

1 if z ∈ U ′,
1
2 if z ∈ X\(D ∪ U ′).

This is a well-defined continuous map since D, U ′ and X\(D ∪ C) forms a
clopen partition of X. Furthermore, since x /∈ D (which implies y /∈ D) and
y /∈ U (which implies x /∈ U) implies ϕ(x) = ϕ(y) = 1

2 (i.e., ϕ(x) � ϕ(y)),
it remains to be shown that ϕ preserves ≤ and �. Order-preservation follows
immediately from the fact that U is an upset and D is a downset. Now suppose
z �X z′. Then z ∈ D, which implies ϕ(z) = 0 holds, or z′ ∈ U ′, which implies
ϕ(z′) = 1 holds. In both cases, ϕ(z) � ϕ(z′) is assured. �

In the next subsection, we give a similar but more ‘implicit’ axiomatiza-
tion of the categories Xn for n > 2 as well. Since (as we’ve already seen in the
case n = 2) all structures X ∈ Xn have underlying Priestley spaces, we then
proceed to explore various functors relating our natural dualities to Priestley
duality.

4.2. The relationship to Priestley duality

We continue to denote the functors establishing the duality from Theorem 3.16
by Dn : PMVn → Xn and En : Xn → PMVn. In particular, for n = 1 this
coincides with Priestley duality between the variety of distributive lattices
DL = PMV1 and the category of Priestley spaces Priest = X1. In this case, we
simply use D : DL → Priest and E : Priest → DL instead of D1 and E1.

In this subsection, we show that there are functors S : PMVn → DL

taking the distributive skeleton and P : DL → PMVn taking a Priestley power
with S being left-adjoint to P. This is similar to the adjunction between the
Boolean skeleton functor MVn → BA and the Boolean power functor BA →
MVn (which exists for any variety generated by a semi-primal lattice extension)
from [21, Section 4].

While, in theory, the Separation Theorem [9, Theorem 1.4.3] always gives
an ‘implicit’ description of the dual categories, the reader can imagine that
for n > 2, it gets increasingly complicated to come up with more ‘explicit’
descriptions of the categories Xn similar to Theorem 4.1. Therefore, in these
cases we content ourselves with the following.

Proposition 4.2. A structured Stone space X = 〈X, (RX | R ∈ Sn), T 〉 with
closed binary relations RX is a member of Xn if and only if it satisfies the
following:

(a) xRX
1 y ⇒ xRX

2 y for all R1 ⊆ R2 in Sn.
(b) 〈X,≤X, T 〉 is a Priestley space.
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(c) For all R ∈ Sn\{≤}, if (x, y) /∈ RX, then there is a structure-preserving
continuous map ϕ : X → ˜P�Ln with (ϕ(x), ϕ(y)) /∈ R.

Proof. Every member X of Xn satisfies the quasi-atomic formulas from (a).
Furthermore, both (b) and (c) are immediate consequences of the Separation
Theorem. To see that 〈X,≤X, T 〉 is a Priestley space), assume x �≤X y. By the
Separation Theorem there is a morphism ϕ : X → ˜P�Ln with ϕ(x) �≤ ϕ(y). Let
ϕ(x) = i

n . Then U = ϕ−1({ 1
n})∪ϕ−1({ i+1

n })∪· · ·∪ϕ−1({n−1
n })∪ϕ−1({1}) is a

clopen upset which contains x but not y. The converse is also a straightforward
application of the Separation Theorem. �

Therefore, there always is a forgetful functor U : Xn → Priest sending an
object of Xn to its underlying Priestley space and a Xn-morphism to itself. In
the following, we show that the dual of U is given by the distributive skele-
ton functor S : PMVn → DL. This is similar to the Boolean skeleton functor
MVn → BA, which is dual to the corresponding forgetful functor from the
category dual to MVn to Stone [21, Subsection 4.2]. The distributive skeleton
of a PMVn algebra is defined completely analogous to the Boolean skeleton of
an MVn algebra (see, e.g., [7, Section 1.5].

Definition 4.3. Let A ∈ PMVn. The distributive skeleton of A is the bounded
distributive lattice

S(A) = 〈S(A),∧,∨, 0, 1〉
defined on the carrier set S(A) = {a ∈ A | a ⊕ a = a}, with the operations
∧,∨ and constants 0, 1 inherited from A.

To turn this into a functor S : PMVn → DL, for a homomorphism h : A →
A′ between PMVn-algebras, simply let Sh : S(A) → S(A′) be the homomor-
phism defined via restriction Sh = h|S(A).

Theorem 4.4. The functor S : PMVn → DL is dual to the functor U : Xn →
Priest, that is, DS is naturally isomorphic to UDn.

Proof. By definition, natural in the choice of A ∈ PMVn, we want to find an
order-preserving homeomorphism

ΦA : (PMVn(A,P�Ln),≤) → (DL(S(A),2),≤),

where 2 denotes the two-element distributive lattice. We claim that

ΦA(u) = u|S(A)

has these desired properties.
To see that ΦA is injective, suppose that u �= u′ are two distinct homo-

morphisms A → P�Ln. Let a ∈ A be such that u(a) �= u′(a), without loss of
generality say u(a) < u′(a). Then, for d = u′(a), we have u(τd(a)) = τd(u(a)) =
0 and u′(τd(a)) = τd(u′(a)) = 1. Since τd(a) ∈ S(A) holds, this shows that
Φ(u) �= Φ(u′).
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Now we show that Φ is surjective. Let p : S(A) → 2 be a homomorphism.
We construct a homomorphism up : A → P�Ln with ΦA(up) = p. Given a ∈ A,
define

up(a) =
∨

{d | p(τd(a)) = 1}.

Clearly up preserves 0 and 1. Now let a1, a2 ∈ A, let up(a1) = d1 and up(a2) =
d2. We want to show that, for ∗ ∈ {∧,∨,�,⊕}, up(a1 ∗ a2) = d1 ∗ d2. In other
words, we want to show that p(τd1∗d2(a1 ∗ a2)) = 1 and p(τd′(a1 ∗ a2)) = 0 for
all d′ > d1 ∗ d2. Since ∗ is order-preserving we know that P�Ln satisfies

τd1(x1) ∧ τd2(x2) ≤ τd1∗d2(x1 ∗ x2).

Since this can be expressed as an equation, it also holds in A. Therefore, we
get

1 = p(τd1(a1) ∗ τd2(a2)) ≤ p(τd1∗d2(a1 ∗ a2)).

Now let d′ > d1 ∗ d2. Then, since d1 ∗ d2 �= 1, we can choose minimal d′
1 > d1

and d′
2 ≥ d2 with d′

1 ∗ d′
2 ≥ d′. By minimality, P�Ln satisfies the equation

corresponding to

τd1(x1) ∧ τd2(x2) ∧ τd′(x1 ∗ x2) ≤ τd′
1
(x1),

which is therefore also satisfied in A. But now, if we assume that p(τd′(a1 ∗
a2)) = 1, then

1 = p(τd1(a1) ∧ τd2(a2) ∧ τd′(a1 ∗ a2)) ≤ p(τd′
1
(a1))

implies p(τd′
1
(a1)) = 1, which is a contradiction to up(a1) = d1. Therefore,

up is a homomorphism. The restriction of up to S(A) is equal to p because
a ∈ S(A) is equivalent to τd(a) = a for all d ∈ P�Ln\{0}.

Thus we showed that ΦA is bijective. It is also continuous, and therefore
a homeomorphism, since a subbasis of the topology on D1S(A) is given by
the sets of the form [a : e] = {p : S(A) → 2 | p(a) = e} where a ranges over
S(A) and e ranges over 2. The preimage Φ−1([a : e]) is exactly the corre-
sponding subbase element [a : e] = {h : A → P�Ln | h(a) = e} of the topology
on UDn(A). The fact that ΦA is order-preserving follows directly from its def-
inition, so it only remains to show that Φ defines a natural transformation
UDn ⇒ D1S. Let h : A → A′ be a homomorphism. We need to show that the
square

PMVn(A′,P�Ln) DL(S(A′),2)

PMVn(A,P�Ln) DL(S(A′),2)

ΦA′

UDnh D1Sh

ΦA
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commutes. By definition, for a homomorphism u : A′ → P�Ln we have

ΦA ◦ UDnh(u) = ΦA(u ◦ h) = (u ◦ h)|S(A)

and
D1Sh ◦ ΦA′(u) = D1Sh(u|SA′) = u|S(A′) ◦ h|S(A),

which makes it easy to see that these two coincide, finishing the proof. �

The Boolean skeleton functor MVn → BA has a right-adjoint [21, Sub-
section 4.3], which takes a Boolean algebra B to the Boolean power �Ln[B]
(see, e.g., [4,5] for information about Boolean powers). In the following we
show that, similarly, the distributive skeleton functor has a right-adjoint, which
takes the Priestley power defined as follows.

Definition 4.5. Let L ∈ DL be a distributive lattice and let M be a finite
ordered algebra. The Priestley power, M[L], is given by the collection

M[L] = Priest(D(L), (M,≤, Tdis))

of continuous order-preserving maps from the dual of L to the discrete Priestley
space (M,≤, Tdis).

A more constructive definition of Priestley powers is given and shown to
be equivalent to the above definition in [22] (where they are called distributive
extensions). We also emphasize that our notion of Priestley power differs from
the one established in [19].

Similarly to the Boolean power (but with the constraint that all opera-
tions of M need to be order-preserving), we get the following.

Lemma 4.6. Let M be a finite ordered algebra, all of whose operations are
order-preserving. Then, for every distributive lattice L ∈ DL, the Priestley
power M[L] with component-wise operations is a subalgebra of MD(L).

Proof. Let f be an n-ary operation of M and let α1, . . . , αn ∈ M[L]. We
need to show that α : D(L) → M defined by α(x) = f(α1(x), . . . , αn(x)) is
continuous and order-preserving. Order-preservation is easy, since if x ≤ y we
know that αi(x) ≤ αi(y) for all i and since f is order-preserving we have

α(x) = f(α1(x), . . . , αn(x)) ≤ f(α1(y), . . . , αn(y)) ≤ α(y).

To see that α is continuous, we show that α−1({m}) is clopen for every m ∈ M .
Let N ⊆ Mn be the finite set of all tuples (m1, . . . , mn) with f(m1, . . . , mn) =
m. Then we have

α−1({m}) =
⋃

(m1,...,mn)∈N

α−1
1 ({m1}) ∩ · · · ∩ α−1

n ({mn}),

which is clopen because N is finite and all αi are continuous. �
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Therefore, it is easily seen that the following Priestly power functor
P : DL → PMVn is well-defined. For a distributive lattice L ∈ DL let P(L) =
P�Ln[L] be the Priestley power, and for a homomorphism h : L1 → L2 let
Ph : P(L1) → P(L2) be defined by α �→ α ◦Dh. We now show by duality that
this functor is right-adjoint to the distributive skeleton functor.

Theorem 4.7. The Priestley power functor P : DL → PMVn is right-adjoint to
the distributive skeleton functor S : PMVn → DL.

Proof. Our proof strategy consists of the following two steps. We first define a
functor P : Priest → Xn and show that it is left-adjoint to the forgetful functor
Un. Then we show that P is the dual of P. By Theorem 4.4 and the uniqueness
of an adjoint up to natural isomorphism, the theorem follows.

Xn

En

��
��

P � U

��

PMVn

Dn

��
��

P S�

��
Priest

E
�� DL

D

��

Let P : Priest → Xn be defined as follows. For a Priestley space 〈X,≤〉, define
P(X,≤) to be the structured topological space 〈X,≤, (RX = ∅ | R ∈ Sn\
{≤})〉, which is a well-defined member of Xn by Proposition 4.2. Furthermore,
define Pϕ = ϕ on morphisms. It is easy to see that P is left-adjoint to U, since
for every Priestley space 〈X,≤〉 and structure Y ∈ Xn because, by definition
of P, morphisms in Xn(P(X,≤),Y) clearly coincide with continuous order-
preserving maps X → Y , that is, morphisms in Priest(〈X,≤〉,U(Y)).

We now show that P is dual to P, more specifically, we show that there is
a natural isomorphism EnP ∼= PE. For this, we simply note that, for a Priestley
space 〈X,≤〉, we have the following natural isomorphisms

EnP(X,≤) = Xn(P(X,≤), ˜PLn)

∼= Priest(〈X,≤〉,U( ˜P�Ln))

∼= Priest(DE(X,≤),U( ˜P�Ln)) = PE(X,≤),

where we used P � U established above and the definition of the Priestley
power P(L) = Priest(D(L),U( ˜P�Ln)). This finishes the proof. �

One simple consequence of (the proof of) Theorem4.7 is the following.

Corollary 4.8. Every algebra A ∈ PMVn is a subalgebra of a Priestley power.
More specifically, there is an embedding A ↪→ PS(A).
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Proof. Let P be the dual of P as in the proof of Theorem 4.7. It is easy to
see that the counit of the adjunction P � U is the identity map idx as a
morphism PU(X) → X on every component. Therefore, it is a component-
wise epimorphism in Xn. Dually, this implies that the unit of the adjunction
S � P is a component-wise monomorphism, and therefore yields an embedding
A ↪→ PS(A) for every PMVn-algebra A ∈ PMVn as desired. �

In the last subsection, we describe the algebraically and existentially
closed members of PMVn via their duals. For this, Boolean powers (rather
than Priestley powers) play an essential role. However, since Boolean powers
arise as special cases of Priestley powers, the results of this subsection will
prove useful towards this end.

4.3. Algebraically and existentially closed algebras

A standard application of natural dualities is the classification of algebraically
closed and existentially closed algebras via their duals (see, e.g., [9, Sections
5.3 and 5.4]). In this subsection, we give full classifications of the algebraically
closed and existentially closed members of PMVn via Boolean powers. Note
that, for a complemented bounded distributive lattice B, the Priestley power
P�Ln[B] from Definition 4.5 coincides with the usual Boolean power P�Ln[B].
Since the structure ˜P�Ln is total, we can use the AC–EC Theorem [9, Theorem
5.3.5.] to characterize algebraically and existentially closed members of PMVn.

Before we state this theorem, we recall that X ∈ Xn has the dual finite
homomorphism property (FHP)∗ if, for all finite Y,Z ∈ Xn and surjective
morphisms ϕ : X → Z, ψ : Y → Z, there exists a morphism λ : X → Y such
that ϕ = ψ ◦ λ.

X Z

Y

ϕ

∃λ
ψ (FHP)∗

The dual finite embedding property (FEP)∗ is similar, the only difference being
that λ is also required to be surjective.

Theorem 4.9 [9]. Let A ∈ PMVn.

(1) A is algebraically closed if and only if Dn(A) has the dual finite homo-
morphism property (FHP)∗.

(2) A is existentially closed if and only if Dn(A) has the finite embedding
property (FEP)∗.

We now show that algebraically and existentially closed members of
PMVn stem from Boolean algebras in the following sense.

Theorem 4.10. Let A ∈ PMVn.

(1) A is algebraically closed if and only if A is isomorphic to a Boolean power
P�Ln[B], where B ∈ BA is an arbitrary Boolean algebra.
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(2) A is existentially closed if and only if A is isomorphic to a Boolean power
P�Ln[B], where B ∈ BA is an atomless Boolean algebra.

Proof. By (the proof of) Theorem 4.7, we know that the duals of Boolean
powers P�Ln[B] in Xn are exactly the structures isomorphic to some X ∈ Xn

where ≤X the discrete order and RX is empty for all other R ∈ Sn. We first
show by contrapositive that if X has the finite homomorphism property, then
it needs to be of this form.

Let X ∈ Xn be not of the form described above. If ≤ is not discrete, there
are distinct x, y ∈ X with x < y. Let U be an upset of X containing y but not
x. Define Z ∈ Xn to consist of two points {a, b} with order a < b (and all other
relations empty), and let Y consist of two points {a′, b′} with the discrete order
(and all other relations empty). Let ϕ : X → Z be the morphism sending U to
b and X\U to a. Let ψ : Y → Z be the morphism sending a′ to a and b′ to b.
Now if there was a morphism λ witnessing (FHP)∗, it would have to satisfy
λ(x) = a′ and λ(y) = b′. However, this is impossible since this would mean
x ≤ y and λ(x) �≤ λ(y), contradicting that λ needs to be order-preserving.

Now assume that X has the discrete order-relation and there is some
other relation RX which is non-empty. Choose R minimal in Sn such that
there is some x ∈ X with xRXx. Define Z ∈ Xn to consist of one point {a}
with aRXa and let Y consists of one point {a′} with a′ ≤Y a′ and all other
RY empty. Let ϕ : X → Z and ψ : Y → Z be the unique morphisms. The
unique map λ : X → Z is not a morphism because otherwise xRXx would
imply a′Ra′. Therefore X does not satisfy (FHP)∗.

Thus we showed that if A is algebraically closed, then it is isomorphic
to some Boolean power P�Ln[B]. For the converse of (1), one has to show that
every X ∈ Xn with discrete order and all other relations empty has the finite
homomorphism property. For (2), one has to show such an X has the finite
embedding property if and only if ≤ has no isolated points. However, this is
easy, since both of these can be proven completely analogous to [9, Theorem
5.4.1]. �

In particular, for n = 1 we recover the well-known description of alge-
braically closed and existentially closed distributive lattices [27] as comple-
mented distributive lattices and atomless complemented distributive lattices.

5. Conclusion

We developed a logarithmic optimal natural duality for the variety PMVn of
positive MVn-algebras, generated by P�Ln, the negation-free reduct of the finite
MV-chain �Ln. We explored the relationship between this duality and Priestley
duality, showing that there is an adjunction between DL and PMVn given by
the distributive skeleton functor S : PMVn → DL and the Priestley power
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functor P : DL → PMVn. Specializing this relationship to Boolean powers, we
gave a full characterization of algebraically and existentially closed members
of PMVn. In the following, a few open questions, remarks and ideas for further
research are collected.

1. As noted in Remark 3.4, the results of Subsection 3.2 until Lemma 3.9, as
well as Lemma 3.5 and Corollary 3.6 from Subsection 3.1 hold not only for
P�Ln, but for every lattice-based algebra D in which τd is term-definable
for every d ∈ D. Furthermore, the existence of these τd together with a
‘weak form of negation’ is equivalent to semi-primality of a lattice-based
algebra [21, Proposition 2.8]. Is there a sensible definition of ‘lattice-semi-
primal’ algebras (similar to lattice-primal algebras), such that the results
of this paper be seen as a specific instance of a more general result about
natural dualities for such lattice-semi-primal algebras?

2. In Corollary 4.8, we showed that every PMVn-algebra can be embedded
into the Priestley power of its distributive skeleton, similarly to how every
MVn-algebra can be embedded into the Boolean power of its Boolean
skeleton. Based on this, a category equivalent to MVn was described in
[10]. This equivalence was explained from the point of view of natural
dualities in [25]. Is there a similar categorical equivalence for PMVn? To
deal with this question, the more constructive description of Priestley
powers from [22] could prove useful.

3. Besides natural dualities, there have been other duality-theoretical ap-
proaches to MV-algebras and other lattice-ordered algebras in the litera-
ture (see, e.g., [8,14,23]). It would be interesting to work out analogous
results for PMV-algebras, and to analyze the corresponding relationships
to this paper. Similarly to [11,15], sheaf representations of PMV-algebras
could also be established.

4. Lastly, we mention that the logical aspects of PMVn-algebras were only
hinted at in this paper. In future work, we plan to explore these aspects
further. In particular, we aim to investigate modal extensions of PMVn-
algebras to deal with an analogue of Dunn’s positive modal logic [12] in
the setting of modal finitely-valued �Lukasiewicz logic [17].
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Appendix A. An algorithm to find the dualizing structure

Making use of Proposition 3.12, here we provide an algorithm to find the
lattice Sn from Definition 3.13, in order to systematically determine the alter
ego from Theorem 3.16.

By Proposition 3.12, the subalgebras � ⊆ R ⊆ ≤ are certain ‘unions of
rectangles’ of the form

n
⋃

i=0

C( i
n ,yi)

where y0 ≤ · · · ≤ yn is an increasing sequence in P�Ln with i
n ≤ yi. We will

identify this union with the sequence y1, . . . , yn−1 (note that y0 = 0 and yn = 1
holds for every subalgebra, so we can omit these). For example, the sequence
where all yi = 1 corresponds to � and the sequence yi = i

n corresponds to ≤.
However, not every such sequence corresponds to a subalgebra. By Proposi-
tion 3.12, the sequences which correspond to subalgebras, which we call valid
sequences, are the ones which satisfy

( j
n , yj) � ( j′

n , yj′) ∈
n
⋃

i=0

C( i
n ,yi)

and ( j
n , yj) ⊕ ( j′

n , yj′) ∈
n
⋃

i=0

C( i
n ,yi)

for all j, j′ ∈ {1, . . . , n − 1}. In fact, similar to the proof of Lemma 3.14, it
can be shown that it is sufficient to check this condition only for the ‘corner
elements’, that is, at indices i which satisfy yi < yi+1 (with yn = 1).

Thus, the set Sn is in bijective correspondence with the set of valid se-
quences. Furthermore, the union associated to y1, . . . , yn−1 is contained in the
union associated to y′

1, . . . , y
′
n−1 if and only if y′

i ≤ yi holds for i = 1, . . . , n−1.
Thus we can also retrieve the lattice structure of Sn. Altogether, we proved
that the following algorithm yields the lattice Sn.

Step 1. Generate the set Y of all sequences [y1, . . . , yn] of elements of P�Ln

with y1 ≤, . . . ,≤ yn−1 and i
n ≤ yi for all i = 1, . . . , n − 1.
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Step 2. Start with V = ∅ and do the following for every sequence [y1, . . . , yn−1] ∈
Y . Let J ⊆ {1, . . . , n−1} be the collection of all indices i with yi < yi+1 (where
yn := 1). Check whether

( j
n , yj) � ( j′

n , yj′) ∈
n
⋃

i=0

C( i
n ,yi)

and ( j
n , yj) ⊕ ( j′

n , yj′) ∈
n
⋃

i=0

C( i
n ,yi)

holds for all j, j′ ∈ J . Add [y1, . . . , yn−1] to V if and only if this holds.

Step 3. Order the set V obtained after completing Step 2 by

[y1, . . . , yn−1] ≤ [y′
1, . . . , y

′
n−1] ⇔ y′

i ≤ yi for i = 1, . . . , n − 1.

This results in V ∼= Sn (note that the order on V is simply the component-wise
converse order ≥).

As an example, we compute the set S4 using the above algorithm.

Step 1. The set Y consists of the following 14 sequences:

[1, 1, 1], [34 , 1, 1], [34 , 3
4 , 1], [34 , 3

4 , 3
4 ], [ 24 , 1, 1], [24 , 3

4 , 1], [24 , 3
4 , 3

4 ],

[24 , 2
4 , 1], [24 , 2

4 , 3
4 ], [ 14 , 1, 1], [14 , 3

4 , 1], [14 , 3
4 , 3

4 ], [14 , 2
4 , 1], [14 , 2

4 , 3
4 ].

Step 2. The set V of valid sequences consists of the following 7 sequences:

[1, 1, 1], [34 , 1, 1], [34 , 3
4 , 1], [24 , 1, 1], [24 , 3

4 , 1], [24 , 2
4 , 1], [14 , 2

4 , 3
4 ].

The other sequences are not valid for the following reasons.

• The sequences [ 34 , 3
4 , 3

4 ] and [24 , 3
4 , 3

4 ] are not valid because

( 3
4 , 3

4 ) � ( 3
4 , 3

4 ) = (2
4 , 2

4 ) /∈ C
(
2
4 ,

2
4 )

.

• The sequence [ 24 , 2
4 , 3

4 ] is not valid because

( 2
4 , 2

4 ) � ( 3
4 , 3

4 ) = (1
4 , 1

4 ) /∈ C
(
1
4 ,

2
4 )

.

• The sequences [ 14 , 1, 1], [14 , 3
4 , 1] and [14 , 3

4 , 3
4 ] are not valid because

( 1
4 , 1

4 ) ⊕ ( 1
4 , 1

4 ) = (2
4 , 2

4 ) /∈ C
(
2
4 ,

3
4 )

.

• The sequence [ 24 , 2
4 , 1] is not valid because

( 1
4 , 1

4 ) ⊕ ( 2
4 , 2

4 ) = (3
4 , 3

4 ) /∈ C
(
3
4 ,1)

.
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Step 3. The lattice S4 looks as follows:

[1, 1, 1]

[34 , 1, 1]

[24 , 1, 1] [34 , 3
4 , 1]

[24 , 3
4 , 1]

[24 , 2
4 , 1]

[14 , 2
4 , 3

4 ]

To obtain an optimal strong duality for PMV4, we only need to consider the
meet-irreducible elements of this lattice, i.e., we remove the relation corre-
sponding to the sequence [34 , 1, 1].
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