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Abstract. The main problem of clone theory is to describe the clone lat-
tice for a given basic set. For a two-element basic set this was resolved
by E.L. Post, but for at least three-element basic set the full structure
of the lattice is still unknown, and the complete description in general
is considered to be hopeless. Therefore, it is studied by its substruc-
tures and its approximations. One of the possible directions is to examine
k-ary parts of the clones and their mutual inclusions. In this paper we
study k-ary parts of maximal clones, for k � 2, building on the already
known results for their unary parts. It turns out that the poset of k-ary
parts of maximal clones defined by central relations contains long chains.

Mathematics Subject Classification. 08A35, 06A06.

Keywords. Maximal clones, Endomorphism monoids, Central relations.

1. Introduction and preliminaries

Throughout the paper we assume that A is a finite set and |A| � 3. Let
O

(n)
A denote the set of all n-ary operations on A (so that O

(1)
A = AA) and

let OA :=
⋃

n�1 O
(n)
A denote the set of all finitary operations on A. For

F ⊆ OA let F (n) := F ∩ O
(n)
A be the set of all n-ary operations in F. A

set C ⊆ OA of finitary operations is a clone of operations on A if it con-
tains all projection maps πn

i : An → A : (x1, . . . , xn) �→ xi and is closed
with respect to composition of functions in the following sense: whenever
g ∈ C(n) and f1, . . . , fn ∈ C(m) for some positive integers m and n then
g(f1, . . . , fn) ∈ C(m), where the composition h := g(f1, . . . , fn) is defined by
h(x1, . . . , xm) := g(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)).
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Clearly, for any family (Ci)i∈I of clones on A we have that
⋂

i∈I Ci is a
clone, too. Therefore, for any F ⊆ OA it makes sense to define Clo(F ) to be
the smallest clone that contains F.

We say that an n-ary operation f preserves an h-ary relation � if the
following holds:

⎡

⎢
⎢
⎢
⎣

a11

a21

...
ah1

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

a12

a22

...
ah2

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

a1n

a2n

...
ahn

⎤

⎥
⎥
⎥
⎦

∈ � implies

⎡

⎢
⎢
⎢
⎣

f(a11, a12, . . . , a1n)
f(a21, a22, . . . , a2n)

...
f(ah1, ah2, . . . , ahn)

⎤

⎥
⎥
⎥
⎦

∈ �.

For a set Q of relations let

Pol Q := {f ∈ OA | f preserves every � ∈ Q}.

Let Poln Q = (Pol Q) ∩ O
(n)
A . For an h-ary relation θ ⊆ Ah and a unary

operation f ∈ AA it is convenient to write

f(θ) := {(f(x1), . . . , f(xh)) | (x1, . . . , xh) ∈ θ}.

Then clearly f preserves θ if and only if f(θ) ⊆ θ. It follows that Pol1 Q is the
endomorphism monoid of the relational structure (A,Q). Therefore instead of
Pol1 Q we simply write EndQ.

If the underlying set is finite and has at least three elements, then the
lattice of clones has cardinality 2ℵ0 . However, one can show that the lattice of
clones on a finite set has a finite number of coatoms, called maximal clones, and
that every clone distinct from OA is contained in one of the maximal clones.
One of the most influential results in clone theory is the explicit characteriza-
tion of the maximal clones, obtained by I. G. Rosenberg as the culmination of
the work of many mathematicians. It is usually stated in terms of the following
six classes of finitary relations on A (the so-called Rosenberg relations).
(R1) Bounded partial orders. These are partial orders on A with a least and

a greatest element.
(R2) Nontrivial equivalence relations. These are equivalence relations on A

distinct from ΔA := {(x, x) | x ∈ A} and A2.
(R3) Permutational relations. These are relations of the form {(x, π(x)) | x ∈

A} where π is a fixpoint-free permutation of A with all cycles of the
same length p, where p is a prime.

(R4) Affine relations. For a binary operation ⊕ on A let

λ⊕ := {(x, y, u, v) ∈ A4 | x ⊕ y = u ⊕ v}.

A relation � is called affine if there is an elementary abelian p-
group (A,⊕,�, 0) on A such that � = λ⊕.

Suppose now that A is an elementary abelian p-group. Then it is
well-known that f ∈ Pol{λ⊕} if and only if

f(x1 ⊕ y1, . . . , xn ⊕ yn) = f(x1, . . . , xn) ⊕ f(y1, . . . , yn) � f(0, . . . , 0)

for all xi, yi ∈ A. In case f is unary, this condition becomes

f(x ⊕ y) = f(x) ⊕ f(y) � f(0).
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(R5) Central relations. All unary relations are central relations. For central
relations � of arity h � 2 the definition is as follows: � is said to be
totally symmetric if (x1, . . . , xh) ∈ � implies (xπ(1), . . . , xπ(h)) ∈ � for
all permutations π, and it is said to be totally reflexive if (x1, . . . , xh) ∈ �
whenever there are i 	= j such that xi = xj . An element c ∈ A is central
if (c, x2, . . . , xh) ∈ � for all x2, . . . , xh ∈ A. Finally, � 	= Ah is called
central if it is totally reflexive, totally symmetric and has a central
element. According to this, every central relation � can be written as
C� ∪ R� ∪ T�, where C� consists of all the tuples of distinct elements
containing at least one central element (the central part), R� consists
of all the tuples (x1, . . . , xh) such that there are i 	= j with xi = xj (the
reflexive part) and T� consists of all the tuples (x1, . . . , xh) such that
x1, . . . , xh are distinct non-central elements. Let Z� denote the set of all
central elements of �.

(R6) h-regular relations. Let Θ = {θ1, . . . , θm} be a family of equivalence
relations on the same set A. We say that Θ is an h-regular family if
every θi has precisely h blocks, and additionally, if Bi is an arbitrary
block of θi for i ∈ {1, . . . ,m}, then

⋂m
i=1 Bi 	= ∅.

An h-ary relation � 	= Ah is h-regular if h � 3 and there is an
h-regular family Θ such that (x1, . . . , xh) ∈ � if and only if for all θ ∈ Θ
there are distinct i, j with xiθxj . Clearly, � is completely determined
by its h-regular family Θ. Therefore, we will also denote it by RΘ.

Note that regular relations are totally reflexive and totally sym-
metric.

Theorem 1.1 (Rosenberg [7]). A clone M of operations on a finite set is max-
imal if and only if there is a relation � from one of the classes (R1)–(R6) such
that M = Pol{�}.

Table 1 summarizes all known results about the mutual containment of
unary parts of maximal clones over a finite set A with |A| � 3. The entries in
this table are to be interpreted in the following way:

• we write − if End � 	⊆ Endσ for every pair (�, σ) of distinct relations of
the indicated type;

• we write + whenever there is a complete characterization of the situation
End � ⊆ Endσ;

• we write +? if there is a partial characterization of the situation End � ⊆
Endσ.

2. Binary operations in maximal clones

The partially ordered set of unary parts of maximal clones ordered by inclusion
has a very rich structure [1,2,5]. Moreover, the main result of [4] shows that
every finite Boolean algebra is order-embeddable into the partially ordered set
of unary parts of maximal clones on a sufficiently large finite set. In this section
we would like to consider a similar problem and embark on the investigation
of the partially ordered set {Pol2 � | � is a Rosenberg relation}.
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This problem is closely related to the notion of the order of a clone. For a
finitely generated clone C, let ord(C) denote the order of C, that is, the least
positive integer k such that Clo(C(k)) = C. If C is not finitely generated we
set ord(C) = ∞. It is easy to see that if C is a maximal clone with ord(C) = 2
and D is another maximal clone then C(2) 	⊆ D(2), for otherwise we would
have C = Clo(C(2)) ⊆ Clo(D(2)) ⊆ D, which contradicts the maximality of C.

Proposition 2.1. If � and σ are distinct Rosenberg relations such that Pol2 � ⊆
Pol2 σ then both � and σ have to be central relations of arity at least 2.

Proof. It is a well-known fact (see [6]) that if |A| � 3 then ord(C) = 2 for all
maximal clones C = Pol � where � belongs to one of the classes (R2), (R3), (R4)
and (R6). Therefore, if Pol2 � ⊆ Pol2 σ for some Rosenberg relations � and σ,
then � is a bounded partial order or a central relation.

Step 1. Let � be a bounded partial order with the least element 0 and
the greatest element 1. If σ belongs to one of the classes (R1), (R2), (R3), (R4)
or if σ is a unary central relation, then End � 	⊆ Endσ (see Table 1), and hence
Pol2 � 	⊆ Pol2 σ.

Let σ be a central relation of arity k � 2 and consider the following three
binary operations on A:

f(x, y) =

⎧
⎪⎨

⎪⎩

x, if y = 1,

y, if x = 1,

0, otherwise,
g(x, y) =

⎧
⎪⎨

⎪⎩

x, if y = 0,

y, if x = 0,

1, otherwise,

and ta,b(x, y) =

{
0, if (x, y) � (a, b),
x, otherwise.

All three operations are monotonous with respect to � and f(1, x) = f(x, 1) =
g(0, x) = g(x, 0) = x. If 1 ∈ Zσ, take any (x1, x2, . . . , xk) /∈ σ and note that

( 1, x2, . . . , xk) ∈ σ
(x1, 1, . . . , 1 ) ∈ σ

f :

�→ �→

. . .

�→

(x1, x2, . . . , xk) /∈ σ.

Thus, f does not preserve σ, and Pol2 � 	⊆ Pol2 σ.

If 0 ∈ Zσ, take any (x1, x2, . . . , xk) /∈ σ and note that

( 0, x2, . . . , xk) ∈ σ
(x1, 0, . . . , 0 ) ∈ σ

g :

�→ �→

. . .

�→

(x1, x2, . . . , xk) /∈ σ.

Thus, g does not preserve σ, and Pol2 � 	⊆ Pol2 σ.

Finally, assume that 0 /∈ Zσ and 1 /∈ Zσ. Since 0 /∈ Zσ there exist
x2, . . . , xk ∈ A such that (0, x2, . . . , xk) /∈ σ. Take any c ∈ Zσ and note that
tc,c(c, c) = 0 and tc,c(xi, 1) = xi since c < 1. Therefore,
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(c, x2, . . . , xk) ∈ σ
(c, 1, . . . , 1 ) ∈ σ

tc,c :

�→ �→

. . .

�→

(0, x2, . . . , xk) /∈ σ.

Thus, tc,c does not preserve σ, and Pol2 � 	⊆ Pol2 σ.

This completes the proof that if � is a bounded partial order and σ is a
central relation then Pol2 � 	⊆ Pol2 σ.

Now, let σ = RΘ be a regular relation. From [1, Proposition 4.25] we
know that if End � ⊆ EndRΘ where � is a bounded partial order, then Θ has
to be a singleton Θ = {θ}. Let B1, . . . , Bh be the blocks of θ. One of the Bi’s
contains 0, so without loss of generality we can assume that 0 ∈ B1. If 1 is not
the only element in its block, we can choose x2 ∈ B2, . . . , xh ∈ Bh such that
1 /∈ {x2, . . . , xh}. But then

(x2, x2, x3, . . . , xh) ∈ RΘ

(x2, 1, 1, . . . , 1 ) ∈ RΘ

tx2,x2 :
�→ �→ �→

. . .

�→

(0, x2, x3, . . . , xh) /∈ RΘ,

so, Pol2 � 	⊆ Pol2 RΘ. If 1 is the only element in its block, without loss of
generality we can assume B2 = {1}. Take arbitrary x3 ∈ B3, . . . , xh ∈ Bh and
note that

(x3, 1, x3, . . . , xh) ∈ RΘ

(x3, 1, 1, . . . , 1 ) ∈ RΘ

tx3,x3 :

�→ �→ �→

. . .

�→

(0, 1, x3, . . . , xh) /∈ RΘ.

Therefore, Pol2 � 	⊆ Pol2 RΘ. This completes the proof that � cannot be a
bounded partial order if Pol2 � ⊆ Pol2 σ.

Step 2. Let � be a central relation. If σ belongs to one of the classes (R1),
(R3), (R4) or if σ is a unary central relation, then End � 	⊆ Endσ (see Table 1),
and hence Pol2 � 	⊆ Pol2 σ.

Suppose σ is an equivalence relation. According to [5, Proposition 4.3],
from End � ⊆ Endσ it follows that ar(�) ∈ {1, 2}, T� = ∅ and A/σ =
{Z�, {a2}, . . . , {at}}, i.e. Z� is the only nontrivial block of σ. Since σ is a non-
trivial equivalence relation we have that |Z�| � 2 and t � 2. Take c1, c2 ∈ Z�

so that c1 	= c2 and define ∗ : A2 → A by c1 ∗ y = c1 and x ∗ y = y for
x 	= c1. Clearly, ∗ ∈ Pol2 �. To see that ∗ /∈ Pol2 σ, note that (c1, c2) ∈ σ and
(a2, a2) ∈ σ but (c1 ∗ a2, c2 ∗ a2) = (c1, a2) /∈ σ. Therefore, Pol2 � 	⊆ Pol2 σ.

Suppose σ is a regular relation defined by an h-regular family Θ. Ac-
cording to [5, Propositions 4.6 and 4.7] from End � ⊆ Endσ it follows that
Θ = {θ}, A/θ = {B, {b2}, . . . , {bh}}, |B| � 2 and Z� ⊆ B. Define ∗ : A2 → A
by x ∗ y = y if y ∈ Z� and x ∗ y = x otherwise. Then clearly ∗ ∈ Pol2 �. To see
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that ∗ /∈ Pol2 σ take arbitrary c ∈ Z� and note that

(b2, b2, b3, . . . , bh) ∈ σ
( c, b2, b2, . . . , b2) ∈ σ

∗ :

�→ �→ �→

. . .

�→

( c, b2, b3, . . . , bh) /∈ σ.

If � is a unary central relation and σ is an at least binary central relation,
say of arity k, then according to [5, Proposition 4.1], Zσ = � and Tσ = ∅. Define
∗ : A2 → A by x ∗ y = y if x ∈ � and x ∗ y = x otherwise. Clearly, ∗ ∈ Pol2 �.
To see that ∗ /∈ Pol2 σ take any c ∈ � = Zσ and any (x1, x2, . . . , xk) /∈ σ. Then

( c, x2, . . . , xk) ∈ σ
(x1, c, . . . , c ) ∈ σ

∗ :

�→ �→

. . .

�→

(x1, x2, . . . , xk) /∈ σ.

Therefore, if Pol2 � ⊆ Pol2 σ then both � and σ have to be at least binary
central relations. �

At this point it is clear that the only nontrivial containments among k-
ary parts of maximal clones with k � 2 can occur for central relations of arity
at least 2. This case is studied in detail in the next section.

3. Rosenberg clones defined by central relations

To untangle the situation concerning the k-ary parts of Rosenberg clones of
central relations we introduce another set of strategies. Let � be an n-ary
relation on A and let ā = (a1, . . . , am) ∈ Am. Let us define the type of ā with
respect to � as follows:

type�(ā) = type�(a1, . . . , am) = (τ1(ā), τ2(ā))

where

τ1(ā) = {(i1, . . . , in) | i1 < · · · < in ∈ {1, . . . , m} and (ai1 , . . . , ain) ∈ �}, and

τ2(ā) = {(i, j) | i < j ∈ {1, . . . , m}, and ai = aj}.

For ā1, ā2 ∈ Am define

type�(ā1) ∩ type�(ā2) := (τ1(ā1) ∩ τ1(ā2), τ2(ā1) ∩ τ2(ā2)),

and type�(ā) ⊆ type�(b̄) if τi(ā) ⊆ τi(b̄) for i = 1, 2.

Proposition 3.1. Let � be an n-ary central relation on A and let σ be any m-ary
relation on the same set A. Then Polk � ⊆ Polk σ if and only if the following
holds for every ā1, . . . , āk ∈ σ and every b̄ ∈ Am:

type�(ā1) ∩ type�(ā2) ∩ · · · ∩ type�(āk) ⊆ type�(b̄) ⇒ b̄ ∈ σ.
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Proof. (⇐) Assume that for every ā1, . . . , āk ∈ σ and every b̄ ∈ Am we have
that type�(ā1) ∩ type�(ā2) ∩ · · · ∩ type�(āk) ⊆ type�(b̄) ⇒ b̄ ∈ σ.

Take f ∈ Polk � and ā1, . . . , āk ∈ σ, say,

ā1 ā2 · · · āk

= = =

a1
1 a2

1 · · · ak
1

a1
2 a2

2 · · · ak
2

...
...

. . .
...

a1
m a2

m · · · ak
m .

We define b̄ in the following way: b̄ = f(ā1, . . . , āk), i.e. bi = f(a1
i , . . . , a

k
i ),

i ∈ {1, . . . , m}. We will show that b̄ ∈ σ. According to the assumption, it
suffices to show that

type�(ā1) ∩ type�(ā2) ∩ · · · ∩ type�(āk) ⊆ type�(b̄)

or, equivalently,

τ1(ā1) ∩ τ1(ā2) ∩ · · · ∩ τ1(āk) ⊆ τ1(b̄)
and τ2(ā1) ∩ τ2(ā2) ∩ · · · ∩ τ2(āk) ⊆ τ2(b̄).

For the first inclusion take any (i1, . . . , in) ∈ τ1(ā1)∩τ1(ā2)∩· · ·∩τ1(āk).
Then (a1

i1
, . . . , a1

in
), . . . , (ak

i1
, . . . , ak

in
) ∈ �. Since f ∈ Polk � it follows that

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f(a1
i1

, a2
i1

, . . . , ak
i1

)

f(a1
i2

, a2
i2

, . . . , ak
i2

)
...

f(a1
in

, a2
in

, . . . , ak
in

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ �,

i.e., (bi1 , bi2 , . . . , bin) ∈ �, so (i1, i2, . . . , in) ∈ τ1(b̄).
For the second inclusion let (i, j) ∈ τ2(ā1) ∩ τ2(ā2) ∩ · · · ∩ τ2(āk). Then

al
i = al

j , l = 1, . . . , k. It follows that (i, j) ∈ τ2(b̄) since

bi = f(a1
i , . . . , a

k
i ) = f(a1

j , . . . , a
k
j ) = bj .

Putting it all together, b̄ ∈ σ and, therefore, f ∈ Polk σ.
(⇒) Assume Polk � ⊆ Polk σ. Take ā1, . . . , āk ∈ σ and b̄ ∈ Am, say,

ā1 ā2 · · · āk b̄

= = = =

a1
1 a2

1 · · · ak
1 b1

a1
2 a2

2 · · · ak
2 b2

...
...

. . .
... and

...
a1

m a2
m · · · ak

m bm
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such that

type�(ā1) ∩ type�(ā2) ∩ · · · ∩ type�(āk) ⊆ type�(b̄).

We shall now construct an f ∈ Polk σ such that f(ā1, . . . , āk) = b̄, in the
following way:

f(x1, . . . , xk) =

{
bi, if (x1, . . . , xk) = (a1

i , . . . , a
k
i ), i = 1, . . . , m

c, otherwise,

where c ∈ Z�. Clearly, f(ā1, . . . , āk) = b̄, so it is left to show that f is well
defined and that f ∈ Polk � (and, therefore, f ∈ Polk σ).

To see that f is well defined, suppose that (a1
i , . . . , a

k
i ) = (a1

j , . . . , a
k
j ) for

some i 	= j, then (i, j) ∈ τ2(ā1) ∩ τ2(ā2) ∩ · · · ∩ τ2(āk) ⊆ τ2(b̄), so bi = bj , and
f is indeed well defined.

To see that f ∈ Polk � let x̄1, . . . , x̄k ∈ �, where x̄i = (xi
1, . . . , x

i
n), i =

1, . . . , k. Then

f(x̄1, . . . , x̄k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f(x1
1, x

2
1, . . . , x

k
1)

f(x1
2, x

2
2, . . . , x

k
2)

...

f(x1
n, x2

n, . . . , xk
n)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

If there is (x1
i , . . . , x

k
i ) 	= (a1

j , . . . , a
k
j ), for some j ∈ {1, . . . , m}, then we have

that f(x1
i , . . . , x

k
i ) = c, so f(x̄1, . . . , x̄k) is a tuple that contains a central

element, and, therefore, it is in �.
Otherwise, for each i ∈ {1, . . . , n} (x1

i , . . . , x
k
i ) = (a1

ji
, . . . , ak

ji
), for some

ji ∈ {1, . . . , m}.
If (x1

i1
, . . . , xk

i1
) = (x1

i2
, . . . , xk

i2
) = (a1

j , . . . , a
n
j ), where i1, i2 ∈ {1, . . . , n}

and i1 	= i2, then f(x̄1, . . . , x̄k) is a reflexive tuple, so it belongs to �.
If that fails to be true then

f(x̄1, . . . , x̄k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f(a1
j1

, a2
j1

, . . . , ak
j1

)

f(a1
j2

, a2
j2

, . . . , ak
j2

)
...

f(a1
jn

, a2
jn

, . . . , ak
jn

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

bj1

bj2

...
bjn

⎤

⎥
⎥
⎥
⎦

.

Since x̄i = (ai
j1

, . . . , ai
jn

) and x̄i ∈ �, for 1 � i � n, it follows that

(j1, . . . , jn) ∈ τ1(ā1) ∩ τ1(ā2) ∩ · · · ∩ τ1(āk),

so (j1, . . . , jn) ∈ τ1(b̄), so (bj1 , . . . , bjn) ∈ �.
Therefore, f ∈ Polk � ⊆ Polk σ, so b̄ ∈ σ. �

Lemma 3.2. Let � and σ be two distinct central relations. If Polk � ⊆ Polk σ
and T� = ∅, then ar(�) < ar(σ), Z� = Zσ and Tσ = ∅.

Proof. If Polk � ⊆ Polk σ, then, clearly, End� ⊆ Endσ and the claim follows
from the corresponding lemma for endomorphisms, see [5, Proposition 4.1]. �
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Theorem 3.3. Let � and σ be two distinct central relations on A such that T� =
∅. Then Polk � ⊆ Polk σ for k � 2 if and only if 2k � ar(�) < ar(σ) � |A| − 1,
Z� = Zσ, and Tσ = ∅.

Proof. Let � ⊆ An and σ ⊆ Am be distinct central relations.
(⇐) Assume that Z� = Zσ, and T� = Tσ = ∅, 2k � n < m. We will show

that Polk � ⊆ Polk σ using the criterion from Proposition 3.1.
Let ā1, ā2, . . . , āk ∈ σ, say,

ā1 ā2 · · · āk
= = =

a1
1 a2

1 · · · ak
1

a1
2 a2

2 · · · ak
2

...
...

. . .
...

a1
m a2

m · · · ak
m .

Let b̄ ∈ Am such that type�(ā1) ∩ type�(ā2) ∩ · · · ∩ type�(āk) ⊆ type�(b̄).
According to Proposition 3.1 we have to show that b̄ ∈ σ. Note that if τ2(b̄) 	= ∅,
then b̄ ∈ σ, and we are done. So suppose that τ2(b̄) = ∅. Let J := {j ∈
{1, . . . , k} | āj ∈ Cσ}, L := {l ∈ {1, . . . , k} | āl ∈ Rσ}. For each j ∈ J,
choose some index rj ∈ {1, . . . , m}, such that aj

rj
∈ Zσ. Furthermore, for

each l ∈ L choose indices tl < sl ∈ {1, . . . , m}, such that al
tl

= al
sl

. Let
P := {rj | j ∈ J}∪{tl | l ∈ L}∪{sl | l ∈ L}. Note that |P | � 2k. Hence, we can
find indices 1 � i1 < i2 < · · · < in � m such that P ⊆ {i1, . . . , in}. It follows
that (i1, . . . , in) ∈ τ1(ā1) ∩ τ1(ā2) ∩ · · · ∩ τ1(āk) ⊆ τ1(b̄), so (bi1 , . . . , bin) ∈ �.
Since T� = ∅, it follows that (bi1 , . . . , bin) ∈ C�. So for some j ∈ {1, . . . , n} we
have bij ∈ Z� = Zσ. But this implies b̄ ∈ Cσ ⊆ σ.

(⇒) By Lemma 3.2, we obtain immediately that Tσ = ∅, Z� = Zσ and
n < m � |A| − 1, so it is left to show that 2k � n. Suppose that n < 2k. We
will show that then there exist ā1, . . . , āk ∈ σ such that type�(ā1)∩type�(ā2)∩
· · · ∩ type�(āk) = (∅, ∅). If we succeed in this endeavor, then Proposition 3.1
implies σ = Am, a contradiction.

It remains to construct ā1, . . . , āk. Let b̄ ∈ Am be such that type�(b̄) =
(∅, ∅). As T� = ∅ and Z� = Zσ, any element from Am \ σ will do.

The m-tuples ā1, ā2, . . . , ā� n
2 �, ā�n

2 �+1 are constructed using elements from
{b1, . . . , bm} as entries. In case that n is odd or m > n + 1, we define

āi := (. . . , bi
↑

ai
2i−1

, bi
↑

ai
2i

, . . .), i = 1, 2, . . . ,

⌊
n

2

⌋

+ 1, (∗)

where all other entries are distinct and from the set {b1, . . . , bm} \ {bi}. Oth-
erwise, if n is even and m = n + 1, then, for all i ∈ {1, . . . , n

2 } we define āi as
above in (∗). Moreover, we define

ān
2 +1 := (b1, . . . , bm−1, c),
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where c ∈ Zσ(= Z�). Note that since n < 2k, it follows that �n
2 � + 1 � k. If

�n
2 �+1 < k the remaining tuples āi, for �n

2 �+2 � i � k we choose arbitrarily.
Observe that then

�n
2 �+1⋂

i=1

type�(āi) ⊇
k⋂

i=1

type�(āi).

Let us compute
⋂�n

2 �+1
i=1 type�(āi).

It is clear that

�n
2 �+1⋂

i=1

τ2(āi) = ∅.

We will show that the same holds for
⋂�n

2 �+1
i=1 τ1(āi).

Let us first treat the case when n is odd or m > n+1. Suppose (j1, . . . , jn)
∈ ⋂�n

2 �+1
i=1 τ1(āi). Then since (j1, . . . , jn) ∈ τ1(āi), for each i ∈ {1, . . . , �n

2 �+1}
we have that {2i − 1, 2i} ⊆ {j1, . . . , jn}. It follows that |{j1, . . . , jn}| � 2 ·
(�n

2 � + 1) > n, a contradiction.
Hence,

�n
2 �+1⋂

i=1

type�(āi) = (∅, ∅). (∗∗)

In case that n is even and m = n + 1, we argue as follows:
Note that every tuple from τ1(ān

2 +1) contains m as an entry. Suppose that
⋂n

2 +1
i=1 τ1(āi) 	= ∅. Then it contains a tuple (i1, . . . , in−1,m), where i1 < · · · <

in−1 < m. Since every tuple from τ1(āi), i = 1, . . . , n
2 has to contain entries

2i − 1 and 2i, it follows that {1, . . . , n} =
⋃n

2
i=1{2i − 1, 2i} ⊆ {i1, . . . , in−1}—a

contradiction. Hence, (∗∗) holds in this case, too.
Altogether we proved

k⋂

i=1

type�(āi) = (∅, ∅).

It follows that σ = Am, which is a contradiction. �

Corollary 3.4. For each k � 2 the height of the poset of k-ary parts of maximal
clones on a set A with |A| � 2k + 1 is at least |A| − 2k.

Proof. Fix a c ∈ A and consider a sequence of central relations �i, i ∈
{0, . . . , |A| − 2k − 1} such that ar(�i) = 2k + i, Z�i

= {c} and T�i
= ∅.

Then, by Theorem 3.3 we have that

Polk �0 ⊆ Polk �1 ⊂ · · · ⊂ Polk �|A|−2k−1.

This concludes the proof. �
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