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Some further results on pointfree
convex geometry

Changchun Xia

Abstract. Inspired by locale theory, pointfree convex geometry was first
proposed and studied by Yoshihiro Maruyama. In this paper, we shall con-
tinue to his work and investigate the related topics on pointfree convex
spaces. Concretely, the following results are obtained: (1) A Hofmann–
Lawson-like duality for pointfree convex spaces is established. (2) The
M-injective objects in the category of S0-convex spaces are proved pre-
cisely to be sober convex spaces, where M is the class of strict maps
of convex spaces; (3) A convex space X is sober iff there never exists a
nontrivial identical embedding i : X ↪→ Y such that its dualization is an
isomorphism, and a convex space X is SD iff there never exists a nontrivial
identical embedding k : Y ↪→ X such that its dualization is an isomor-
phism. (4) A dual adjunction between the category CLatD of continuous
lattices with continuous D-homomorphisms and the category CSD of SD-
convex spaces with CP -maps is constructed, which can further induce a
dual equivalence between CSD and a subcategory of CLatD; (5) The
relationship between the quotients of a continuous lattice L and the con-
vex subspaces of cpt(L) is investigated and the collection Alg(Q(L)) of
all algebraic quotients of L is proved to be an algebraic join-sub-complete
lattice of Q(L) of all quotients of L, where cpt(L) denote the set of non-
bottom compact elements of L. Furthermore, it is shown that Alg(Q(L))
is isomorphic to the collection Sob(P(cpt(L))) of all sober convex sub-
spaces of cpt(L); (6) Several necessary and sufficient conditions for all
convex subspaces of cpt(L) to be sober are presented.
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1. Introduction

Locale theory can be considered as an algebraic theory of topological structures
which does not presuppose the notion of a point and is primarily based on
that of a region, since locale theory studies the lattice structure of open sets
in an algebraic form, i.e., a “space” in locale theory is in fact a frame (for
locale theory, see [23,28,34,35]). Usually, localic versions of theorems in the
ordinary topology does not need non-constructive principles such as the law of
exclude middle or the axiom of choice, and so locale theory can also be seen as
constructive topology (see [2,8,10,9]). The following results are fundamental
for locale theory, which clarify the categorical relationships between pointfree
spaces and pointsets spaces.

• There is a dual adjunction between the category of frames with frame
homomorphisms and the category of topological spaces with continuous maps
(see [14]);

• Isbell duality: there is a dual equivalence between the category of spatial
frames with frame homomorphisms and the category of sober spaces with
continuous maps (see [7]);

• Hofmann–Lawson duality: there is a dual equivalence between the cat-
egory of distributive continuous lattices (or continuous frames) with frame
homomorphisms and the category of locally compact sober spaces with con-
tinuous maps (see [15]);

• There is a dual equivalence between the category of m-spatial frames
with m-homomorphisms and the category of T1-spaces with continuous maps
(see [27]);

• There is a dual adjunction between the category of frames with D-
homomorphisms and the category of TD-spaces with continuous maps (see
[6]);

• There is a dual equivalence between the category of TD-spatial frames
with D-homomorphisms and the category of TD-spaces with continuous maps
(see [6]).

Inspired by locale theory, pointfree convex geometry was first proposed
and studied by Yoshihiro Maruyama in [26]. Similar to the cases of locale
theory, pointfree convex geometry can also be viewed as an algebraic theory
of construes which does not presuppose the notion of a point and is primarily
based on that of a region. As a matter of fact, the theory pointfree convex
geometry studies the lattice structure of convex sets in an algebraic form,
i.e., a “convex space” in pointfree convex geometry is a continuous lattice.
In [26] and [30], a categorical equivalence between sober convex spaces and
algebraic lattices was established by considering some kinds of meet-complete
filters and non-bottom compact elements as points respectively. Besides, the
relationship between pointfree convex geometry and Hilbert’s philosophy [10,
12] was discussed via this dual adjunction. The following results for pointfree
convex geometry theory are fundamental, which investigate the categorical
relationships between pointfree spaces and pointsets spaces.
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• There is a dual adjunction between the category of continuous lattices
with continuous homomorphisms and the category of convex spaces with CP -
maps (see [26,30]);

• There is a dual equivalence between the category of algebraic lattices
with continuous homomorphisms and the category of sober spaces with CP -
maps (see [26,30]);

• There is a dual equivalence between the category of m-spatial continu-
ous lattices with m-homomorphisms and the category of m-sober spaces (also
called S1-convex spaces in [33]) with CP -maps (see [26]).

The very famous theorem that a T0-space is injective iff it is a T0-space
of “Scott open sets” in a continuous lattice was first proved by Scott in his
paper [29] on the mathematical models for the Church-Curry λ-calculus, which
is one of the most important results in domain theory. Based on this fact, a
categorical isomorphism between injective T0-spaces and continuous lattices
was established. After about 10 years later, Jankowski [18,22] showed that a
closure space is an absolute extensor for the category of all closure spaces which
satisfy the compact theorem iff a contraction of X is a closure space of all filters
with the empty set in a frame. Note that a closure space which satisfies the
compact theorem is also called a convex space in [33] and an absolute extensor
is in fact an injective object in the sense of Scott’s theorem. Subsequently,
Jankowski gave a uniform approach to the problem of the characterization
of absolute extensors for the categories of T0-spaces and convex spaces. Some
applications of the theory of closure spaces to logic can be found in [1,19,20,21].
As we know, a frame with the filter convex structure is a sober convex space,
which indicates that every injective object in the category of S0-convex spaces
is sober. Then one may ask: for which class of morphisms M including all
convex-homeomorphisms and is contained in the class of monomorphisms are
the M-injective objects in CS0 exactly sober convex spaces. In Section 3, we
shall give a complete answer.

TD-space was originally introduced by Aull and Thron in [4], which is
strictly between T0 and T1. In [13], Drake gave a necessary and sufficient con-
dition of the lattice-equivalence [32] of topological spaces, that is, a topological
space X has the property that for any T0 space Y the lattices Γ(X) and Γ(Y )
of all closed sets of X and Y are isomorphic implies that X is homeomorphic
Y iff X is sober and TD. On this basis, a dual adjunction between the category
of TD-spaces and a suitable subcategory FrmD of the category Frm of frames
was established. Furthermore, this adjunction can induce a categorical equiv-
alence between the category of TD-spaces and the subcategory of FrmD given
by TD-spatial frames. In [24], the properties of TD-spaces and spatial sublo-
cales were investigated. Motivated by the topological separation axiom TD and
its importance in classical and point-free spaces, SD-convex space was firstly
introduced and studied by Shen et al. in [30]. Just as in the case of topological
spaces, it was surprisingly shown in [30] that a convex space X has the prop-
erty that for any S0-convex space Y , C(X) and C(Y ) of all convex subsets of X
and Y are isomorphic implies X and Y are homeomorphic iff X is sober and
SD. However, a lot of important results mentioned above about TD-spaces are
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still unknown for the case of SD-convex spaces. Also, it should be recognized
that the importance of SD is in the rank of that of sobriety. As we will see in
this paper, these two properties are closely related. For example, in Theorem
4.9 of Section 4, we will provide a comparison between the SD-axiom and so-
briety in classic convex theory showing they may be viewed as mirror images
of each other or even dual to each other in certain sense. And in Theorem 6.11
of Section 6, we will present the close connection between the SD-axiom and
sobriety in the case of pointfree convex theory. Then it is natural to consider
whether there exists a similar categorical framework for SD-convex spaces as
the classical duality between convex spaces and continuous lattices in [26] and
[30]. In other words, whether the Banaschewski–Pultr-like duality in convex
theory exists? If so, we will obtain that the “SD-convex space” in pointfree
convex geometry is also a continuous lattice and we can then consider the
SD-axiom as a bridge connecting the related properties between classical or
pointfree convex theory and domain theory. All in all, comparing with the fun-
damental dualities for locale theory above, three results for pointfree convex
geometry are still unknown and we will devote to studying them in Section 3
and Section 5.

As was seen in [17,16], kernel operators and quotients also play key roles
in pointfree convex geometry just as the roles of nuclei and sublocales in locale
theory. The relationship between subspaces and sublocales was investigated
in [28,31], by exploiting the categorical equivalence between spatial frames
and sober spaces. Concretely, for a frame L, it was proved that the collection
sp(S(L)) of all spatial sublocales of L is a sublocale of the coframe S(L) con-
sisting of all sublocales of L, and sp(S(L)) is isomorphic to the collection of all
the sober subspaces of the sober space pt(L). Furthermore, the questions that
when are all sublocales of L spatial and when are all the subspaces of pt(L)
sober were explored and related necessary and sufficient conditions were given.
In [16], the relationship between continuous kernel operators and quotients of
continuous lattices was investigated. Concretely, it was shown that the con-
tinuous kernel operators and quotients on a continuous lattice are one-to-one
corresponding and the question that for which a continuous lattice L is the
complete lattice Ker(L) of continuous kernel operators on L itself a continu-
ous lattice was solved. Also, several necessary and sufficient conditions for all
quotients of a continuous lattice L to be algebraic were given in [16]. How-
ever, the question that when are all convex subspace of cpt(L) sober is still
unknown. In Section 6, we shall give a positive answer for this question and
further show that the collection Alg(Q(L)) of all algebraic quotients of L is
an algebraic join-sub-complete lattice of Q(L).

2. Preliminaries

In this section, we shall recall some basic facts about order theory and convex
spaces. The readers can refer to [3] for category theory.

For a subset Y of a poset (X,≤), we write ↓ Y = {x ∈ X : ∃y ∈ Y s.t. x ≤
y}. A subset Y is a lower set of X if Y =↓ Y . When Y = {y}, we write ↓ {y}
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simply as ↓ y and we call it a principal ideal of X. A subset Y of a poset
(X,≤) is Scott closed if it satisfies (1) X =↓ X and (2) for any directed subset
D, D ⊆ X implies

∨
D ∈ X whenever

∨
D exists. The complements of Scott

closed sets are called Scott open sets, such subsets of a poset X form a topology
on X, which is the well-known Scott topology. A map f : X −→ Y between
posets is called Scott continuous, if it is continuous with respect to the Scott
topologies. One can check that a map f : X −→ Y between posets is Scott
continuous iff it preserves existing suprema of directed sets. For a complete
lattice L, the bottom element and the top element of L are denoted ⊥L and
	L, respectively. We say that x is way below y in L, in symbol x 
 y, iff for
all directed subsets D of L, the relation y ≤ supD always implies x ∈↓ D. An
element satisfying x 
 x is said to be compact. Let K(L) denote the set of all
compact elements of L. A complete lattice L is called continuous if for every
x ∈ L, x =

∨ ⇓ x, where ⇓ x = {y ∈ L | y 
 x}. A complete lattice L is
called algebraic if for every x ∈ L, x =

∨
(↓ x ∩ K(L)). We say that x is wedge

below y in L, in symbol x � y, iff for all subsets A of L, the relation y ≤ supA
always implies x ∈↓ A. An element satisfying x � x is said to be supercompact.
A subset P of a poset X is called join-dense, if for any x ∈ X there exists a
subset B of P such that x =

∨
B. For a poset X, we always write F ⊆ω X

to denote F is a non-empty finite subset of X. A frame is a complete lattice
satisfying the distributive law of binary meets over arbitrary joins.

In [26], the author introduced the notion of convexity algebra as a point-
free convex space. A convexity algebra is a poset L which satisfies the following
conditions:
(1) L has arbitrary meets;
(2) if {xi ∈ L | i ∈ I} is totally ordered in L, then {xi ∈ L | i ∈ I} has a join

in L;
(3) for any doubly indexed family {xi,j | i ∈ I, j ∈ Ji}, if {xi,j | j ∈ Ji}

is totally ordered for every i ∈ I and if
{∧

i∈I xi,f(i) | f ∈ F
}

is totally
ordered, then

∧

i∈I

∨

j∈Ji

xi,j =
∨

f∈F

∧

i∈I

xi,f(i),

where F =
∏

i∈I Ji

(
=

{
f : I −→ ⋃

i∈I Ji | ∀i ∈ I, f(i) ∈ Ji

})
.

As a matter of fact, one can see that the notions of continuous lattice
and convexity algebra are the same concepts (see [25] or [26]).

Let f : P −→ Q and g : Q −→ P be two monotone maps between posets.
Then f is called a left adjoint of g (g is an right adjoint of f) if f(x) ≤ y ⇔ x ≤
g(y) holds for all x ∈ P and y ∈ Q. Then (f, g) is an adjunction iff f ◦ g ≤ idQ

and g ◦ f ≥ idP . If P and Q are complete lattices, then f has a right adjoint
iff f preserves arbitrary joins and f has a left adjoint iff f preserves arbitrary
meets. (see [11,14])

Definition 2.1 ([11,14]). Let L be a complete lattice. A kernel operator on L
is a map k : L −→ L satisfying the following conditions:
(1) k is monotone, i.e. x ≤ y implies k(x) ≤ k(y) for any x ∈ L;
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(2) k is a contraction, i.e. k(x) ≤ x for any x ∈ L;
(3) k is idempotent, i.e. k ◦ k = k.
We call a kernel operator k continuous if k is also Scott continuous.

Definition 2.2 ([16]). A subset Q of a continuous lattice L is called a quotient
of L, if it satisfies the following conditions:
(1) Q is closed under arbitrary joins, that is, for any M ⊆ Q,

∨
M ∈ Q.

(2) x 
Q y implies x 
L y for any x, y ∈ Q.

Lemma 2.3 ([11,14]). Let L be a continuous lattice and k be a kernel operator
on L. Then the following conditions are equivalent:
(1) k(L) is a continuous lattice and x 
k(L) y iff x 
L y for any x, y ∈ k(L).
(2) k is continuous.

Let Ker(L) denote the set of all continuous kernel operators on L and
Q(L) denote the set of all quotients of L. It can be checked that K(Q) =
K(L) ∩ Q for any Q ∈ Q(L) and the image k(L) of a kernel operator k is a
complete lattice in its own right with supk(L) X = supL X for any X ⊆ k(L).
Then by Lemma 2.3, we have that k(L) ∈ Q(L) if k ∈ Ker(L). For any
Q ∈ Q(L), one can check that the map k : L −→ L defined by k(x) =⇓ x ∩ Q
is a continuous kernel operator. Furthermore, it follows that Ker(L) and Q(L)
are one-to-one corresponding.

Definition 2.4 ([33]). Let X be a set. A subfamily C of 2X is called a convex
structure on X, if it satisfies the following conditions:
(1) ∅,X ∈ C;
(2) For any {Ai}i∈I ⊆ C,

⋂
i∈I Ai ∈ C;

(3) For any directed family {Di}i∈I ⊆ C,
⋃

i∈I Di ∈ C.

We call the pair (X,C), or simply X, a convex space, and every element
in C a convex set. We shall always denote by C(X) the set of all convex sets of
X.

Let (X,C) be a convex space. For any subset A of X, the hull coX(A) of
A is defined as

coX(A) =
⋂

{B ∈ C(X) | A ⊆ B}
The operator coX is called the hull on X. It is obvious that every subset
A of X is non-empty iff coX(A) is non-empty. A non-empty convex set is
called a polytope if it is the hull of a finite subset of X. The collection of all
the polytopes of X is denoted by Po(X). For convenience, we always write
coX(x) for coX({x}) for any x ∈ X. One can easily check that coX(A) =⋃

F⊆ωA coX(F ) for any A ⊆ X. For a subset Y of X, it can be verified that
the family C(Y ) = {C ∩ Y | C ∈ C(X)} is a convex structure on Y . Then
(Y,C(Y )) is called a convex subspace of X. A convex space X is called S0, if
coX(x) = coX(y) implies x = y for any x, y ∈ X. A convex space X is called
S1, if all singlelons in X are convex.

Let f : X −→ Y be a map between convex spaces. Then f is called
convexity-preserving (CP for short), if for any C ∈ C(Y ), f−1(C) ∈ C(X) and
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f is called convex-to-convex (CC for short), if for any C ∈ C(X), f(C) ∈ C(Y ).
Furthermore, f is called a convex-embedding if f is injective, CP and CC
from X to the convex subspace f(X) of Y . A convex-embedding f is called a
convex-homeomorphism if f is also surjective. We say that two convex space
X and Y are convex-homeomorphic if there exists a convex-homeomorphism
between X and Y , denoted by X ∼= Y . One can easily check that f is CP iff
f(coX(A)) ⊆ coY (f(A))) for any A ⊆ X iff f(coX(F )) ⊆ coY (f(F )) for any
F ⊆ω X.

Definition 2.5 ([26,30]). A convex space X is called sober, if every polytope is
the hull of a unique singleton.

Definition 2.6 ([30]). A sobrification of a convex space X is a sober convex
space Y together with a CP map ηX : X −→ Y , such that for any CP map
f : X −→ Z into a sober convex space Z, there exists a unique CP map
f̂ : Y −→ Z satisfying f = f̂ ◦ ηX .

Theorem 2.7 ([30]). For a convex space X, the space cpt(C(X)) with the map
ηX : X −→ cpt(C(X)) defined by ηX(x) = coX(x) is a sobrification of X.

Lemma 2.8 ([30]). The sobrification of a convex space is unique up to convex-
homeomorphism.

Let CS, CS0 and Sob denote the categories of convex spaces, S0-convex
spaces and sober spaces with CP -maps, respectively.

For a complete lattice L, let cpt(L) be the set of all non-bottom compact
elements of L and C(cpt(L)) = {Ka | Ka =↓a∩cpt(L), a ∈ L}. It was shown in
[33] that (cpt(L),C) is a convex space. It should be noted that the requirement
“⊥L /∈ cpt(L)” is needed, because only in this way can we guarantee that
∅ = K⊥L

is convex in cpt(L).

Definition 2.9 ([30]). A convex space X is called SD, if for every x ∈ X,
coX(x)\{x} is convex.

In CS, the relationships among sober, S0, S1 and SD are depicted as in
Figure 1

The implications in Figure 1 except SD � S1 were given in [30] and we
shall give an explanation as below.

Figure 1. An illustration of the relationships
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SD � S1: Let X = {x, y} and C(X) = {∅, {x},X}. It is clear that (X,C)
is a convex space. Since coX(x) = {x} and coX(y) = X, it follows that X is
SD, but not S1.

In the following, we gives two typical examples of SD-convex spaces.

Example 2.10. (1) It is readily verified that every poset P endowed with the
collection of all the lower subsets of P is an SD-convex space, which is called
the Alexandroff convex space on P .

(2) Every finite T0-topological space is an SD-convex space. Indeed, one
can easily see that the finite convex spaces are exactly the finite closure spaces.
Then the result follows by the fact in [4] that every finite T0-topological space
is TD.

Let CLat denote the category of continuous lattices and continuous homo-
morphisms, and AgLat (DAgLat) denote the full subcategory of CLat consist-
ing of algebraic lattices (distributive algebraic lattices). In [26] and [30], it was
proved that the contravariant functor C : CS −→ CLat is left adjoint to the con-
travariant functor cpt : CLat −→ CS, where C is defined by mapping every con-
vex space X to C(X) and every CP map f : X −→ Y to f−1 : C(Y ) −→ C(X),
and cpt is defined by mapping every continuous lattice L to cpt(L), and every
continuous homomorphism g : M −→ L to the restriction of the left adjoint
of g to cpt(L) −→ cpt(M). Furthermore, this adjunction can induce an dual
equivalence between Sob and AgLat. More specifically, let us recall the follow-
ing lemma (see [26,30]).

Lemma 2.11. (1) Let L be a continuous lattice. Then cpt(L) is sober. Fur-
thermore, L is algebraic iff the map δL : L −→ C(cpt(L)), defined by
δL(a) = Ka, is an order isomorphism.

(2) Let X be a convex space. Then C(X) is an algebraic lattice. Furthermore,
X is sober iff the map ηX : X −→cpt(C(X)), defined by ηX(x) = coX(x),
is a convex-homeomorphism.

3. Stable convex spaces and sober convex spaces

Let X be a convex space. The specialization preorder ≤ on X is defined by
x ≤ y iff x ∈ coX(y), or alternatively x ≤ y iff y ∈ C implies x ∈ C for all
C ∈ C(X). The specialization preorder is a partial order iff X is an S0-convex
space. For an S0-convex space X, one can easily verify that every convex set
in C(X) is always a lower subset of X with respect to the specialization order.
For an S1-convex space X, it is obvious that the specialization order reduces
to the trivial partial order.

A convex space X is called stable, if for any coX(F ), coX(G) ∈ Po(X)
with x ∈ coX(F )∩coX(G), there exists a non-empty finite subset H of ↓F∩ ↓G
such that x ∈ coX(H), where ↓F and ↓G are lower subsets of X with respect
to the specialization preorder.

Lemma 3.1. Let X be a stable convex space. Then C(X) is a distributive alge-
braic lattice under the inclusion order.
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Proof. It is obvious that C(X) is an algebraic lattice. For the distributivity,
we only need to show that A ∩ ∨

i∈I Bi ⊆ ∨
i∈I(A ∩ Bi) for any A ∈ C(X)

and {Bi}i∈I ⊆ C(X), because the reverse inclusion is trivial. For any x ∈ A ∩∨
i∈I Bi, there exist F ⊆ω A and G ⊆ω

⋃
i∈I Bi such that x ∈ coX(F )∩coX(G)

and so there exists a non-empty finite subset H of ↓ F∩ ↓ G such that x ∈
coX(H). Since H ⊆ω↓ F∩ ↓ G ⊆ ⋃

i∈I(A ∩ Bi) and x ∈ coX(H), we have that
x ∈ ∨

i∈I(A ∩ Bi), which implies that A ∩ ∨
i∈I Bi ⊆ ∨

i∈I(A ∩ Bi). �

The following theorem allows us to represent every distributive algebraic
lattice in the form C(X) for some stable sober convex space X.

Lemma 3.2. Let L be a distributive algebraic lattice. Then cpt(L) is a stable
sober convex space, and the map δL : L −→ C(cpt(L)) is an order isomorphism.

Proof. By Lemma 2.11, we have that cpt(L) is sober and δL : L −→ C(cpt(L))
is an order isomorphism. Then we have that Po(cpt(L)) = {cocpt(L)(x) | x ∈
cpt(L)}. It is clear that cocpt(L)(x)=↓c x for any x ∈cpt(L), where ↓c x denote
the principle ideal in the subposet cpt(L), which means that the specialization
order of the convex space cpt(L) and the partial order of the subposet cpt(L)
coincide. Then one can easily check that X is stable. �

Proposition 3.3. Let X be a sober convex space. Then X is stable iff C(X) is
a distributive algebraic lattice.

Proof. The necessity follows by Lemma 3.1. Conversely, we let X be sober.
Then Lemma 2.11 gives that X is convex-homeomorphic to cpt(C(X)). Since
C(X) is a distributive algebraic lattice, cpt(C(X)) is stable by Lemma 3.2 and
hence X is stable. �

Theorem 3.4 ([30]). The adjunction C � cpt restricts to an equivalence be-
tween Sob and AgLat.

Let SSob denote the full subcategory of Sob consisting of all stable sober
convex spaces. Combining with Proposition 3.3 and Theorem 3.4, we can now
obtain a Hofmann–Lawson-like duality for pointfree convex spaces.

Theorem 3.5. The categories SSob and DAgLat are dually equivalent under
the restrictions of the functors C and cpt.

Now, we begin to consider the question mentioned in the introduction
for which class of morphisms M such that the M-injective objects in CS0 are
exactly sober convex spaces. First, we introduce the notion of quasihomeomor-
phism on convex spaces as below.

Definition 3.6. A map f : X −→ Y between convex spaces is called a quasiho-
meomorphism if the map C(f) : C(Y ) −→ C(X) is bijective and hence a lattice
isomorphism. Furthermore, we call a map e : X −→ Y of convex spaces a strict
embedding if it is both a quasihomeomorphism and a convex-embedding.

Remark 3.7. The sobrification (ηX , cpt(C(X))) of a convex space X is a strict
embedding if X is S0, because C � cpt is an adjunction.
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Proposition 3.8. Let φ : X −→ Y be a map between S0-convex spaces. Then
(φ, Y ) is a sobrification of X iff Y is a sober convex space and φ is a strict
embedding.

Proof. The necessity follows by Lemma 2.8 and Remark 3.7. Conversely, we
let φ : X −→ Y be a strict embedding. Then the map C(φ) : C(Y ) −→ C(X)
is a lattice isomorphism and hence cpt ◦ C(φ) : cpt(C(X)) −→ cpt(C(Y )) is
a convex-homeomorphism. Since Y is sober, Lemma 2.11 gives that the map
ηY : Y −→ cpt(C(Y )) is a convex-homeomorphism. Furthermore, it is clear

that X
φ−→ Y = X

ηX−→ cpt(C(X))
cpt◦C(f)−→ cpt(C(Y ))

η−1
Y−→ Y . Since cpt ◦ C(φ),

ηY are convex-homeomorphisms and (ηX , cpt(C(X))) is a sobrification of X,
it follows by Lemma 2.8 that (φ, Y ) is a sobrification of X. �

Recall that a morphism m : X −→ Y in a category C is called an ex-
tremal monomorphism if it is a monomorphism and if m = f ◦ e with e an
epimorphism, then e must be an isomorphism. Similar to the cases in the cate-
gory of topological spaces, it can be easily checked that the (monomorphisms)
epimorphisms are precisely (injections) surjections in CS.

Let C be a category and let M be a class of morphisms in C including
all convex-homeomorphisms and is contained in the class of monomorphisms.
Recall that an object S in C is called M-injective in C provided that for any
morphism h : A −→ B in M and for any morphism f : A −→ S in C there
exists a morphism g : B −→ S in C such that g ◦ h = f . In [18] and [22],
the N -injectives for the class N of all convex-embeddings are considered in
CS0 and it was shown that the N -injective objects in CS0 are exactly frames
endowed with the filter convex structures. Similar to the case in the category of
topological spaces, we find that the convex-embeddings in CS can be essentially
viewed as the extremal monomorphisms.

Proposition 3.9. In CS, a CP map m : X −→ Y is an extremal monomor-
phism iff it is a convex-embedding.

Proof. Let m : X −→ Y be a CP map, and m = f ◦ e with e : X −→ Z an
epimorphism. Then we have to check that e is a convex-homeomorphism. First,
e is obviously an injection, because m is. Since e is an epimorphism, we have
that e is a surjection and so a bijection. Since f = m◦e−1 is injective, we have
that f−1(f(S)) = S for any S ⊆ e(X) and so f−1(m(X)) = f−1(f(e(X))) =
e(X). Let C be an arbitrary convex set of X. Then m(C) = D ∩ m(X) for
some D ∈ C(Y ). It follows that e(C) = f−1(f(e(C))) = f−1(m(C)) = f−1(D∩
m(X)) = f−1(D) ∩ f−1(m(X)) = f−1(D) ∩ e(X) = f−1(D), which implies
that e is a CC map in Z. Thus, e is a convex-homeomorphism. Conversely,
if m : X −→ Y is an extremal monomorphism, then m is injective. Let m =
i ◦ m|m(X), where i : m(X) −→ Y is the identical convex-embedding. Since
m|m(X) is an epimorphism, it follows by the assumption that m|m(X) is a
convex-homeomorphism. For any C ∈ C(X), we have that m(C) = m|m(X)(C)
is a convex set in the convex subspace m(X). Thus, m is a convex-embedding.

�
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In the following, we shall choose the strict convex-embeddings as the
members of M to study the injectives in CS0. Obviously, M is a class of
morphisms including all convex-homeomorphisms and is contained in the class
of monomorphisms.

Proposition 3.10. Let Z be a sober convex space. Then Z is M-injective in
CS0.

Proof. Let η : X −→ Y be a morphism in M and (iY , Ŷ ) be a sobrification of
Y . By Proposition 3.8, iY ◦ η ∈ M and then (iY ◦ η, Ŷ ) is a sobrification of X.
So for any CP map f : X −→ Z, there exists a unique CP map f̄ : Ŷ −→ Z
such that f̄ ◦ iY ◦ η = f . Let g = f̄ ◦ iY . Then g ◦ η = f and g is a CP map,
which implies that Z is M-injective in CS0. �

Lemma 3.11. In CS0, every retract of a sober convex space is sober.

Proof. Let X be a sober convex space and Y be a retract of X in CS0. Then
there exist two CP maps f : X −→ Y and g : Y −→ X such that f ◦ g =
idY . For any non-empty finite subset F of Y , g(F ) is clearly a non-empty
finite subset of X. Since X is sober, we have that coX(g(F )) = coX(x) for
a unique element x of X. Then it follows that coY (F ) = coY (f(g(F ))) =
coY (f(coX(g(F )))) = coY (f(coX(x))) = coY (f(x)), as desired. �

Proposition 3.12. Let X be an S0-convex space. If X is M-injective in CS0,
then X is sober.

Proof. Let X be an S0-convex space and (iX , X̂) be a sobrification of X.
Proposition 3.8 gives that iX ∈ M. Since X is M-injective in CS0, there
exists a CP map f : X̂ −→ X such that f ◦ iX = idX , that is, X is a retract
of X̂. Thus, it follows by Lemma 3.11 that X is sober. �

Combining with Proposition 3.10 and Proposition 3.12, we obtain the
following theorem.

Theorem 3.13. Let X be an S0-convex space. Then X is M-injective in CS0

iff X is a sober convex space.

Lemma 3.14. Let f : X −→ Y be a CP map between S0-convex spaces. Then
f is a convex-embedding iff f−1 : C(Y ) −→ C(X) is surjective.

Proof. Let f be a convex-embedding. Then it is clear that f−1(coY (f(C))) = C
for any C ∈ C(X) and hence f−1 is surjective. Conversely, since f−1 pre-
serves arbitrary meets, f−1 has a left adjoint G and one can easily see that
G : C(X) −→ C(Y ) is defined by G(C) = coY (f(C)) for any C ∈ C(X). Since
f−1 is surjective, it follows that f−1(coY (f(C))) = C for any C ∈ C(X). Let
f(x1) = f(x2) with x1, x2 ∈ X. Then coX(x1) = f−1(coY ({f(coX(x1))})) =
f−1(coY (f(x1)))= f−1(coY (f(x2)))= f−1(coY ({f(coX(x2))}))= coX(x2) and
hence x1 = x2, which implies that f is injective. Let C ∈ C(X). It is routine
to check that f(C) = G(C) ∩ f(X) and hence f is CC in f(X). Thus, f is a
convex-embedding. �
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Lemma 3.15. Let L be an algebraic lattice and M ⊆ cpt(L). Then the identical
convex-embedding i : M −→ cpt(L) is a strict embedding iff M is join-dense
in L.

Proof. By Lemma 3.14, one can see that the identical convex-embedding i : M
−→ cpt(L) is a strict embedding iff the map i−1 : C(cpt(L)) −→ C(M) is
injective. If M is join-dense in L and i−1(Kx) = i−1(Ky), then Kx ∩ M =
Ky ∩M and hence x =

∨
(Kx ∩M) =

∨
(Ky ∩M) = y. This implies that i is a

strict embedding. Conversely, it is clear that i−1(Kx) = Kx ∩ M = Kx̄ ∩ M =
i−1(Kx̄) and so Kx = Kx̄, where x̄ =

∨
(Kx ∩ M). Since cpt(L) is join-dense

in L, it follows that x =
∨

(Kx ∩ M), which implies that M is join-dense in L.
�

Theorem 3.16. For an S0-convex space X, the following statements are equiv-
alent:
(1) The sobrification of X is stable;
(2) X is convex-homeomorphic to a join-dense convex subspace of cpt(L) for

some distributive algebraic lattice L;
(3) X allows a strict embedding into a stable sober convex space;
(4) X allows a strict embedding into a stable convex space;
(5) C(X) is a distributive algebraic lattice.

Proof. (1) ⇒ (2). Let (φ, X̂) be a sobrification of X. By Proposition 3.8, we
have that φ is a strict embedding. By Theorem 2.7 and Lemma 2.8, we have
that cpt(C(X)) is a sobrification of X and the sobrification of X is unique
up to isomorphism. Then there exists a convex-homeomorphism j : X̂ −→
cpt(C(X)). Let L = C(X). Since the map j ◦ φ : X −→ cpt(L) is a strict
embedding, it follows by Lemma 3.1 and Lemma 3.15 that L is a distributive
algebraic lattice and j(φ(X)) is join-dense in L, respectively.

(2) ⇒ (3). It is immediate by Lemma 3.2 and Lemma 3.15.
(3) ⇒ (4). It is clear.
(4) ⇒ (5). It is immediate by Lemma 3.1 and Definition 3.6.
(5) ⇒ (1). Since C(X) is a distributive algebraic lattice, Lemma 3.2 gives

that the sobrification cpt(C(X)) of X is stable. Then it follows by Lemma 2.8
that the sobrification of X is stable. �

4. Several characterizations of sober convex spaces and
SD -convex spaces

An element x of a complete lattice L is called strongly irreducible if for any
S ⊆ L, x =

∨
S implies x = y for some y ∈ S. It should be noted that

every strongly irreducible element in a continuous lattice L must be a compact
element. Indeed: let x be a strongly irreducible element of L. For every directed
subset D of L with x ≤ ∨

D, we have that x =
∨

(x ∧ D). Then x = x ∧ d
for some d ∈ D and so x ≤ d. This implies that x is a compact element
of L. Similarly, one can easily check that strongly irreducible elements and
supercompact elements on a frame coincide. For a continuous lattice L, we
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call a nonempty Scott closed subset G of L irreducible if a ∧ b ∈ G ⇒ a ∈
G or b ∈ G, and completely irreducible if for any nonempty subset A of L,∧

A ∈ G ⇒ A ∩ G �= ∅. For a convex space (X,C), we shall use the notation
M(x) = {C ∈ C | x /∈ C} for the fixed Scott closed subset of C(X). One can
easily check that every M(x) is a completely irreducible Scott closed subset of
C(X). But the converse is not true generally.

Proposition 4.1. Let L be a continuous lattice. Then the completely irreducible
Scott closed subsets of L are completely determined by the compact elements
in cpt(L).

Proof. For any completely irreducible Scott closed subset G of L, we will verify
that kG =

∧{a ∈ L | a /∈ G} is a compact element in cpt(L). First, kG �= ⊥L

as G is a nonempty Scott closed subset of L. Let kG ≤ ∨
D with D a directed

subset of L. Suppose that kG � d for any d ∈ D, then d ∈ G. So D ⊆ G and
hence

∨
D ∈ G. Since G is a lower set, we have that kG ∈ G and so there exists

an element a /∈ G such that a ∈ G, a contradiction. Thus, kG is a compact
element in cpt(L). Conversely, for any compact element k in cpt(L), we need
to check that Gk = {a ∈ L | k � a} is a completely irreducible Scott closed
subset of L. One can easily see that Gk is a nonempty Scott closed subset of
L. If

∧
A ∈ Gk for any A ⊆ L, then k �

∧
A and so k � a for some a ∈ A.

Hence there exists an element a ∈ A such that a ∈ Gk. Furthermore, we have
that kGk

=
∧{x ∈ L | x /∈ Gk} =

∧{x ∈ L | k ≤ x} = k. Finally, it remains
to show that GkG

= G, that is, {x ∈ L | ∧{a ∈ L | a /∈ G} � x} = G. For any
x ∈ G, if

∧{a ∈ L | a /∈ G} ≤ x, then
∧{a ∈ L | a /∈ G} ∈ G and so there

exists an element a /∈ G such that a ∈ G, a contradiction. Thus, x ∈ GkG
. For

the reverse inclusion, if x /∈ G, then
∧{a ∈ L | a /∈ G} ≤ x and so x /∈ GkG

.
�

The proof of the following Proposition is in fact included in Theorem 4.21
in [30], we deduce it here for the completeness of this paper.

Proposition 4.2. Let X be an S0-convex space. Then X is an SD-convex space
iff every coX(x) of C(X) is strongly irreducible.

Proof. Let coX(x) =
∨

i∈I Ai for some family {Ai}i∈I of C(X). Then Ai ⊆
coX(x) for any i ∈ I. Suppose that x /∈ Ai for any i ∈ I. Then Ai ⊆ coX(x)\{x}
for any i ∈ I. Since X is SD, it follows that coX(x) ⊆ coX(x)\{x}, a contra-
diction. Thus, x ∈ Ai0 for some i0 ∈ I, which implies that coX(x) is strongly
irreducible. Conversely, assume that there is an element x ∈ X such that
coX(x)\{x} is not convex, it follows that coX(x)\{x} ⊂ coX(coX(x)\{x}) ⊆
coX(x). Then coX(coX(x)\{x}) = coX(x) and so coX(x) =

∨{coX(y) | y ∈
coX(x)\{x}}. Since coX(x) is strongly irreducible, we have that coX(x) =
coX(y) for some y ∈ coX(x)\{x}, a contradiction, because X is S0. �

Remark 4.3. (1) For a given convex space X, it is clear that every strongly
irreducible convex set in C(X) is of the form coX(x) for some x ∈ X. Thus, by
Proposition 4.2, the strongly irreducible convex sets of an SD-convex space X
consists of all coX(x) for every x ∈ X.
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(2) It should be noted that the associated compact elements of a com-
pletely irreducible Scott closed subset of L are not always strongly irreducible.
For instance, for a non-SD-convex space X, by Proposition 4.2, there exists a
completely irreducible Scott subset M(x) of C(X), but its associated compact
element coX(x) is not strongly irreducible.

We call a Scott closed subset G of a continuous lattice L radical if it is
completely irreducible and the associated compact element of G is strongly
irreducible.

Lemma 4.4. Let (X,C) be an S0-convex space. Then each radical Scott closed
subset of C(X) is fixed.

Proof. Let A be a radical Scott closed subset of C(X). Then the associated
compact element

⋂{C ∈ C(X) | C /∈ A} is strongly irreducible in C(X) and
so it follows by Remark 4.3 that

⋂{C ∈ C(X) | C /∈ A} = coX(x) for some
x ∈ X. We next show that A = M(x). Let C ∈ A. If C /∈ M(x), then⋂{C ∈ C(X) | C /∈ A} = coX(x) ⊆ C and so

⋂{C ∈ C(X) | C /∈ A} ∈ A.
Then there exists C /∈ A such that C ∈ A, a contradiction. This implies that
A ⊆ M(x). For the reverse inclusion, if C /∈ A, then coX(x) ⊆ C and so
C /∈ M(x). Thus, A = M(x). �

In the following, instead of polytopes and the strongly irreducible convex
subsets, we shall use completely irreducible Scott closed subsets and radical
Scott closed subsets to give the corresponding characterizations of sober convex
spaces and SD-convex spaces, respectively.

Proposition 4.5. (1) An S0-convex space X is sober iff every completely irre-
ducible Scott closed subset of C(X) is fixed.

(2) An S0-convex space X is SD iff every fixed Scott closed subset of C(X) is
radical.

Proof. (1) Let X be a sober convex space and let F be an arbitrary completely
irreducible Scott closed subset of C(X). Then it follows by Proposition 4.1
that F = {C ∈ C(X) | coX(F ) � C} for some finite subset F of X. Since X
is sober, we have that coX(F ) = coX(x) for some x ∈ X and then F = {C ∈
C(X)) | coX(x) � C} = M(x). Hence, F is fixed. Conversely, we let coX(F )
be an arbitrary polytope of X. Then again by Proposition 4.1, the strongly
irreducible Scott closed subset {C ∈ C(X) | coX(F ) � C} = M(x) for some
x ∈ X. Then coX(F ) = coX(x). The uniqueness follows by the fact that X is
S0.

(2) Let X be SD. Since kM(x) =
⋂{C ∈ C | C /∈ M(x)} = coX(x) for any

x ∈ X, it follows by Proposition 4.2 that coX(x) is strongly irreducible and
so M(x) is radical. Conversely, since the associated compact element of each
M(x) is coX(x), it follows by the assumption that every coX(x) is strongly
irreducible. Then again by Proposition 4.2, we have that X is SD. �

Remark 4.6. For a continuous lattice L, we let Υ(L) the collection of all com-
pletely irreducible Scott closed subsets of L. It is routine to check that the sets
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of the form �(x) = {P ∈ Υ(L) | x /∈ P} for x ∈ L form a convex structure on
Υ(L). Furthermore, one can find that this definition is equivalent to the cases
in [26] and [30].

Lemma 4.7. Let X be a convex space, x ∈ X and i be the identical convex-
embedding X\{x} ↪→ X. Then i is a strict embedding iff coX(x)\{x} is not
convex.

Proof. By Lemma 3.14, C(i) is clearly surjective. Then it suffices to show
that C(i) is injective iff coX(x)\{x} is not convex. Let A\{x} = B\{x} with
A,B ∈ C(X). Case 1: Both A\{x} and B\{x} are convex. If coX(x)\{x}
is not convex, then coX(x)\{x} ⊂ coX(coX(x)\{x}) ⊆ coX(x) and hence
coX(coX(x)\{x}) = coX(x). If x ∈ A, then coX(x) = coX(coX(x)\{x}) ⊆
A\{x} and hence x ∈ A\{x}, a contradiction. Then x /∈ A. Similarly, x /∈ B
and hence A = B. Case 2: A\{x} and B\{x} are both convex. Since A and
B are convex, we can directly get that x ∈ A ∩ B or x /∈ A ∪ B and both
implies that A = B. Thus, C(i) is injective. Conversely, we let the map
C(i) be injective. Suppose that coX(x)\{x} is convex, then it follows that
C(i)(coX(x)) = coX(x)\{x} = (coX(x)\{x})\{x} = C(i)(coX(x)\{x}) but
coX(x) �= coX(x)\{x}, a contradiction. �

Theorem 4.8. Let X be a convex space. Then the following statements are
equivalent:
(1) X is SD.
(2) For any CP map f : Y −→ X with Y a convex space, f is surjective iff

f−1 : C(X) −→ C(Y ) is injective.

Proof. (1) ⇒ (2). Suppose f−1 is injective but f is not surjective, then f−1({x})
= ∅ for some x ∈ X. Thus f−1(coX(x)\{x}) = f−1(coX(x)) and so coX(x)\{x}
= coX(x), a contradiction. The converse is obvious.

(2) ⇒ (1). Suppose that X is not SD, then there exists an element x ∈
X such that coX(x)\{x} is not convex. Take Y = X\{x} and i : Y −→ X
be the identical convex-embedding. Since i is not surjective, it follows that
i−1 : C(X) −→ C(Y ) is not injective and so there exist convex subsets C1 and
C2 of C(X) such that C1\{x} = i−1(C1) = i−1(C2) = C2\{x} but C1 �= C2.
It is obvious that neither x ∈ C1 ∩ C2 nor x /∈ C1 ∪ C2 is possible. Then
without loss of generality, we let x ∈ C1 but x /∈ C2. Since C1\{x} = C2\{x}
and x /∈ C2, we have that C2 = C1\{x}. Then it follows by x ∈ C1 that
coX(x)∩C2 = coX(x)∩(C1\{x}) = coX(x)\{x}. This implies that coX(x)\{x}
is convex, a contradiction. �

The following theorem mirror each other in that sober convex spaces are
maximal in the same sense in which SD-convex spaces are minimal.

Theorem 4.9. (1) A convex space X is sober iff there does not exist a nontriv-
ial identical convex-embedding i : X ↪→ Y which is strict.

(2) A convex space X is SD iff there does not exist a nontrivial identical
convex-embedding i : Y ↪→ X which is strict.
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Proof. (1) If X is not sober, then there is a sobrification Y of X with i : X ↪→ Y
the nontrivial identical convex-embedding. Furthermore, Proposition 3.8 gives
that i is a strict embedding. Conversely, let X be sober. Suppose that i : X ↪→
Y is a nontrivial identical convex-embedding which is strict, then it follows
by Lemma 2.11 that X ∼= cpt(C(X)) ∼= cpt(C(Y )). By Theorem 2.7, we have
that cpt(C(Y )) is a sobrification of Y and hence Y can be embedded into X,
a contradiction.

(2) Suppose that X is not SD, then there exists an element x ∈ X such
that coX(x)\{x} is not convex. By Lemma 4.7, the nontrivial identical convex-
embedding i : X\{x} ↪→ X is strict. Conversely, let X be SD. Suppose that
there exists a nontrivial identical convex-embedding i : Y ↪→ X which is strict.
Take an arbitrary element x ∈ X\Y . Let j : Y ↪→ X\{x} and k : X\{x} ↪→
X be the nontrivial identical convex-embeddings. Then i = k ◦ j and hence
C(i) = C(j) ◦ C(k). Since C(i) is injective, we have that C(k) is injective. By
Lemma 3.14, we have that C(k) is surjective. Then C(k) is an isomorphism
and so k is a strict embedding. It follows by Lemma 4.7 that coX(x) \ {x} is
not convex, a contradiction. �

5. An adjunction between continuous lattices and SD -convex
spaces

A map f : L −→ M between continuous lattices is called a continuous homo-
morphism if f(⊥L) = ⊥M , and preserves arbitrary meets and directed joins.
A continuous homomorphism f is called a continuous D-homomorphism if the
left adjoint f∗ of f preserves the strongly irreducible elements. A continuous
lattice L is called SD-algebraic if L ∼= C(X) for some SD-convex space X. A
continuous lattice L is strongly SD-algebraic if it is algebraic and every com-
pact element in cpt(L) is strongly irreducible. We denote by CSD the category
of SD-convex spaces with CP -maps and by CLatD the category of continuous
lattices with continuous D-homomorphisms. Let AgLatD denote the category
of SD-algebraic lattices with continuous D-homomorphisms.

In this section, we shall devote to constructing an adjunction between
CLatD and CSD. Furthermore, this adjunction can induce a dual equivalence
between AgLatD and CSD.

For a continuous lattice L, we let Φ(L) denote the subspace of cpt(L) of
strongly irreducible elements, with Φa = Ka ∩Φ(L) = {x ∈ Φ(L) | x ≤ a}, a ∈
L, as the convex sets. In particular, we also have that

Φ⊥L
= ∅,Φ�L

= Φ(L),Φ∧

i∈I

ai
=

⋂

i∈I

Φai
,Φ∨

D =
⋃

d∈D

Φd

for any {ai}i∈I ⊆ L and for any directed subset D of L.

Lemma 5.1. Let L be a continuous lattice. Then Φ(L) is an SD-convex space.

Proof. In order to show that coΦ(L)(x)\{x} is a convex set of Φ(L) for any
x ∈ Φ(L), it suffices to check that {y ∈ Φ(L) | y < x} = Φa with a =

∨{z ∈
Φ(L) | z < x}. Let y < x with y ∈ Φ(L). Then we have that y ≤ a and so
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y ∈ Φa. For the reverse inclusion, let y ≤ a with y ∈ Φ(L). Then y ≤ x. If
y = x, then x = z0 for some z0 ∈ Φ(L) with z0 < x, a contradiction. So y < x
and hence y ∈ {y ∈ Φ(L) | y < x}. Thus, Φ(L) is an SD-convex space. �

Proposition 5.2. Let L be a continuous lattice. Then the following statements
are equivalent:
(1) L is SD-algebraic;
(2) a =

∨{s ∈ Φ(L) | s ≤ a} for any a ∈ L;
(3) For any a, b ∈ L, a � b ⇒ s ≤ a and s � b for some s ∈ Φ(L);
(4) For any a, b ∈ L, a � b ⇒ b ∈ G and a /∈ G for some radical Scott closed

subset G of L.

Proof. (1) ⇒ (2). Without loss of generality, we let L = C(X) with X an
SD-convex space. Then it is immediate by Proposition 4.2.

(2) ⇒ (3). It is obvious.
(3) ⇒ (4). One can easily check that L\ ↑ s is a radical Scott closed

subset of L for any s ∈ Φ(L). Then if we let G = L\ ↑ s, (4) is obvious.
(4) ⇒ (1). We define a map λL : L −→ C(Φ(L)) by λL(a) = Φa. It is

clear that λL is surjective and order-preserving. Let Φa = Φb with a �= b.
Without loss of generality, we let a � b and so there exists a radical Scott
closed subset G of L such that b ∈ G and a /∈ G. Then the associated compact
element kG of G satisfies that kG ≤ a and kG � b. This is impossible, because
Φa = Φb and the associated compact element of a radical Scott closed subset
is strongly irreducible. Then a = b and so λL is injective. Thus, λL is an order
isomorphism and it follows by Lemma 5.1 that L is SD-algebraic. �

The correspondence L �→ Φ(L) clearly extend to a functor

Φ: CLatD −→ CSD,

amounting to the restriction of the functor cpt. Then we have that Φ(h)(p) =
h∗(p) and (Φh)−1(Φa) = Φh(a), where h∗ is the left adjoint of h. This implies
that Φh is continuous.

For an SD-convex space X and a continuous lattice L, we define maps
ηX : X −→ Φ(C(X)) and δL : L −→ C(Φ(L)) by ηX(x) = coX(x) and δL(a) =
Φa, respectively. By Proposition 4.2 and Lemma 5.1, we have that ηX and δL

are well defined.

Lemma 5.3. For an SD-convex space X, ηX is a convex-homeomorphism.

Proof. It is obvious that ηX is injective, because X is S0. By Proposition 4.2
and Remark 4.3, we have that Φ(C(X)) = {coX(x) | x ∈ X}. Then ηX is
surjective and ΦC = {coX(x) | coX(x) ⊆ C} for any C ∈ C(X). So η−1

X (ΦC) =
{x ∈ X | coX(x) ⊆ C} = {x ∈ X | x ∈ C} = C, which implies that ηX is
a CP map. For any C ∈ C(X), we have that ηX(C) = {coX(x) | x ∈ C} =
{coX(x) | coX(x) ⊆ C} = ΦC , which implies that ηX is a CC map. Thus, ηX

is a convex-homeomorphism. �
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Lemma 5.4. For a continuous lattice L, δL is a continuous D-homomorphism.
Proof. It is clear that δL is a continuous homomorphism. It remains to show
that the left adjoint (δL)∗ of δL preserves the strongly irreducible elements.
Since Φ(L) is SD, it follows by Proposition 4.2 and Remark 4.3 that the
strongly irreducible elements in C(Φ(L)) are precisely {coΦ(L)(s) ∈ C(Φ(L)) |
s ∈ Φ(L)}. For any a ∈ L and s ∈ Φ(L), we have that (δL)∗(coΦ(L)(s)) ≤ a iff
coΦ(L)(s) ⊆ Φa iff s ≤ a. Then (δL)∗(coΦ(L)(s)) = s. Thus, δL is a continuous
D-homomorphism. �
Lemma 5.5. The maps ηX and δL constitute natural transformations η : IdCSD

−→
Φ ◦ C and δ : IdCLatD −→ C ◦ Φ respectively, where IdCSD

and IdCLatD are the
identical functors on CSD and CLatD respectively.
Proof. Lemma 5.3 and Lemma 5.4 give that ηX is a CP map and δL is a con-
tinuous D-homomorphism, respectively. It remains to show the commutativity
of the following diagrams.

For any a ∈ L and x ∈ X, we have that C(Φ(ϕ))(δL(a)) = (ϕ∗)−1(Φa) =
{p ∈ Φ(L) | ϕ∗(p) ∈ Φa} = {p ∈ Φ(L) | ϕ∗(p) ≤ a} = {p ∈ Φ(L) | p ≤ ϕ(a)} =
Φϕ(a) = δM (ϕ(a)) and Φ(C(f))(ηX(x)) = (f−1)∗(coX(x)) =

⋂{P ∈ Φ(C(Y )) |
coX(x) ⊆ f−1(P )} = coΦ(C(Y ))(f(x)) = ηY (f(x)), as desired. �
Proposition 5.6. The contravariant functor Φ is the right adjoint to the con-
travariant functor C.
Proof. In order to show the adjointness of the functors Φ and C, we need to
show the commutativity of the following diagrams.

For any A ∈ C(X) and p ∈ Φ(L), we have that C(ηX)(δ
C(X)(A)) =

η−1
X (ΦA)={x ∈ X | coX(x) ⊆ A}=A and Φ(δL)(ηΦ(L)(p))=Φ(δL)(coΦ(L)(p)) =

(δL)∗(coΦ(L)(p)) = p, as desired. �
Combining with Proposition 5.2, Lemma 5.3, Lemma 5.4 and Proposition

5.6, we obtain the main result in this section as below.
Theorem 5.7. The adjunction C � Φ induces a dual equivalence between CSD

and AgLatD.
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6. The relationship between convex subspaces and quotients

In this section, we shall aim at investigating the sobrifications of the convex
subspaces of a sober convex space X and the algebraizations of the quotients
of a continuous lattice L, and further exploiting the categorical equivalence
between sober convex spaces and algebraic lattices, which was established in
[26] and [30], to show that the algebraic lattice of sober convex subspaces
of cpt(L) and that of algebraic quotients of L are isomorphic. Furthermore,
several necessary and sufficient conditions for all the convex subspace of X to
be sober are given.

For a complete lattice L and a subset Y ⊆ L, we denote by J (Y ) the
collection of {∨ M | M ⊆ Y }.

Lemma 6.1 ([16]). Let L be a continuous lattice. Then the following statements
hold:
(1) The map f �→ f(L) is an isomorphism of Ker(L) onto Q(L).
(2) Ker(L) is anti-isomorphic to the lattice Cong∗(L) of all continuous lattice

congruences of L (i.e. equivalence relations R ⊆ L×L which closed under
arbitrary intersections and directed joins). The anti-isomorphism is given
by f �→ {(x, y) ∈ L × L | f(x) = f(y)}.

Theorem 6.2 ([16]). Let L be a continuous lattice. Then the following state-
ments are equivalent:
(1) L is an algebraic lattice such that the set K(L) does not contain any order

dense chain;
(2) Every quotient of L is an algebraic lattice;
(3) Ker(L) is a continuous lattice;
(4) Ker(L) is an algebraic lattice.

For a continuous lattice L, it was shown in [16] that Ker(L) is a complete
lattice and k1 ≤ k2 ⇐⇒ Qk1 ⊆ Qk2 for any k1, k2 ∈ Ker(L). Then it follows by
Lemma 6.1 that Q(L) partially ordered by inclusion is also a complete lattice
with the lattice operations given by

∨
i∈I Qki

= Q∨
i∈I ki

and
∧

i∈I Qki
=

Q∧
i∈I ki

for any {Qki
}i∈I ⊆ Q(L), where

∨
i∈I ki is the pairwise join of the

family of kernel operators {ki}i∈I and
∧

i∈I ki =
∨{k ∈ ker(L) | ∀i ∈ I, k ≤

ki}.

Proposition 6.3. Let L be a continuous lattice. Then every principle ideal of L
is a quotient of L.

Proof. It is routine to check that the map x ∧ − : L −→ L is a kernel operator
for any x ∈ L. Since L is continuous, it follows that x ∧ − is Scott continuous
and then every x ∧ − is a continuous kernel operator. Furthermore, one can
easily check that (x∧−)(L) =↓ x and so every principle ideal of L is a quotient
of L. �

Lemma 6.4. Let L be a continuous lattice. For any Y ⊆ cpt(L), we have that
(1) Y ⊆ cpt(J (Y )) and J (Y ) is an algebraic quotient of L.
(2) If Y is a sober convex subspace of cpt(L), then Y = cpt(J (Y )).
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Proof. (1) It is clear that J (Y ) is closed under arbitrary joins. Let M1, M2 ⊆ Y
with

∨
M1 
 ∨

M2 in J (Y ). If
∨

M2 ≤ ∨
D for some directed subset D of

L, then M2 ⊆↓ D and hence
∨

M2 ≤ ∨
(↓ D ∩ J (Y )). Since ↓ D ∩ J (Y ) is

directed in J (Y ), we have that
∨

M1 ≤ x for some x ∈↓ D ∩ J (Y ) and hence∨
M1 ≤ d for some d ∈ D, which implies that

∨
M1 
 ∨

M2 in L. Then J (Y )
is a quotient of L. So K(J (Y )) = K(L) ∩ J (Y ) and hence Y ⊆ cpt(J (Y )).
Furthermore, we have that J (Y ) is algebraic, because all elements in J (Y )
are joins of compact elements in J (Y ).

(2)Let Y be a sober convex subspace of cpt(L). Since cpt(J (Y )) =
J (Y ) ∩ cpt(L), it follows that

∨
F ∈ cpt(J (Y )) for any F ⊆ω Y . Further-

more, we have that cpt(J (Y )) = {∨ F | F ⊆ω Y }, because
∨

M =
∨{∨

F |
F ⊆ω M} for any M ⊆ Y and {∨ F | F ⊆ω M} is directed in J (Y ). For any
F ⊆ω M , since Y is sober, we have that coY (F ) = coY (y) for a unique y ∈ Y
and so

∨
F = y ∈ Y , which implies that cpt(J (Y )) ⊆ Y . �

Proposition 6.5. For any continuous lattice L, the algebraization quotient of L
is J (cpt(L)).

Proof. It is routine to check that the universal property of the algebraization
quotient of L can be translated into a condition that the algebraization quo-
tient of L is the largest quotient of L which is algebraic. Then it suffices to
show that J (cpt(L)) is the largest quotient of L which is algebraic. Lemma 6.4
gives that J (cpt(L)) is an algebraic quotient of L. For an arbitrary algebraic
quotient Q of L, we have that cpt(Q) = cpt(L) ∩ Q and so cpt(Q) ⊆ cpt(L).
Then it follows by the facts that J is monotone and Q is an algebraic quotient
of L that Q = J (cpt(Q)) ⊆ J (cpt(L)), as desired. �

Proposition 6.6. Let L be a continuous lattice and Y ⊆ cpt(L). Then the pair
(iY , cpt(J (Y ))) is a sobrification of Y , where the sobrification map iY is the
identical convex-embedding Y ⊆ cpt(J (Y ))).

Proof. By Lemma 6.4, J (Y ) is an algebraic quotient of L. Then Lemma 2.11
gives that cpt(J (Y )) is sober. Then by the proof of Lemma 6.4, we have that
cpt(J (Y )) = {∨ F | F ⊆ω Y }. By Lemma 6.4, Y ⊆ cpt(J (Y )) and we let
iY : Y −→ cpt(J (Y )) be the identical convex-embedding. Then iY is of course
a CP map. Suppose that f : Y −→ Z is a CP map with Z a sober convex
space. For any finite subset F of Y , f(F ) is a finite subset of Z and hence
there exists a unique point z ∈ Z such that coZ(f(F )) = coZ(z). We define a
map f̄ : cpt(J (Y )) −→ Z by f̄(

∨
F ) = z.

(1) Obviously, f̄ is well defined and f̄ ◦ iY = f .
(2) f̄ is CP . Let C ∈ C(Z) and F ⊆ω Y . Then f−1(C) ∈ C(Y ) and

we let f−1(C) = Ka ∩ Y for some a ∈ L. It follows that
∨

F ∈ f̄−1(C) iff
coZ(f(F )) ⊆ C iff F ⊆ f−1(C) iff F ⊆ Ka ∩ Y iff

∨
F ∈ Ka ∩ cpt(J (Y )).

Thus, f̄−1(C) = Ka ∩ cpt(J (Y )), which is a convex set of cpt(J (Y )). Thus,
f̄ is a CP map.

(3) f̄ is unique. Let g : cpt(J (Y )) −→ Z be an arbitrary CP map
such that g ◦ iY = f . We need to show that g = f̄ . For any F ⊆ω Y , we
have that coZ(g(

∨
F ))= coZ(g(cocpt(J (Y ))(

∨
F ))) = coZ(g(cocpt(J (Y ))(F ))) =
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coZ(g(F )) = coZ(g(iY (F ))) = coZ(f(F )) = coZ(f̄(
∨

F )). So coZ(g(
∨

F )) =
coZ(f̄(

∨
F )) and hence g(

∨
F ) = f̄(

∨
F ) as Z is S0. Thus, g = f̄ . �

The following proposition will indicate that there exists a symmetry be-
tween the algebraization of quotients and the sobrification of convex subspaces.

Proposition 6.7. Let L be a continuous lattice. Then (J , cpt) is an adjunction
between the posets P(cpt(L)) and Q(L). Furthermore, the fixpoints of J ◦cpt
are exactly the algebraic quotients and the fixpoints of cpt ◦ J are exactly the
sober convex subspaces.

Proof. It is clear that the map cpt is well defined and Lemma 6.4 gives that J
is well defined and monotone. In order to show that (J , cpt) is an adjunction,
it suffices to show that J ◦ cpt ≤ idP(cpt(L)) and cpt ◦ J ≤ idQ(L). J ◦ cpt ≤
idP(cpt(L)) is obvious. By Lemma 6.4, we have that Y ⊆ cpt(J (Y )) for any
Y ⊆ cpt(L), which means that cpt ◦ J ≤ idQ(L). Furthermore, Proposition
6.5 give that the fixpoints of J ◦ cpt are exactly the algebraic quotients and
Proposition 6.6 gives that the fixpoints of cpt◦J are exactly the sober convex
subspaces. �

We let Alg(Q(L)) denote the collection of all algebraic quotients of L. By
Theorem 6.1 and Theorem 6.2, one can see that Q(L) may not be continuous,
not to say algebraic. However, when consider the subposet Alg(Q(L)) of Q(L),
it will be shown to be an algebraic lattice. For a compact element c of a
continuous lattice L, we always write Qc = {0, c}. Obviously, every Qc is
included in Q(L), even in Alg(Q(L)).

Lemma 6.8. Let L be a continuous lattice. Then every Qc = {0, c} is compact
in Q(L) for any c ∈ cpt(L).

Proof. Let {Qki
}i∈I ⊆ Q(L) be a directed family with {ki}i∈I ⊆ Ker(L) and

Qc ⊆ ∨
i∈I Qki

. Then {ki}i∈I is directed in Ker(L) and Qc ⊆ Q∨
i∈I ki

. So c =
(
∨

i∈I ki)(c) =
∨

i∈I(ki(c)). It follows that c ≤ ki1(c) for some ki1 ∈ Ker(L)
and so c = ki1(c). Then c ∈ Qki1

and hence Qc ⊆ Qki1
. Thus, Qc is compact

in Q(L). �
Proposition 6.9. Let L be a continuous lattice. Then Alg(Q(L)) is an algebraic
join-sub-complete lattice of Q(L).

Proof. By Proposition 6.7, one can check that the algebraization map J ◦
cpt : Q(L) −→ Q(L) is a kernel operator and it follows that the fixpoints of
J ◦ cpt is closed under arbitrary joins in Q(L). Then Alg(Q(L)) is closed
under arbitrary joins in Q(L), which implies that Alg(Q(L)) is a join-sub-
complete lattice of Q(L). Then it follows that Qc is compact in Alg(Q(L)) for
any c ∈ cpt(L). So it suffices to show that Q =

∨{Qc | c ∈ cpt(Q)} for any
Q ∈ Alg(Q(L)). Clearly, Qc ⊆ Q for any c ∈ cpt(Q). Let Q

′ ∈ Alg(Q(L)) and
such that Qc ⊆ Q

′
for any c ∈ cpt(Q). Then cpt(Q) ⊆ Q

′
. For any x ∈ Q, we

have that x =
∨

(↓ x ∩ cpt(Q)) and it follows that x ∈ Q
′
. This implies that

Q ⊆ Q
′

and so Q =
∨{Qc | c ∈ cpt(Q)}. Thus, Alg(Q(L)) is an algebraic

join-sub-complete lattice of Q(L). �
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Proposition 6.10. Let L be a continuous lattice. Then the map

cpt : Alg(Q(L)) −→ Sob(P(cpt(L)))

is an order isomorphism.

Proof. By Proposition 6.7, we have that J : P(cpt(L)) −→ Q(L) is the left
adjoint of cpt : Q(L) −→ P(cpt(L)). Then this adjunction can induce an order
isomorphism cpt which maps the fixpoints of J ◦cpt onto that of cpt◦J . Again
by Proposition 6.7, these fixpoints are algebraic quotients of L and sober con-
vex subspaces of cpt(L) and so the map cpt : Alg(Q(L)) −→ Sob(P(cpt(L)))
is an order isomorphism. �

We call an element x of a continuous lattice L moderately irreducible if for
any P ⊆ cpt(L), x =

∨
P implies x = p for some p ∈ P . It is clear that every

strongly irreducible element of L is moderately irreducible. For an algebraic
lattice L, one can easily check that a compact element in cpt(L) is moderately
irreducible iff it is irreducible. For the question that when are all the quotients
of L algebraic, Hofmann and Mislove had given some nice characterizations
in [16]. Then a question naturally arises, when are all convex subspaces of
cpt(L) sober? The following theorem will give several necessary and sufficient
conditions for this question.

Theorem 6.11. Let L be a continuous lattice. Then the following are equivalent:

(1) All the compact elements in cpt(L) is moderately irreducible;
(2) All the convex subspaces of cpt(L) are sober;
(3) The restriction of the map cpt : Q(L) −→ P(cpt(L)) to Alg(Q(L)) is an

order isomorphism;
(4) The space cpt(L) is SD.

Proof. (1) ⇒ (2). By Lemma 6.4, we have that Y ⊆ cpt(J (Y )) for any Y ⊆
cpt(L). For any

∨
P ∈ cpt(J (Y )) with P ⊆ Y , it follows by the assumption

that
∨

P = p for some p ∈ P and hence
∨

P ∈ Y . Then Y = cpt(J (Y )). By
Proposition 6.6, it follows that every convex subspace of cpt(L) is sober.

(2) ⇒ (3). By Proposition 6.10.
(3) ⇒ (1). Suppose that there exists a subset P ⊆ cpt(L) and a compact

element c ∈ cpt(L) with c /∈ P and such that c =
∨

P . Then by the assumption,
P = cpt(Q) for some Q ∈ Alg(Q(L)). Since K(Q) = K(L) ∩ Q, we have that
K(Q) = P ∪{⊥L} is directed in L. Then it follows by the fact

∨
P =

∨
K(Q)

that there exists an element p ∈ K(Q) such that c ≤ p. If p = ⊥L, then
⊥L = c ∈ cpt(L), a contradiction. If p �= ⊥L, then p ∈ P and so c = p as p ≤ c
is obvious, which implies that c ∈ P , a contradiction. Thus, every compact
element in L is moderately irreducible.

(4) ⇒ (1). Suppose that there exists a subset P ⊆ cpt(L) and a compact
element p ∈ cpt(L) with p /∈ P and such that p =

∨
P . Then p =

∨{q ∈
cpt(L) | q < p}. For any a ∈ L, if cocpt(L)(p)\{p} ⊆ Ka, then q < p implies
q ≤ a for any q ∈ cpt(L) and it follows that p ≤ a, which implies that
p ∈ Ka. Hence p ∈ coX(coX(p)\{p}), because coX(coX(p)\{p}) =

⋂{Ka |
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coX(p)\{p} ⊆ Ka}. Since cpt(L) is SD, we have that coX(coX(p)\{p}) =
coX(p)\{p} and then p ∈ coX(p)\{p}, a contradiction.

(1) ⇒ (4). In order to show that cpt(L) is SD, we only need to check that
cocpt(L)(p)\{p} = Kap

for any p ∈ cpt(L), where ap =
∨{r ∈ cpt(L) | r < p}.

It is obvious that coX(p)\{p} ⊆ Kap
. For any q ∈ Kap

, we have that q ≤ ap

and so q ≤ p. If p = q, then p =
∨{r ∈ cpt(L) | r < p} and so it follows by the

assumption that p = r1 < p for some r1 ∈ cpt(L), a contradiction. So q < p
and hence Kap

⊆ cocpt(L)(p)\{p}. �

Finally, we shall give several characterizations for a continuous lattice to
be strongly SD-algebraic.

Theorem 6.12. Let L be a continuous lattice. Then the following are equivalent:
(1) L is strongly SD-algebraic;
(2) L is algebraic and cpt(L) is an SD-convex space X;
(3) L ∼= C(X) for some sober SD-convex space;
(4) L is algebraic and Alg(Q(L)) ∼= P(cpt(L)).

Proof. (1) ⇒ (2). By Lemma 5.1.
(2) ⇒ (3). This is obvious as L ∼= C(cpt(L)) and cpt(L) is always sober.
(3) ⇒ (4). Obviously, L is algebraic as C(X) is. Without loss of generality,

we let L = C(X) for some sober SD-convex space X. Since X is SD, Proposition
4.2 gives that Φ(L) = {coX(x) | x ∈ X} and so cpt(L) = Φ(L) as X is
sober. Thus, it follows by Proposition 4.2 and Theorem 6.11 that Alg(Q(L)) ∼=
P(cpt(L)).

(4) ⇒ (1). By Theorem 6.11 and the assumption, every compact element
in cpt(L) is moderately irreducible. Let c ∈ cpt(L) and c =

∨
G for some

G ⊆ L. Since L is algebraic, c =
∨

G =
∨ ⋃

x∈G ↓x ∩ K(L) and so c = c1 for
some c1 ∈ ⋃

x∈G ↓ x ∩ K(L). Then c ≤ x1 for some x1 ∈ G and hence c = x1

as x1 ≤ c is obvious, as desired. �

Remark 6.13. For an algebraic lattice L, all the conditions in Theorem 6.11
and Theorem 6.12 are equivalent.

7. Conclusions

In [26] and [30], a dual adjunction between CS and CLat was built, which
restricts to a dual equivalence between Sob and AgLat. In this paper, a
further restriction of this dual equivalence yields the Hofmann–Lawson-like
duality for pointfree convex spaces. Meanwhile, we also built a dual adjunction
between CSD and CLatD by introducing the notion of strongly irreducible
elements and it further induces a dual equivalence between CSD and AgLatD.
In addition, we obtain several characterizations of sober convex spaces and SD-
convex spaces, which indicates that they are dual to each other in certain sense,
and also present the close connection between the sobriety and SD-axiom in
the case of pointfree convex geometry.

In the future, we will consider the following two problems.

20Page 23 of 26On pointfree convex geometryVol. 85 (2024)



• It is well known that the duality between the category of bitopological
spaces and that of biframes was firstly established by Banaschewski et al. in
[5], which generalized the classic duality between the category of topological
spaces and that of frames. So we will consider building this duality between the
category of “biconvex spaces” and that of “bicontinuous lattices” and further
building the duality between the category of “bi-SD-convex spaces” and that
of “bicontinuous lattices”.

• In Section 6, by exploiting the duality between CS and CLat, we
investigate the relationships between the quotients of a continuous lattice L
and the convex subspaces of cpt(L). Then based on the duality between CSD

and CLatD and the close connection between the sobriety and SD-axiom, we
shall investigate the relationships between the SD-quotients of a continuous
lattice L and the convex subspaces of Φ(L).
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