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Abstract. We consider ordered universal algebras and give a construction
of a join-completion for them using so-called D-ideals. We show that
this construction has a universal property that induces a reflector from a
certain category of ordered algebras to the category of sup-algebras. Our
results generalize several earlier known results about different ordered
structures.
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1. Introduction

There are several ways how to embed an ordered algebra into a complete or-
dered algebra of the same type. One such possibility is given in [15], where it
is shown that certain injective hulls of ordered algebras have properties simi-
lar to those of Dedekind–MacNeille completions. In this paper we will follow
a different approach—constructing completions with the help of admissible
ideals.

In [5], Bruns and Lakser introduced admissible subsets and so-called D-
ideals in semilattices. They proved that the set of all D-ideals (which is a
complete lattice) is the injective hull of the semilattice. In [3], Bishop studied
the completion by complete ideals of a lattice and proved a universal property
for it. Krishnan [7] contstructed a completion for pomonoids which is compati-
ble with joins. Rasouli [9] used a similar approach to construct a completion for
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S-posets where S is a pomonoid. In a recent paper [16], completions of marked
quantales are considered. Such structures (semilattices, lattices, pomonoids, S-
posets, posemigroups) can be considered as special cases of ordered universal
algebras of different types. It is natural to ask if the results in the mentioned
papers have a common generalization to the ordered algebras.

In this article we will give a construction that assigns the sup-algebra
of D-ideals (denoted by D(A)) to each ordered algebra A. We will prove that
D(A) is a join-completion for A and prove a universal property of this construc-
tion. As a consequence, we will obtain a reflector functor D to the category of
sup-algebras. The source category of this functor has ordered algebras as ob-
jects, but the morphisms are not all homomorphisms, but those which preserve
admissible joins. We note that also in [12] different sup-algebra completions
are considered, one of them being D(A). But the definitions of D(A) and D(A)
differ a litt’le bit and the universal property is not considered in [12].

2. Preliminaries

We recall some definitions that will be needed in this paper.

Definition 2.1 ([1, Definition 4.16]). A subcategory A of a category B is called a
reflective subcategory if for every B-object B there is a B-morphism r : B → A
from B to an A-object A with the following universal property: for any B-
morphism f : B → A′ from B to an A-object A′, there exists a unique A-
morphism f ′ : A → A′ such that f ′r = f . In other words, A is a reflective
subcategory of B if the inclusion functor A → B has a left adjoint functor
B → A (see [8], page 91), which is usually called a reflector.

In this paper we will show how to construct a reflector from a certain
category of ordered algebras to the category of sup-algebras of the same type.

Let Ω be a type. An ordered Ω-algebra is a triplet A = (A,ΩA,�A)
comprising a poset (A,�A) and a set ΩA of operations on A (for every k-ary
operation symbol ω ∈ Ωk there is a k-ary operation ωA ∈ ΩA on A) such that
all the operations ωA are monotone mappings ([4]).

Let A and B be ordered Ω-algebras. We say that a monotone mapping
f : A → B is a lax morphism, if

ωB(f(a1), . . . , f(an)) � f(ωA(a1, . . . , an)) (2.1)

for every n ∈ N, ω ∈ Ωn, a1, . . . , an ∈ A, and

ωB � f(ωA) (2.2)

for every ω ∈ Ω0.
If f : A → B is monotone and operation-preserving, i.e., the inequalities

in (2.1) and (2.2) turn out to be equalities, then f is a homomorphism of
ordered algebras.
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Throughout this text, a type Ω is fixed, all algebras that we consider will
be Ω-algebras and all homomorphisms will be homomorphisms of Ω-algebras,
even if Ω is not explicitly mentioned.

Linear functions on an ordered algebra A are defined as follows (see [14]).

(1) The identity mapping A → A, x �→ x, is a linear function.
(2) If n ∈ N, ω ∈ Ωn, i ∈ {1, . . . , n}, a1, . . . , ai−1, ai+1, . . . , an ∈ A and

p : A → A is a linear function, then the mapping

A → A, x �→ ω(a1, . . . , ai−1, p(x), ai+1, . . . , an)

is a linear function.

Linear functions obtained by step (1) or by step (2) with p = idA are called
elementary translations of A. We write LA for the set of all linear functions
on an ordered algebra A. Linear functions are the composites of elementary
translations.

Definition 2.2. A subset M of an ordered algebra A is called admissible, if

• ∨
p(M) exists for all p ∈ LA (in particular

∨
M =

∨
idA(M) exists),

• for all p ∈ LA,

p
(∨

M
)

=
∨

p(M).

Our definition generalizes the definition of an admissible subset of a semi-
lattice which was introduced in [5]. Note that [12] also defines admissible sub-
sets of an ordered algebra, but that definition differs from ours: instead of
linear functions, unary polynomial functions are used.

We write S↓ = {a ∈ P | a � s for some s ∈ S} if S is a subset of a poset
P , and we call S a lower subset of P if S↓ = S.

Definition 2.3. A lower subset S of an ordered algebra A is called a D-ideal
(cf. [5, p. 116] or [12, Definition3.6]) if for any admissible subset M of S, one
has that

∨
M ∈ S.

Let us denote by D(A) the set of all D-ideals of A. Note that a↓ is a
D-ideal for every a ∈ A (see Remark 3.7 in [12]).

Definition 2.4. We say that an ordered algebra homomorphism f : A → B
preserves admissible joins if, for any admissible subset M of A, the subset
f(M) ⊆ B is admissible and

f
(∨

M
)

=
∨

f(M).

All ordered algebras with admissible joins preserving homomorphisms
constitute a category, which we denote by OAlg∗. This is a (non-full) subcat-
egory of OAlg, the category of ordered algebras with all homomorphisms as
morphisms.
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3. Sup-algebras

An ordered Ω-algebra Q = (Q,ΩQ,�Q) is called a sup-algebra if the poset
(Q,�Q) is a complete lattice and all elementary translations preserve joins.
Sup-algebras were introduced by Pedro Resende in [10] as a common general-
ization for many quantale-like structures. All sup-algebras with join-preserving
homomorphisms form a category denoted by SupAlg.

Lemma 3.1. Let A be an ordered algebra such that (A,�) is a complete lattice.
Then the following assertions are equivalent.

(1) A is a sup-algebra.
(2) All linear functions on A preserve joins.
(3) All subsets of A are admissible.

Proof. (1) ⇔ (2). This is true because linear functions are the composites of
elementary translations.

(2) ⇔ (3). This holds because all subsets of A have joins. �

Proposition 3.2. SupAlg is a full subcategory of OAlg∗.

Proof. If Q and R are sup-algebras then all subsets of Q and R are admissible
by Lemma 3.1. Hence a homomorphism f : Q → R preserves admissible joins
if and only if it preserves all joins. �

If Q is a sup-algebra, then every elementary translation preserves joins,
hence it has a right adjoint.

A closure operator j on a sup-algebra Q is a nucleus if it is a lax en-
domorphism of Q. The subset Qj = {q ∈ Q | j(q) = q} can be made
into a sup-algebra called a quantic quotient of Q (see [10, Theorem 2.2.7] or
[13, Proposition 16]).

Lemma 3.3 [13, Proposition 15] If Q = (Q,ΩQ,�Q) is a sup-algebra and S ⊆
Q, then S = Qj for some nucleus j on Q if and only if S is closed under meets
and under right adjoints of elementary translations. In this case, the nucleus
j is defined by

j(q) :=
∧

{s ∈ S | q � s} (3.1)

for q ∈ Q.

For an ordered algebra A = (A,ΩA,�A), let P(A) be the set of all
lower subsets of A. Then P(A) is a sup-algebra equipped with the inclusion
as ordering and

ωP (A)(D1, . . . , Dn) = {ωA(d1, . . . , dn) | di ∈ Di, i = 1, . . . , n}↓
as n-ary operations for every ω ∈ Ωn, n ∈ N. If ω ∈ Ω0, then ωP (A) = ωA↓.

A nucleus j on P(A) is called principal closed, if j(a↓) = a↓ for all a ∈ A.

Proposition 3.4. Let A = (A,ΩA,�A) be an ordered algebra. Then D(A) is a
quantic quotient of the sup-algebra P(A).
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Although our point of view is a little bit different from that of [12] (namely
P(A) denotes the set of all subsets of A in [12]), Proposition 3.4 can still be
proved precisely as Theorem 3.9 in [12].

Now, given an ordered algebra A, Lemma 3.3 provides a nucleus j :
P(A) → P(A), defined by (3.1), that is,

j(C) =
⋂

{S ∈ D(A) | C ⊆ S} (3.2)

for every C ∈ P(A), such that D(A) = P(A)j = {C ∈ P(A) | j(C) = C}.
It can be shown that j is a principal closed nucleus. In the sup-algebra D(A)
joins and meets are calculated as

∨

i∈I

Si = j
(⋃

i∈I

Si

)
=

⋂
{

S ∈ D(A)
∣
∣
∣

⋃

i∈I

Si ⊆ S

}

,

∧

i∈I

Si =
⋂

i∈I

Si,

and operations are

ωD (A)(S1, . . . , Sn) = j(ωP (A)(S1, . . . , Sn))

=
⋂

{S ∈ D(A) | ωP (A)(S1, . . . , Sn) ⊆ S},
(3.3)

for every n ∈ N, ω ∈ Ωn. If ω ∈ Ω0, then ωD (A) = j(ωP (A)) = j(ωA↓). Nullary
operations of D(A) can be described as follows.

Lemma 3.5. If A is an ordered-algebra and ω ∈ Ω0, then ωD (A) = ωA↓.
Proof. Clearly,

ωA ∈
⋂

{S ∈ D(A) | ωA ∈ S} =
⋂

{S ∈ D(A) | ωA↓ ⊆ S} = ωD (A)

and hence ωA↓ ⊆ ωD (A). Take arbitrary a ∈ ωD (A). Then a ∈ S for all S ∈
D(A) containing ωA. In particular, a ∈ ωA↓, and thus ωD (A) ⊆ ωA↓. �

Proposition 3.6 [15]. Let A be an ordered algebra and let j be a principal closed
nucleus on P(A). Then the mapping η : A → P(A)j , a �→ a↓, has the follow-
ing properties:

(1) η is a homomorphism of ordered algebras which is an order-embedding,
(2) η(A) is join-dense in the lattice P(A)j,
(3) η preserves all existing meets in A.

4. Completions by D-ideals

Generalizing the notion of join-completion of a poset (cf. [2], [11], or [6]) we
say that a join-completion of an ordered algebra A is a pair (η,R(A)), where

(1) R(A) is a sup-algebra,
(2) η : A → R(A) is a homomorphism of ordered algebras which is an order-

embedding,
(3) the set η(A) is join-dense in R(A).
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· a b c
a a a a
b a b b
c a b c

b c

a

Figure 1. The multiplication and order of A

Meet-completions are defined dually.
It turns out that D(A), the sup-algebra of D-ideals, is a join-completion

of A.

Proposition 4.1. If A is an ordered algebra, then the mapping r : A → D(A),
a �→ a↓, is a homomorphism of ordered algebras that is an order-embedding
and preserves admissible joins. Moreover, r(A) is join-dense in D(A) and r
preserves all meets that exist in A.

Proof. Let M be an admissible subset of A. Since D(A) is a sup-algebra,
p(

∨
r(M)) =

∨
p(r(M)) for every p ∈ LD (A) by Lemma 3.1. Thus r(M) is an

admissible subset of D(A).
It remains to prove that r (

∨
M) =

∨
r(M) (all other claims follow from

Proposition 3.4 and Proposition 3.6). Since D(A) is a sup-algebra, the join of
r(M) exists and, in fact,

∨
r(M) =

∨

m∈M

r(m) =
⋂

{

S ∈ D(A)
∣
∣
∣

⋃

m∈M

m↓ ⊆ S

}

.

If S is a D-ideal with
⋃

m∈M m↓ ⊆ S, then M ⊆ S and hence
∨

M ∈ S by the
definition of a D-ideal. This yields (

∨
M) ↓ ⊆ S, and thus r (

∨
M) ⊆ ∨

r(M).
The inclusion

∨
r(M) ⊆ r (

∨
M) is clear. �

Example 4.2. In general, r need not preserve existing joins. Let A = {a, b, c}
be a commutative posemigroup with the multiplication and order given in
Figure 1.

Its quantale of D-ideals is D(A) = {a↓, b↓, c↓, {b, c}, ∅}. We see that
r(

∨{b, c}) = r(a) = {a, b, c}, but
∨

r({b, c}) = {b} ∨ {c} =
⋂

{S ∈ D(A) | {b, c} ⊆ S} = {b, c}.

Our main result is the following. It generalizes, for example, [3, Theo-
rem 3] about lattices and [9, Theorem 3.2] about S-posets.

Theorem 4.3. Let A be an ordered algebra. Then, for every sup-algebra Q and
every OAlg∗-morphism f : A → Q, there exists a unique SupAlg-morphism
g : D(A) → Q such that the diagram
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A r ��

f
���

��
��

��
��

D(A)

g

���
�
�

Q

commutes.

Proof. Proposition 4.1 has established that r is an OAlg∗-morphism. Given
a sup-algebra Q and a morphism f : A → Q in the category OAlg∗, define
g : D(A) → Q by

g(D) =
∨

d∈D

f(d)

for every D-ideal D of A. We need to prove that g is a join-preserving sup-
algebra homomorphism. For every ω ∈ Ω0, using Lemma 3.5, we have

g
(
ωD (A)

)
=

∨

d∈ωA↓
f(d) = f(ωA) = ωQ.

We also need to prove the equality

ωQ(g(D1), . . . , g(Dn)) = g(ωD (A)(D1, . . . , Dn))

for any n ∈ N, ω ∈ Ωn and D-ideals D1, . . . , Dn of A. By the definition of g,
we have

g(ωD (A)(D1, . . . , Dn)) =
∨

d∈ωD (A)(D1,...,Dn)

f(d),

where, according to (3.3),

ωD (A)(D1, . . . , Dn) =
⋂

{S ∈ D(A) | ωP (A)(D1, . . . , Dn) ⊆ S}. (4.1)

We compute

ωQ(g(D1), . . . , g(Dn)) = ωQ

(
∨

d1∈D1

f(d1), . . . ,
∨

dn∈Dn

f(dn)

)

=
∨

d1∈D1,...,dn∈Dn

ωQ(f(d1), . . . , f(dn)) (Q is a sup-algebra)

=
∨

d1∈D1,...,dn∈Dn

f(ωA(d1, . . . , dn)) (f is a homomorphism)

=
∨

d∈ωP (A)(D1,...,Dn)

f(d). (operations in P(A))

By (4.1) we have ωP (A)(D1, . . . , Dn) ⊆ ωD (A)(D1, . . . , Dn), so in Q we
obtain the inequality ωQ(g(D1), . . . , g(Dn)) � g(ωD (A)(D1, . . . , Dn)).
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To prove the opposite inequality, we first show that, for every q0 ∈ Q,
the subset

K = {a ∈ A | f(a) � q0}
of A is a D-ideal. Since f is monotone, K is a lower subset of A. Assume that
M ⊆ K is an admissible subset. By the definition of K , f(m) � q0 for every
m ∈ M . As f preserves admissible joins, we obtain

f
(∨

M
)

=
∨

m∈M

f(m) � q0,

which means that
∨

M ∈ K . Thus K is a D-ideal.
Now consider K corresponding to the element

q0 :=
∨

d∈ωP (A)(D1,...,Dn)

f(d) = ωQ(g(D1), . . . , g(Dn)).

Then we have ωP (A)(D1, . . . , Dn) ⊆ K . Since K is a D-ideal of A, it belongs
to the set {S ∈ D(A) | ωP (A)(S1, . . . , Sn) ⊆ S} and hence (4.1) implies that
ωD (A)(D1, . . . , Dn) ⊆ K . We conclude that

g(ωD (A)(D1, . . . , Dn)) =
∨

d∈ωD (A)(D1,...,Dn)

f(d) �
∨

d∈K

f(d)

� q0 = ωQ(g(D1), . . . , g(Dn)).

The equality g(ωD (A)(D1, . . . , Dn)) = ωQ(g(D1), . . . , g(Dn)) follows.
Next we verify that g preserves joins. Assume that {Di | i ∈ I} is a set

of D-ideals of A. Write D̃ =
∨

i∈I

Di for the join in D(A). Then

D̃ =
⋂{

S ∈ D(A)
∣
∣
∣ D ⊆ S

}
,

where D =
⋃

i∈I Di. The inequality
∨

i∈I g(Di) � g
(∨

i∈I Di

)
is clear. We put

q0 :=
∨

d∈D f(d) and consider the set

K̃ =
{

a ∈ A
∣
∣
∣ f(a) � q0

}
.

Then K̃ is also a D-ideal of A by the argument that we used for K above.
Since K̃ is a D-ideal and D ⊆ K̃ , we have D̃ ⊆ K̃ . So

∨
d∈D̃ f(d) �

∨
d∈K̃

f(d). For every a ∈ K̃ , the inequality f(a) � q0 holds, therefore
∨

d∈D̃ f(d) � q0. Hence we have

g
(∨

i∈I

Di

)
= g

(
D̃

)
=

∨

d∈D̃

f(d)

� q0 =
∨

i∈I

∨

d∈Di

f(d)

=
∨

i∈I

g(Di) � g
(∨

i∈I

Di

)
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yielding
∨

i∈I g(Di) = g
(∨

i∈I Di

)
.

It is straightforward to check that gr = f . It remains to show that g is
unique with that property. Suppose that h : D(A) → Q is a SupAlg-morphism
such that hr = f . Then h(a↓) = f(a) for every a ∈ A. For any D ∈ D(A),

∨

d∈D

(d↓) =
⋂

{

S ∈ D(A)
∣
∣
∣

⋃

d∈D

d↓ ⊆ S

}

=
⋂

{S ∈ D(A) | D ⊆ S} = D,

(4.2)

so

g(D) =
∨

d∈D

f(d) =
∨

d∈D

h(d↓) = h

(
∨

d∈D

(d↓)

)

= h(D).

This completes the proof. �

Example 4.4. In general, g is not an order-embedding when f is an order-
embedding in Theorem 4.3.

Let S = {a, b, c} be the posemigroup considered in Example 4.2. Then
Q = S0 with externally adjoined zero element 0 being the bottom element is
also a posemigroup. If f : S −→ Q is the inclusion mapping then

g({b, c}) = f(b) ∨ f(c) = f(a) = g(a↓) = g({a, b, c})

shows that g is not an order-embedding.

Proposition 4.5. SupAlg is a reflective subcategory of OAlg∗ with the reflector
functor D : OAlg∗ → SupAlg defined by the assignment

A rA ��

f

��

D(A)

D (f)

��
B rB �� D(B)

where D(f)(D) = j(f(D)↓) for every D ∈ D(A) and j : P(B) → P(B) is
defined as in (3.2).

Proof. By Theorem 4.3, we know that SupAlg is a reflective subcategory of
OAlg∗. Hence the inclusion functor SupAlg → OAlg∗ has a left adjoint functor
D : OAlg∗ → SupAlg which, by [1, Proposition 4.22], can be described explicitly
as follows. It maps an object A of the category OAlg∗ to an object D(A)
of SupAlg and a morphism f : A → B in OAlg∗ to the unique morphism
D(f) : D(A) → D(B) in SupAlg such that the square

A
rA ��

f

��

D(A)

D (f)

��
B

rB �� D(B)
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commutes. Using (4.2) we conclude that

D(f)(D) = D(f)

(
∨

d∈D

rA(d)

)

=
∨

d∈D

D(f) (rA(d)) =
∨

d∈D

rB (f(d))

=
∨

d∈D

f(d)↓ = j

(
⋃

d∈D

f(d)↓
)

= j(f(D)↓),

for each D ∈ D(A). �
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