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Abstract. A variety is a category of ordered (finitary) algebras presented
by inequations between terms. We characterize categories enriched over
the category of posets which are equivalent to a variety. This is quite
analogous to Lawvere’s classical characterization of varieties of ordinary
algebras. We also study the relationship of varieties to discrete Lawvere
theories, and varieties as concrete categories over Pos.
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1. Introduction

Classical varieties of (finitary) algebras were characterized in the pioneering
dissertation of Lawvere [13] as precisely the categories of models of Lawvere
theories, see Section 5. Lawvere further characterized varieties as the categories
with effective equivalence relations which have an abstractly finite, regularly
projective regular generator. In [1] we have simplified this: a category is equiv-
alent to a variety iff it has
(1) reflexive coequalizers and kernel pairs, and
(2) an abstractly finite, effectively projective strong generator G.

Effective projectivity means that the hom-functor of G preserves reflexive
coequalizers—we recall this in Section 2. Abstract finiteness is a condition
much weaker than finite generation (see Example 3.20). We have also pre-
sented another characterization: varieties are precisely the free completions of
duals of Lawvere theories under sifted colimits [4].

The aim of our paper is to present a categorical characterization of vari-
eties of ordered algebras. These are classes of ordered Σ-algebras (for finitary
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signatures Σ) that are specified by inequations between terms. Example: or-
dered monoids, or ordered monoids whose neutral element is the least one. Our
characterization of categories equivalent to varieties of ordered algebra turns
out to be analogous to the conditions (1) and (2) above, but we have to work in
the realm of categories enriched over Pos, the (cartesian closed) category of
posets and monotone maps. That is, a category is always equipped with a par-
tial order on every hom-set, and composition is monotone. The concepts used
by Lawvere need to be modified accordingly. Whereas in ordinary category one
works with regular epimorphisms (coequalizers of parallel pairs) we work with
subregular epimorphisms e : X → Y which are the coinserters of parallel pairs
(i.e. there exist u0, u1 : U → X such that e is universal w.r.t. eu0 ≤ eu1). This
leads to a modification of effective projectivity: we call G subeffective pro-
jective if its hom-functor into Pos preserves reflexive coinserters. Our main
result characterizes varieties of ordered algebras via strong generators that are
abstractly finite subeffective projectives.

Power introduced discrete Lawvere theories [16] that, for categories en-
riched over Pos, we recall in Section 5. We prove that varieties of ordered
algebras are precisely the enriched models of discrete Lawvere theories. From
this Kurz and Velebil [11] derived that they are precisely the free comple-
tions of duals of discrete Lawvere theories under (enriched) sifted colimits; we
present a simplified proof in Section 5.

We can also view a variety V of ordered algebras as a concrete category
by considering its forgetful functor U : V → Pos. Using the above results, we
derive a characterization of varieties as concrete categories in Section 6.

Related Work. Varieties of (possibly infinitary) ordered algebras were studied
already in the 1970’s by Bloom [5], and they were characterized as concrete
categories by Bloom and Wright [6]. In Section 6 we show that the charac-
terization in the latter paper, when restricted to finitary signatures, is closely
related to our main result. However, we have not found an easy way of deriving
one of those results from the other one.

Kurz and Velebil published more recently a fundamental paper on this
topic [11] in which the main subject is the exactness property for categories
enriched over Pos. The definition in [11] is quite natural, but rather involved,
based on the technical concept of congruence (Definition 3.8 in loc.cit.). For
exact enriched categories the characterization of finitary varieties in their The-
orem 5.9 is essentially the same as in our main result, Theorem 4.7 below. So
the main message of our paper is that one does not need exactness to char-
acterize varieties of ordered algebras as abstract categories. (The exactness
is ‘condensed’ into properties of the given generator.) Kurz and Velebil also
proved that finitary varieties of ordered algebras are precisely the monadic
categories over Pos for strongly finitary monads; see [2] for a simplified proof.
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2. Lawvere’s characterization of varieties

We recall shortly two of the major results of Lawvere’s famous dissertation:
a characterization of categories equivalent to varieties in the classical sense
(classes of Σ-algebras presented by equations) and algebraic theories as a syn-
tax for varieties. Varieties are considered as categories with homomorphisms
as morphisms.

Let Σ be a finitary signature. Given a variety K of Σ-algebras, every set
generates a free algebra of K. Denote by G the free algebra on one generator.
Then G is
(a) abstractly finite which means that all copowers M.G =

∐
M G (M a

set) exist and every morphism f : G → M.G factorizes through a finite
subcopower M ′.G ↪→ M.G (M ′ ⊆ M finite),

(b) a strong generator with copowers, i.e., all copowers M.G exist and every
object X is an extremal quotient of a copower via the canonical map
cX = [f ] :

∐
f : G→X G → X, and

(c) a regular projective, i.e., K(G,−) preserves regular epimorphisms.

Theorem 2.1 (Lawvere [13], Theorem 2.1). A category is equivalent to a va-
riety of finitary algebras iff it has
(1) coequalizers and finite limits,
(2) effective equivalence relations (i.e. every equivalence relation is a kernel

pair of its coequalizer), and
(3) a regular generator which is an abstractly finite regular projective.

Remark 2.2. ‘Coequalizers’ in Condition (1) are missing in [13]. This seems
to be just a typo: at the end of the proof of Theorem 2.1 Lawvere forms a
coequalizer

=
r of a parallel pair without commenting why it exists.

There is another important property of G related to reflexive coequalizers.
A pair u, v : X → Y is called reflexive if it consists of split epimorphisms with
a joint splitting d : Y → X (u · d = v · d = id). A reflexive coequalizer is a
coequalizer of a reflexive pair. Whereas in varieties coequalizers are not Set-
based in general, reflexive coequalizers are, see [4]. It then follows that G has
the following property introduced by Pedicchio and Wood [15]:

Definition 2.3. An object is called an effective projective if its hom-functor
preserves reflexive coequalizers.

Effective equivalence relations can be deleted from the above theorem,
provided that in Condition (3) we replace regular projective by effective pro-
jective. This was observed by Pedicchio and Wood [15]. In [1] a full proof of
the following modified theorem is presented:

Theorem 2.4. A category is equivalent to a variety of finitary algebras iff it
has
(1) reflexive coequalizers and kernel pairs, and
(2) a strong generator which is an abstractly finite effective projective.
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A pioneering result of Lawvere’s thesis was a characterization of varieties
as categories of models of algebraic theories. Let us recall this.

Notation 2.5. Denote by

N

the full subcategory of Set on all natural numbers n = {0, . . . , n−1}. We have
a canonical strict structure of finite coproducts in N : given natural natural
numbers n and k we equip n+ k with the injections n → n+ k given by i �→ i,
and k �→ n + k given by j �→ n + j.

Definition 2.6. An algebraic theory is a small category T whose objects are
natural numbers and having finite products together with a functor I : N op →
T which is identity on objects and strictly preserves finite products.

The category ModT of models has as objects functors A : T → Set
preserving finite products, and as morphisms natural transformations.

Theorem 2.7 (Lawvere). Varieties are, up to equivalence, precisely the cate-
gories of models of algebraic theories.

Whereas limits in a variety V are computed on the level of Set (indeed,
they are preserved by the forgetful functor U : V → Set), colimits in gen-
eral are not. However, U preserves directed colimits and (as remarked above)
reflexive coequalizers. These two types of colimits are generalized as follows:

Definition 2.8 ([4]). A small category D is called sifted if for all diagrams
D : D → Set in Set colimits commute with finite products.

A sifted colimit in a category is a colimit of a diagram whose domain is
a sifted category.

Example 2.9. Both directed colimits and reflexive coequalizers are sifted col-
imits. And these two types are, in a way, exhaustive. For example, if K and L
are categories with colimits, then a functor F : K → L preserves sifted colimits
iff it preserves filtered colimits and reflexive coequalizers, see [4].

Notation 2.10. For every category K denote by SindK the free completion
under sifted colimits: given a category L with sifted colimits, every functor
F : K → L has an extension F ′ : SindK → L preserving sifted colimits, unique
up to a natural isomorphism.

Theorem 2.11 ([4]). Varieties are up to equivalence precisely the categories
SindT op for algebraic theories T .

Remark 2.12. In [4] an object A of a category K is called perfectly presentable
if K(A,−) preserves sifted colimits. If K is a variety, these are precisely the
retracts of free finitely generated algebras of K. Moreover, a full subcategory
T of K representing all perfectly presentable objects (up to isomorphism) is
an algebraic theory with ModT op equivalent to K.
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3. Generators

Assumption 3.1. From now on we work with categories enriched over the
(cartesian closed) category Pos. Thus a category K is understood to have
partially ordered hom-sets and composition is monotone. Also ‘functor’ means
automatically an enriched functor, i.e., one monotone on hom-sets. Natural
transformations in the enriched sense are just the ordinary ones.

Every set is considered as the (discretely ordered) poset.

Remark 3.2. Recall the concept of a coinserter of a parallel (ordered) pair
of morphisms u0, u1 : U → X: it is a morphism f : X → Y universal w.r.t.
fu0 ≤ fu1. That is, given f ′ : X → Y ′ with f ′u0 ≤ f ′u1, then (a) there exists
g : Y → Y ′ with f ′ = gf and (b) for every ḡ : Y → Y ′ from gf ≤ ḡf it follows
that g ≤ ḡ.

Definition 3.3. A morphism is called a subregular epimorphism if it is a coin-
serter of a parallel pair.

Example 3.4. (1) Every subregular epimorphism f : A → B is an epimorphism
– indeed, it has the stronger property that for parallel pairs u1, u2 : B → C we
have u1 ≤ u2 iff u1f ≤ u2f .

If a category has finite copowers, every regular epimorphism f : A → B
is subregular: if f is the coequalizer of u, v : C → A, then it is the coinserter
of [u, v], [v, u] : C + C → A.

(2) In Pos subregular epimorphisms are precisely the epimorphisms, i.e.,
the surjective morphisms. See Proposition 4.4 for a more general statement.

(3) If If e = qp is a subregular epimorphism, then so is q. Indeed, let u0,
u1 be a parallel pair with coinserter e. It is easy to verify that q is a coinserter
of pu0 and pu1.

Definition 3.5. By a subkernel pair of a morphism f : X → Y is meant a
parallel pair u0, u1 : U → X universal w.r.t. fu0 ≤ fu1. That is:
(1) every pair v0, v1 : V → X with fv0 ≤ fv1 factorizes as vi = ui · k for

some k : V → U , and
(2) whenever k̄ : V → U fulfils uik ≤ uik̄ for i = 0, 1, then k ≤ k̄.

Example 3.6. (1) In Pos the subkernel pair of f : X → Y is the pair of pro-
jections of the subposet U of X × X on all (x0, x1) with f(x0) ≤ f(x1).

(2) Every subregular epimorphism f : X → Y is the coinserter of its
subkernel pair. Indeed, let f be the coinserter of v0, v1 : V → X, and let k be
the factorization above. If g : X → Z fulfils gu0 ≤ gu1, then gv0 = gu0k ≤
gu1k = gv1, thus, g factorizes uniquely through f .

Definition 3.7. Let K be an object of an (enriched) category K. A tensor P ⊗K
for a poset P is an object of K such that for every object X of K we have an
isomorphism

Pos
(
P,K(K,X)

)
� K(P ⊗ K,X) (3.1)

in Pos, natural in X ∈ K. We say that K has tensors if P ⊗K exists for every
poset P .
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Example 3.8. (1) In Pos, P ⊗ K is just the categorical product P × K.
(2) In a variety K of ordered algebras, let K be the free algebra on one

generator. Then P ⊗ K is the free algebra on P . Indeed, for every algebra X
in V the poset K(K,X) is precisely the underlying poset |X| of X, thus the
left hand side of (3.1) consist of all monotone functions from P to |X|. And
they naturally correspond to homomorphism from P ⊗ K to X.

Notation 3.9. The isomorphism (3.1) is denoted by

P
f �� K(K,X)

P ⊗ K
f̂

�� X

Example: given an object K, then for each object X the identity of K(K,X)
yields the canonical morphism

cX = îd: K(K,X) ⊗ K → X .

The following is an ‘inverse’ example: we define

ηP : P → K(K,P ⊗ K) by η̂P = idP⊗K .

Example 3.10. For a natural number n, considered as the discrete poset
{0, . . . , n − 1}, we have a copower

n ⊗ K =
∐

n

K .

We denote it by

n.K .

Given n morphisms fi ∈ K(K,X), the corresponding map f : n → K(K,
X) yields

f̂ = [̂fi] : n.K → X .

Proposition 3.11 ([7], Propositions 6.5.5 and 6.5.6). Let G be an object with
tensors. Then the hom-functor

K(G,−) : K → Pos

has the following enriched left adjoint

− ⊗ G : Pos → K .

It assigns to every monotone map p : P → Q the morphism p⊗G corresponding
to P

p−−→ Q
ηQ−−−→ K(X,Q ⊗ X):

p ⊗ G = η̂Q · p : P ⊗ X → Q ⊗ X .

Remark 3.12. (1) The naturality of f �→ f̂ in Notation 3.9 means that this
map is monotone

(
f ≤ g : P → K(G,X) implies f̂ ≤ ĝ

)
and for every mor-

phism h : X → X ′ we have a commutative triangle
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P ⊗ G
f̂

�����������
f̂h

�����������

X
h

�� X ′

where fh ≡ P
f−−→ K(G,X)

h·(−)−−−−−→ K(G,X ′)

(2) For every monotone map p : P → Q in Pos the following implication
holds:

P

f ���
������

p ��

�

Q

g
���������

K(G,Y )

⇒
P ⊗ G

f̂ ���
������
p⊗G ��

�

Q ⊗ G

ĝ��������

Y

This follows from (1) since p ⊗ G = η̂Q · p and for f = ηQ · p we get
fĝ = g · p = f .

(3) The canonical morphism makes for every monotone map p : P →
K(G,X) the following triangle commutative

P ⊗ G

p⊗G

�����������
p̂

			
		

		
		

K(G,X) ⊗ G
cX

�� X

This follows from (1): for f = ηK(G,X) · p we get f̂ = p ⊗ G by Proposi-
tion 3.11. Since ĉX = id, we have fcX = p.

Remark 3.13. (1) Recall from [9] the concept of a weighted colimit in K. Given
a diagram D : D → K and a weight W : Dop → Pos, a weighted colimit is an
object C of K with an isomorphism

K(C,X) ∼= [Dop,K]
(
W,K(D−,X)

)

natural in X ∈ K. The object C is also denoted by colimW D.
Example: tensor P ⊗K is a colimit of the diagram D : 1 → K representing

K weighted by W : 1 → Pos representing P .

(2) Another example: a coinserter of u0, u1 : U → X is the colimit of
the diagram where D is given by a parallel pair (δ0, δ1) to which D assigns
(u0, u1), and W assigns the following monotone maps

•

•

Wδ1

















Wδ0��������������� •

(3) Every left adjoint preserves weighted colimits ( [7], Proposition 6.7.2).
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(4) The dual concept is a weighted limit. Given a diagram D : D → K and
a weight W : D → Pos, a weighted limit is an object L with an isomorphism

K(X,L) � [D,K]
(
W,K(X,D−)

)

natural in X.
(5) Example: the subkernel pair of f : X → Y (Definition 3.5) is the

weighted limit where D is a cospan δ0, δ1 to which D assigns Dδ0 = Dδ1 = f
and W : D → Pos assigns the embeddings of {0} and {1} to the chain 0 < 1,
respectively:

{1}
��

��

δ1

��

W ��

δ0

�� {0} ↪→
•

0

1

•

Example 3.14. (1) Every poset P is a canonical coinserter of the projections
π0, π1 : P (2) → |P |, where |P | is a discrete poset underlying P and P (2) is the
discrete poset of all comparable pairs in P × P . More precisely, the following
is a coinserter:

P (2)
π1 ��

π0
�� |P |

kp �� P

where kp is carried by id|P |.
(2) Consequently, for every object G we have the corresponding coin-

serter:

P (2) ⊗ G
π1⊗G ��

π0⊗G
�� |P | ⊗ G

kp⊗G �� P ⊗ G

Indeed, − ⊗ G preserves coinserters since they are weighted colimits, see
3.13(3).

(3) A reflexive coinserter is a coinserter of a reflexive pair u0, u1 (which
means that u0, u1 are split epimorphisms with a joint splitting). Observe that
the coinserters in (1) and (2) are reflexive: use the diagonal map |P | → P (2).

Notation 3.15. (1) Given a full subcategory A of K (in the enriched sense: the
ordering of hom-sets is inherited from K), we denote by

E : K → PosAop

the functor assigning to an object K the restriction of K(−,K) : Kop → Pos
to Aop.

(2) In particular, if A consists of a single object G, then PosAop
is the

category of posets with a (monotone) action of the ordered monoid K(G,G)op.
Morphisms are the monotone equivariant maps. Here the functor E assigns to
K the poset K(G,K) with the action corresponding to u : G → G given by
precomposition with u.

Definition 3.16. A morphism f : X → Y is called
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(a) an embedding if given morphisms u0, u1 : U → X we have u0 ≤ u1 iff
fu0 ≤ fu1

and

(b) an extremal epimorphism if whenever it factorizes through an embedding
m : Y0 → Y , then m is invertible.

In ordinary categories an object G is called a strong generator provided
that every monomorphism m : X → Y such that

m.(−) : K(G,X) → K(G,Y )

jection is invertible. In case G has copowers, this is equivalent to each canonical
map cK :

∐
f : G→K G → K being an extremal epimorphism (one not factoriz-

ing through a proper subobject of K). Here is the enriched version:

Definition 3.17 (Kelly [9]). An object G of K is a strong generator provided
that the functor E of Notation 3.15(1) is conservative: a morphism m of K is
invertible iff Em is.

Proposition 3.18. Let G be a generator with tensors. Then it is a strong gen-
erator iff all canonical maps

cK : K(G,K) ⊗ G → K (K ∈ K)

are extremal epimorphisms.

Proof. (1) Sufficiency. We are to prove that given a morphism h : K → L
with Eh invertible, then h is invertible. By assumption we have a monotone
map p : K(G,L) → K(G,K) inverse to h.(−). Since G is a generator, this
implies that h is an embedding: given u0, u1 in K(G,K) then hu0 ≤ hu1

iff u0 ≤ u1. Thus all we need to verify is that cL factorizes through h. By
Remark 3.12(1) the composite of p̂ : K(G,L) ⊗ G → K and h is p̂h, where
ph : K(G,L) → K(G,L) sends u : G → L to h

(
p(u)

)
= u. Thus ph = idK(G,L).

By definition cL = îdK(G,L). We conclude that the triangle below commutes

K(G,L) ⊗ G
cL ��

p̂


����������

L

K

h

��









Therefore h is invertible.
(2) Necessity. If G is a strong generator, and if

cK = mh for an embedding m : M → K ,

we are to prove that m is invertible. By assumtion, we just need to prove that
Em = m.(−) : K(G,M) → K(G,K) is invertible. Every morphism f : G → K
yields a unique (monotone) map p : 1 → K(G,K) with f = p̂ (using 1⊗G = G).
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The following diagram commutes:

G
f ��

p⊗G

��

K

K(G,K) ⊗ G

cK

�������������

h
�� M

m

��

due to Remark 3.12 (3). We thus obtain a mapping

d : K(G,K) → K(G,M) , d(f) = h(p ⊗ G) .

The above diagram yields Em · d = id. Since m is an embedding in K, Em is
one in Pos. Thus Em = d−1. �

For the following definition we recall the concept of a slice category A/K.
Let A be a subcategory of K and K ∈ K. The objects of A/K are the mor-
phisms a : A → K with A ∈ A in K. Morphisms to another object a′ : A′ → K
are the morphisms f : A → A′ of A with a = fa′, and their ordering is inherited
from K. We have the forgetful functor D : A/K → K given by D(A, a) = A.

Definition 3.19. A full subcategory A of K is called dense if it satisfies one of
the conditions below—they are equivalent by [9], Theorem 5.1:

1. The functor E : K → PosAop
of Notation 3.15 is full and faithful (f ≤ g

iff Ef ≤ Eg for parallel pairs f , g).
2. (a) For every object K ∈ K and every cocone of D : A/K → K with

codomain L, there exists a morphism k : K → L such that the given cocone is
(k · a)(A,a)∈A/K , and

(b) given a morphism k̄ : K → L with k · a ≤ k̄ · a for all (A, a), it follows
that k ≤ k̄.

The concept of an abstractly finite object (Section 2) has the following
variant in enriched categories.

Definition 3.20. An object G is abstractly finite if it has tensors P ⊗ G (P a
poset) and every morphism f : G → P⊗G factorizes through a finite subtensor:
we have a commutative triangle

Q ⊗ G

m⊗G

��
G

���
�

�
�

�
f

�� P ⊗ G

for some finite subposet m : Q ↪→ P .

Example 3.20. (1) A poset is abstractly finite in Pos (see the beginning of
Section 2) iff it has only finitely many connected components. Thus there
exist abstractly finite posets of an arbitrarily large cardinality.

(2) A free algebra of a variety on an abstractly finite poset is abstractly
finite.
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(3) Every finitely generated object G in a category K is abstractly finite
(but not conversely, as we have seen). Indeed, a copower P.G with P infinite
is a directed colimit of all subcopowers Q.G with Q ↪→ P finite and nonempty.
Given two such objects Q.G and Q′.G, the connecting morphism, in case Q ≤
Q′, is i.G for the inclusion i : Q ↪→ Q′. Since i is a split monomorphism in Set,
i.G splits in K. Thus K(G,−) preserves the above directed colimit, proving
that G is abstractly finite.

Definition 3.21. An object G is subregularly projective if its hom-functor K
(G,−) : K → Pos preserves subregular epimorphisms. That is, given a subreg-
ular epimorphisms e : X → Y , every morphism from G to Y factorizes through
e.

Lemma 3.22. Let K be a category with subkernel pairs and reflexive coinsert-
ers. For every subregularly projective strong generator G with copowers all
canonical maps (Notation 3.9) are subregular epimorphisms.

Proof. Let u0, u1 be a subkernel pair of cX :

U
u1 ��
u0

�� K(G,X) ⊗ G

e

��������������
cX �� X

G

k

���������������

w0

��

w1

��

v1 ��
v0

�� Y

m

������������

Since u0, u1 is obviously reflexive, we can form its coinserter e, and we
get a unique m : Y → X with cX = me. Our task is to prove that m is
invertible. Since cX is an extremal epimorphism (Proposition 3.18) we just
need to prove that m is an embedding. As G is a generator, this amounts to
showing that given v0, v1 : G → Y with mv0 ≤ mv1, it follows that v0 ≤ v1.
Since G is projective w.r.t. subregular epimorphisms, there exist morphisms
wi : G → K(G,X) ⊗ G with vi = e · wi (i = 0, 1). From cXu0 ≤ cXu1 we
conclude cXw0 ≤ cXw1 (using that cXwi = mewi = mvi). Therefore, there
exists k : G → U with wi = uik. This proves v0 ≤ v1 as desired: vi = ewi =
euik. �

Theorem 3.23. Let K be a category with subkernel pairs and reflexive coinsert-
ers. If G is an abstractly finite subregularly projective strong generator, then
the full subcategory of all finite copowers n.G, n ∈ N, is dense.

Proof. (1) Let A denote the full subcategory of K on all n.G =
∐

n
G, n ∈ N.

By Remark 3.19 (1), we are to prove that given objects K and L and a cocone
of the canonical diagram A/K → K with codomain L, notation

n ⊗ G
f �� K

n ⊗ G
f ′

�� L

(n ∈ N)
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then (2a) in 3.19 holds: there exists a morphism

k : K → L with f ′ = kf for all f : n.G → K.

Property (b) in 3.19 follows from (1). Given k̄ with k·f ≤ k̄·f for all f : G → K
(we can restrict ourselves to n = 1), it follows that k · cK ≤ k̄ · cK , use
Remark 3.12(4). Thus k ≤ k̄, since cK is a subregular epimorphism.

(2) We extend (−)′ to all finite tensors of G. Given a finite poset P and
a morphism f : P ⊗ G → K we define f ′ : P ⊗ G → L as follows. We use the
coinserter of Remark 3.14 (2):

P (2).G
π1.G ��

π0.G
�� |P | ⊗ G

kp⊗G ��

f ·kp⊗G
���������

P ⊗ G

f

��
K

(a1)

(For simplifying our notation we assume that ⊗ binds stronger that composi-
tion. Thus f · (kp ⊗G) is written as f ·kp ⊗G.) For f ·kp ⊗G we already have,
since |P |⊗G = |P |.G the corresponding morphism (f ·kp ⊗G)′ : |P |×G → L.
We define f ′ by verifying the following inequality

(f · kp ⊗ G)′ · π0 ⊗ G ≤ (f · kp ⊗ G)′ · π1 ⊗ G . (a2)

Thus, (f · kp ⊗ G)′ factorizes uniquely through the coinserter kp ⊗ G. Then
f ′ : P ⊗ G → L is defined as that factorization:

P ⊗ G
f ′

�� L

|P | ⊗ G

kp⊗G

��

(f ·kp⊗G)′

�����������

(a3)

To verify (a2), use that since (−)′ is a cocone, it is monotone (f ≤ g implies
f ′ ≤ g′) and for every morphism d : n.G → m.G of A we have the following
implication

n.G

f ���
�����

d ��

≤

m.G

g
��������

K

n.G

f ′
���

��
��

�
d ��

≤

m.G

g′
��������

L

(a4)
⇒

Applying this to d = πk.G, for k = 0, 1, we get

(f · kp ⊗ G)′ · (πk.G) = (f · kp ⊗ G · πk ⊗ G)′

= (f · [kp · πk] ⊗ G)′ .
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Since (−)′ is monotone, and kp ·π0 ≤ kp ·π1 implies [kp ·π0]⊗G ≤ [kp ·π1]⊗G
(because − ⊗ G is locally monotone by Proposition 3.11), we get

(f · kp ⊗ G)′ · π0 ⊗ G = (f · [kp · π0] ⊗ G)′

≤ (f · [kp · π1] ⊗ G)′

= (f · kp ⊗ G)′ · π1 ⊗ G .

(3) Given a monotone map u : P → Q we prove the following implication

P ⊗ G

f ���
������
u⊗G ��

�

Q ⊗ G

g
��������

K

⇒
P ⊗ G

f ′
		�

������
u⊗G ��

�

Q ⊗ G

g′
��������

L

Since kP and kQ are carried by identity maps, we have

u · kP = kQ · |u| : |P | ⊗ Q → Q ⊗ G .

Consider the following diagram

|P |.G = |P | ⊗ G
kP ⊗G ��

|u|.G

��

(f ·kP ⊗G)′

��������������
P ⊗ Q

u⊗G

��

f ′

�����������

L

|Q|.G = |Q| ⊗ G

(g·kQ⊗G)′

��������������

kQ⊗G
�� Q ⊗ G

g′

�����������

The square commutes because kP and kQ are carried by identity maps, and the
upper and lower triangles commute by (a3). The left-hand triangle commutes
since (a4) yields for d = |u| ⊗ G the following equality

(
g · kQ ⊗ G

)′ ·
(
u.G

)
=

(
g · kQ ⊗ G · |u| ⊗ G

)′

=
(
g · u ⊗ G · kP ⊗ G

)′

=
(
f · kP ⊗ G

)′
.

Thus the right-hand triangle commutes when precomposed by kP ⊗ G. Since
kP ⊗ G is an epimorphism (see Proposition 3.11), f ′ = g′ · u ⊗ G′.

(4) It follows from Remark 3.12(3) that the canonical morphism cK ful-
fils, for every finite subposet m : M ↪→ K(G,K), that the following triangle
commutes:

M ⊗ G

m⊗G

��

m̂

�����������������

K(G,K) ⊗ G
cK

�� K

(a5)
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Since K(G,K) is a directed colimit of its finite subposets in Pos, we conclude
(from Proposition 3.11 again) that all m ⊗ G form a colimit cocone in K. The
morphisms m̂′ : M ⊗ G → L form a cocone of that diagram. Indeed, given
M1 ⊆ M2 ⊆ K(G,K) we denote by u : M1 → M2 the inclusion map and derive
m̂′

1 = m̂′
2 · u ⊗ G from (2):

M1 ⊗ G
u⊗G ��

m̂1

���
��

��
��

��
��

��
��

��
��

��
��

��

m1⊗G

����������������

�

M2 ⊗ G

m2⊗G

��















m̂2

  ��
��

��
��

��
��

��
��

��
��

��
��

�

K(G,K) ⊗ G

cK

��
K

⇒

M1
u⊗G ��

m̂′
1

!!�
��

��
��

��
��

��
��

��
��

��
��

�

M2

m̂′
2

""  
  
  
  
  
  
  
  
  
  
  
 

L

Thus there exists a unique morphism

q : K(G,K) ⊗ G → L

making the following triangles commutative

M ⊗ G

m⊗G

��

(m̂)′

��!!!!!!!!!!!!!!!!!!

K(G,K) ⊗ G
q

�� L

(a6)

for all finite subposets m : M ↪→ K(G,K). By Lemma 3.22 we can express cK

as a coinserter of a parallel pair u0, u1:

U
u1 ��

u0
�� K(G,K) ⊗ G

cK ��

q

��

K

k
##� � � � � � �

L

In the next point we prove that qu0 ≤ qu1. Thus q factorizes as k · cK . Then
k is the desired morphism: we prove

f ′ = k · f for all f : n ⊗ G → K .

It is sufficient to verify this for n = 1 since for general f = [f0, . . . , fn] we have
f ′ = [f ′

0, . . . f
′
n] (apply (a4) to the coproduct injections u : G → n ⊗ G) and

thus f ′
i = k · fi imply f ′ = k · f .
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Given f : G → K we have the subposet m : {f} ↪→ K(G,K) with m̂ = f ,
for which (a6) yields

q · m ⊗ G = f ′ .

Since q = k · cK and cK · m ⊗ G = m̂ = f by (a5), we get

k · f = f ′ .

(5) It remains to verify q · u0 ≤ q · u1. Since G is a generator, this is
equivalent to

q · u0 · r ≤ q · u1 · r for all r : G → U .

For the poset P = K(G,K) we have the morphism k : |P | → P carried by the
identity map. It is a subregular epimorphism in Pos (Example 3.4), thus, due
to Proposition 3.11 k ⊗ G : |P | ⊗ G → P ⊗ G is a subregular epimorphism in
K. Since G is a subregular projective, we have factorizations

uir = (k ⊗ G)u′
i for u′

i : G → |P | ⊗ G (i = 0, 1) .

Moreover, G is abstractly finite, thus there exists a finite subset m : M → |P |
with factorizations

u′
i = (m ⊗ G).vi for vi : G → M.G (i = 0, 1) .

In other words: vi is a factorization of uir through (km) ⊗ G:

G
v1 ��

v0
��

r

��

M ⊗ G

k̂m

�����������������

(km)⊗G

��
U

u1 ��

u0
�� K(G,L) ⊗ G

q

��

cK
�� K

L

We know that cku0r ≤ cku1r, and this by (a5) impllies

k̂mv0 ≤ k̂mv1 .

From (a4) we then obtain k̂m
′
v0 ≤ k̂m

′
v1, thus,

qu0r = k̂m
′
v0 ≤ k̂m

′
v1 = qu1r . �

Remark 3.24. (1) A full subcategory K of L is called reflective if the embedding
K ↪→ L has a left adjoint. Suppose that L has weighted limits and colimits, then
so does every full reflective subcategory ([9], Section 3.5). This is in particular
the case if L is the functor category [Aop, Pos] for A small ([9], Section 3.3).

(2) Let G be an object with copowers in a category with reflexive coin-
serters. Then every parallel pair f , g :

∐
A G →

∐
B G has a conical co-

equalizer. Indeed for X =
∐

A G +
∐

A G +
∐

B G consider the reflexive pair
[f, g, id], [g, f, id] :
X →

∐
B G . Its coinserter is precisely a conical coequalizer of f and g.
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Proposition 3.25. Let G be an abstractly finite, subregularly projective strong
generator in K. If K has subkernel pairs and reflexive coinserters, then it has
weighted limits and weighted colimits.

Proof. (1) Let A be the full subcategory of finite copowers n.G which we know
is dense by Theorem 3.23. This implies that the functor E (Notation 3.15) is
full and faithful. In fact, fullness is precisely (2a) in Definition 3.19. To see the
faithfulness:

Ef0 ≤ Ef1 implies f0 ≤ f1 ,

use (2b) in that definition.
Thus, all we need to prove is that E has a left adjoint (see the last step

of our proof): then we apply Remark 3.24.
(2) Since G, being abstractly finite, has tensors, all copowers M.G exist

and are conical, i.e., given u0, u1 : M.G → X then u0 ≤ u1 iff this holds when
precomposed by every coproduct injection.

(3) For every object H of [Aop, Pos] we construct a conical diagram
DH : EK → K ‘of elements’ of H.

The objects of EH are pairs (A, x) where A ∈ A and x ∈ HA. For a pair
(A, x) and (B, y) of objects morphisms f : (A, x) → (B, y) are those morphisms
f : A → B of A with Hf(y) = x. They are ordered as in A(A,B). And we
define

DH : EH → K , (A, x) �→ A .

From the conical copowers of G it follows that DH has a conical colimit.
We use the standard construction of conical colimits via conical coproducts
and conical coequalizers, completely analogous to the non-enriched case ( [14],
Thm. V.2.1): put

X =
∐

(A,x)

A and Y =
∐

f : (A,x)→(B,y)

B

where X is a coproduct ranging over objects of EH and Y is one ranging over
morphisms of EH . Let us denote the coproduct injections of X by

ix : A → X (x ∈ HA) .

The conical colimit C of DH is then obtained as the following coequalizer
(using Remark 3.24(2)):

Y
p ��

q
�� X

c �� C

where the components of p and q corresponding to f : (A, x) → (B, y) are
ix and iy · f , resp. The colimit cocone is cix : (A, x) → C.

(4) We thus can define a functor

L : [Aop, Pos] → K
by assigning to every object H the colimit

LH = colimDH .
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We verify that L is a left adjoint of E. Now consider an object K ∈ K and the
corresponding object EK = K(−,K)

/
Aop. To give a natural transformation

from H to EK is precisely to give a cocone of DH with codomain K. We thus
obtain the desired natural order-isomorphism

H �� EK

LH �� K

proving that L is left adjoint to E. �

4. Varieties as abstract categories

Notation 4.1. Let Σ = (Σ)n∈N be a signature. The category

Σ-Alg

has as objects ordered Σ-algebras: posets with a structure of a Σ-algebra whose
operations are monotone. Morphisms are the monotone homomorphisms.

A variety of ordered algebras is a full subcategory of Σ-Alg specified by
a set of inequations between terms.

Example 4.2. (1) Ordered monoids form a variety of Σ-algebras for Σ = {◦, e}
specified by the usual monoid equations.

(2) Ordered monoids with the least element e form the subvariety speci-
fied by the inequation e ≤ x.

For a given algebra A a subalgebra is represented by a homomorphism
m : B → A carried by an order-embedding: x ≤ y in B iff m(x) ≤ m(y) in
A. A quotient algebra is represented by a surjective monotone homomorphism
c : A → C. The following result was sketched by Bloom [5], a detailed proof
can be found in [2].

Birkhoff Variety Theorem 4.3. A full subcategory of Σ-Alg is a variety (i.e.,
can be presented by a set of inequations) iff it is closed under products, subal-
gebras and quotient algebras.

Homomorphic images in varieties are precisely the subregular quotients:

Proposition 4.4. Subregular epimorphisms in a variety of ordered algebras are
precisely the surjective homomorphisms.

Proof. (1) If h : A → B is subregular, say, a coinserter of u0, u1 : U → A, then
it is surjective. Indeed, the subalgebra B′ of B on h[A] lies in our variety V,
and h restricts to a morphism h′ : A → B′ of V. It clearly satisfies h′u0 ≤ h′u1,
thus, there exists f : B → B′ with h′ = f.h. The inclusion i : B′ → B fulfils

(fi)h′ = fh = h′ ,

thus fi = id since h′ is surjective. From the universal property of h we deduce,
since (if)h = ih′ = h, that if = id. Thus i = f−1, proving that B′ = B, as
stated.
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(2) If h : A → B is surjective in V, let E be the subalgebra of A × A
on all (x, y) with h(x) ≤ h(y). (This is closed under operations since h is a
nonexpanding homomorphism.) From A ∈ V we conclude A × A ∈ V, hence,
E ∈ V. The restricted projections u0, u1 : E → A are morphisms of V with
u0 ≤ u1, and they form clearly a reflexive pair (since E contains the diagonal
of A). It is easy to see that h is a coinserter of u0, u1. �

The concept of effective projective (Definition 2.3) has the following en-
riched variant:

Definition 4.5. An object whose hom-functor (into Pos) preserves coinserters
of reflexive pairs is called a subeffective projective.

Example 4.6. (1) In every variety V the free algebra G on one generator is a
subeffective projective. Indeed, its hom-functor is naturally isomorphic to the
forgetful functor U : V → Pos.

As proved in [2], U is a monadic functor preserving reflexive coinserters.
(2) Moreover, G is finitely presentable in the enriched sense since U is

finitary. And it is a subregular generator. Indeed, the universal property of
P ⊗ G implies for every poset P that

P ⊗ G is a free algebra onP inV .

For every algebra K in V the canonical homomorphism

cK : V(G,K) ⊗ G → K

is the unique extension of idK to a homomorphism from the free algebra on
UK to K, and this is a subregular epimorphism by Proposition 4.4.

(3) Finally, G is a strong generator (Definition 3.17). Indeed,

U : V → Pos

is conservative, thus so is E : V → PosV(G,G)op because U = V · E for the
forgetful V : PosV(G,G)op → Pos.

Remark 4.7. Every subeffective projective is a subregular projective, provided
that subkernel pairs exist. Indeed, every subregular epimorphism is the coin-
serter of its subkernel pair (which is reflexive).

Theorem 4.8. A category with reflexive coinserters is equivalent to a variety of
ordered algebras iff it has a subregular generator which is an abstractly finite
subeffective projective.

Proof. In view of the previous example we need to prove only the sufficiency:
if K has subkernel pairs and reflexive coinserters and a generator G with the
above properties, then it is equivalent to a variety. Recall from Proposition 3.25
that K has weighted limits and colimits.

(1) K has a factorization system with E all subregular epimorphisms
(coinserters of some pairs) and M all embeddings m (Definition 3.16). Indeed,
let f : X → Y be a morphism and choose a subkernel pair p0, p1 : P → X.
It is clearly reflexive. Let c : X → Z be a coinserter of p0, p1 and m : Z → Y
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the unique morphism with f = m · c. The proof that m is an embedding is
completely analogous to point (1) of the proof of Theorem 3.23.

(2) We now define a full embedding E : K → Σ-Alg for the following
signature Σ:

Σn = K0(G,n.G) (n ∈ N) .

That is, an n-ary operation symbol is precisely a morphism σ : G → n.G of K0,
the ordinary category underlying K.

The algebra EK assigned to an object K has the underlying poset K(G,K).
Given an n-ary operation σ and an n-tuple (f0, . . . , fn−1) in
K(G,K) we form the morphism [fi] : n.G → K, and define the result of σEK

in our n-tuple as the following composite

σEK(fi) ≡ G
σ−−→ n.G

[fi]−−−→ K .

To every morphism h : K → L we assign the homomorphism

Eh = K(G,h)

of post-composition with h. Then Eh is clearly monotone. Preservation of
σ : G → n.G is clear:

Eh
(
σEK(fi)

)
= h · [fi] · σ = [h · fi] · σ = σEL(h · fi) .

(2a) E is a fully faithful functor. To prove that it is full, let k : EK → EL
be a homomorphism. By Theorem 3.23 it is sufficient to verify the naturality
of the following transformation

n.G
[fi] �� K

n.G
k(fi) �� L

That is, we need to prove the following implication for all morphisms
u : n.G → m.G (n,m ∈ N):

n.G

[fi] ���
�����

u ��

�

m.G

[gj ]��������

K

⇒
n.G

[k(fi)] ���
��

��
�

u ��

�

m.G

[k(gj)]��������

L

From this it follows that there exists h : K → L with h · [fi] = [k(fi)] for all
[fi] : n.G → K. The case n = 1 then yields

h · f = k(f) for all f : G → K

in other words, Eh = k, as desired.
The above implication is clear if n = 1: here u is an m-ary operation

symbol in Σ and f0 = [gj ] · u = uEK(gj). Since k is a homomorphism, we
deduce

k(f0) = uEL

(
k(gj)

)
=

[
k(gj)

]
· u .
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For n > 1 that implication follows by considering the n components of u
separately.

To prove that E is faithful, that is given k0, k1 : K → L with Ek0 ≤ Ek1,
we conclude k0 ≤ k1, use that fact that by Lemma 3.22 the canonical morphism
cK :

∐
K(G,K) G → K is a subregular epimorphism.

(2b) E preserves limits, filtered colimits, and reflexive coinserters. In fact,
if U : Σ-Alg → Pos denotes the forgetful functor, then

U · E = K(G,−) : K → Pos .

U creates limits, filtered colimits and reflexive coinserters by Example 4.6.
Since K(G,−) preserves all those three types of constructions, so does E.

(3) K is equivalent to a variety. For that denote by K̄ the closure of
the image of E under isomorphism in Σ-Alg. From (2a) we know that K is
equivalent to K̄. We now use the Birkhoff Variety Theorem 4.3 to prove that
K̄ is a variety.

(3a) K̄ is closed under products because K has products by Proposi-
tion 3.25 and E preserves them.

(3b) K̄ is closed under subalgebras. It is sufficient to prove this for finitely
generated subalgebras. Indeed, K̄ is closed under directed colimits (since K
has them and E preserves them), and every subalgebra is a directed colimit of
finitely generated subalgebras.

Thus our task is, for every object K of K and every finite subposet
m : M ↪→ K(G,K), to prove that the least subalgebra of EK containing m
lies in K̄. Factorize m̂ : M ⊗ G → K as a subregular epimorphism c followed
by an embedding u :

M ⊗ G
m̂ ��

c
�� ����������� K

L
��

u

��""""""""

We will prove that Eu represents the least subalgebra containing m.
That this is a subalgebra of EK is clear: we know that Eu is a monotone
homomorphism, and we have: Eu(x0) ≤ Eu(x1) implies x0 ≤ x1 because u is
an embedding with u · x0 ≤ u · x1.

We verify that every subalgebra B of K containing M :

M ⊆ UB ⊆ K(G,K)

also contains the image of Eu. That is:

u · z ∈ B for all z : G → L .

We know that since G is a subeffective projective, K(G, c) is surjective, thus,
z factorizes as z = c · z′ for some z′ : G → M ⊗ G. We next use that K(G,−)
preserves the following reflexive coinserter

M (2).G
π0.G ��

π1.G
�� |M |.G kM⊗G �� M ⊗ G
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of Example 3.14. Thus, z′ : G → M ⊗ G factorizes through kM ⊗ G via
an operation

σ : G → |M | ⊗ G

of arity card |M |:

|M |.G

m̂0



kM⊗G �� M ⊗ G
m̂ ��

c

$$######## K

G

σ

%%$$$$$$$ z′

��%%%%%%%

z
�� L

u

&&�������

The morphism m0 = m · kM : |M | → K(G,K) fulfils m̂0 = m̂ · kM ⊗G by
Remark 3.12(2), therefore,

u · z = m̂0 · σ = σEK(m0) .

Since B is closed under σEK and contains m0, this proves u · z ∈ B.
(3c) K̄ is closed under quotient algebras. Let e : EK → A be a surjective

homomorphism. Form its subkernel pair u0, u1 : Z → UEK in Pos. Then Z is
closed in UEK×UEK � UE(K×K) under operations. Indeed, let σ be an n-
ary operation. If an n-tuple f0, . . . , fn−1 : G → K×K lies in Z, more precisely,
it factorizes through 〈π0, π1〉 : Z ↪→ UE(K ×K), we have fi = 〈π0, π1〉.gi from
which we deduce that σE(K×K(fi) lies in Z:

σE(K×K(fi) = [fi].σ = 〈u0, u1〉 · [gi] · σ .

By (3a) and (3b) there exists a subobject m = [m0,m1] : M → K × K with
Em0, Em1 forming the prekernel pair of e. Since m0, m1 is a reflexive pair, E
preserves its coinserter k : K → L. Thus A � EL lies in K̄.

�

5. Varieties as free completions

The aim of this section is to prove a parallel result to Theorem 2.11: vari-
eties of ordered algebras are precisely the free completions of T op under sifted
(weighted) colimits, where T ranges over discrete Lawvere theories. This latter
concept was introduced by Power [16] for algebras of countable arities. The
corresponding finitary variant uses N of Notation 2.5, now considered as a
trivially enriched category: all hom-sets are discrete.

Recall that all categories, functors etc. are enriched over Pos.

Definition 5.1 ([16]). A (finitary) discrete Lawvere theory is a small enriched
category T with specified finite products together with a functor I : N op → T
which is identity on objects and strictly preserves finite products.

The category ModT of models is now defined analogously to the ordinary
case: it consists of (enriched) functors A : T → Pos preserving finite products
and natural transformations.
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Example 5.2. The discrete Lawvere theory TV associated to a variety of or-
dered algebras V has as objects natural numbers, the hom-poset TV(n, 1) is
the underlying poset of the free algebra of V on n, and TV(n, k) = TV(n, 1)k.
Thus n is the power of 1: the projection πi : n → 1 corresponds to i as an
element of the free algebra on n.

Every algebra A of V defines a model Â of TV : to each n it assigns
the underlying poset of An. To every morphism f ∈ TV(n, 1) it assigns the
monotone map f̂ : An → A which, given an n-tuple h : n → A, extends it to
the unique homomorphism h� : TV(n, 1) → A and yields

f̂(h) = h�(f) .

We now turn to sifted colimits in the enriched setting (cf. Definition 2.8)
following the dissertation of Bourke [8] (where the base category of categories
was considered) and the paper [11] in which the appropriate adaptation to
Pos was made explicit:

Definition 5.3 ([8]). A weight W : Dop → Pos is called sifted if colimits of
diagrams in Pos weighted by W commute with finite products: given dia-
grams D1, D2 : D → Pos, the canonical morphism colimW (D1 × D2) →
( colimW D1) × ( colimW D2) is an isomorphism.

Weighted colimits in a category are called sifted colimits if the weight is
sifted.

Example 5.4. (1) Filtered colimits (those where D has a filtered underlying
category) are sifted.

(2) Reflexive coinserters are sifted colimits [2].
(3) Also split coequalizers are sifted colimit. This follows from [12] 1.3,

because split coequalizers are absolute colimits (i.e. every functor preserves
split coequalizers). This can be directly verified as follows. Let

A
d0 ��
d1

�� B
e �� C

be a coequalizer split by t : B → A and s : C → B. That is es = idC ,
d0t = idB and d1t = se. We have

d1td1 = sed1 = sed0 = d1td0.

Conversely, having t : B → A such that d0t = idB and d1td0 = d1td1, we get a
unique s : C → B such that se = d1t.

Hence C is a colimit of the filtered diagram consisting of d0, d1 and t.

Remark 5.5. (1) Analogously to the ordinary categories (see Example 2.9),
the first two cases above are in a way exhaustive. For example, an endofunctor
of Pos preserves sifted colimits iff it preserves filtered colimits and reflexive
coinserters ( [8], 8.45).

(2) For every variety K the forgetful functor U : K → Pos preserves
(indeed: creates) filtered colimits. This is easy to verify.
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Remark 5.6. Following [2, Theorem 4.5], varieties of ordered algebras are, up
to concrete isomorphism, precisely categories of algebras PosT for enriched
monads T on Pos preserving sifted colimits. Moreover, these are up to equiv-
alence precisely the categories of models of discrete Lawvere theories: see The-
orem 7.7 cf [12]. (That result is more general, dealing with a closed category V
and a class φ of limits. Applying it to V = Pos and φ = finite products yields
the above special case.)

The equivalence of op.cit. assigns to every variety V the theory TV : it
turns out that all models of TV are naturally equivalent to Â for algebras
A ∈ V.

Remark 5.7. Let K be an enriched category. By its free completion under sifted
colimits is meant an enriched category SindK with sifted colimits containing K
as a full subcategory having the expected universal property: for every functor
F : K → L where L has sifted colimits there exists an extension to SindK
preserving sifted colimits, unique up to natural isomorphism.

It follows that the functor category [K,L] is equivalent (via the domain-
restriction functor) to the full subcategory of [ SindK,L] formed by functors
preserving sifted colimits.

Definition 5.8. An object A of K is called perfectly presentable if its hom-
functor K(A,−) : K → Pos preserves sifted colimits.

Remark 5.9. By Example 5.4 every perfectly presentable object is finitely pre-
sentable and a subeffective projective.

Lemma 5.10. Perfectly presentable objects are closed under finite coproducts
and retracts.

Proof. The proof of the first claim is analogous to [12], 5.6.9 The second state-
ment is easy. �
Proposition 5.11. Let K be a variety of ordered algebras. The following prop-
erties of an arbitrary algebra A of K are equivalent:
(1) A is perfectly presentable,
(2) A is finitely presentable and a subregular projective, and
(3) A is a retract of a free algebra on a finite discrete poset.

Proof. (1) ⇒ (2) follows from Example 5.4.
(2) ⇒ (3): Since A is finitely presentable, there is a finite subposet P of A

such that for the free-algebra functor F : Pos → K a surjective homomorphism
e : FP → A exists. The canonical coinserter of P (Example 3.14) is preserved
by F , thus, Fkp : F |P | → FP is also surjective. As in Example 3.6 (2), we can
prove that surjective homomorphisms are coinserters of their subkernel pairs.
Thus e · Fkp : F |P | → A is a subregular epimorphism. Since A is a subregular
projective, this implies that e ·Fkp is a split epimorphism. Thus A is a retract
of F |P |.

(3) ⇒ (1): Since by Remark 5.5 the forgetful functor U : K → Pos
preserves sifted colimits, its left adjoint F : Pos → K preserves perfectly
presentable objects. Thus (1) holds due to Remark 4.7. �
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The following theorem is due to Kurz and Velebil ([11], 6.9 and 6.12). We
present a full proof because it is simpler than that in op.cit.

Theorem 5.12. Let K be a variety of ordered algebras and P its full subcategory
on free algebras on finite discrete posets. Then K = SindP.

Proof. Following [10, Proposition 4.2] and 5.11, all we have to show is that K
is the closure of P under sifted colimits.

(1) A finite poset P is a reflexive coinserter as in Example 3.14. This
yields the following reflexive coinserter in K

FP (2)
Fπ1 ��
Fπ0

�� F |P |
Fkp �� FP

with FP in P.
(2) A free algebra on an arbitrary poset X is a filtered colimit of free

algebras over finite posets. This follows from the fact that the free-algebra
functor from Pos to K preserves colimits:

(3) Finally, every algebra A in K is a split coequalizer of free algebras via
its canonical presentation

FUFUA
εFUA ��
FUεA

�� FUA
εA �� A

Following Example 5.4, this is a filtered colimit. �

Remark 5.13. A concrete category over Pos is a category K together with a
faithful (enriched) ‘forgetful’ functor U : K → Pos.

Given concrete categories (K, U) and (K′, U ′), they are (concretely) equiv-
alent if there exists an equivalence functor E : K → K′ with U = U ′E. Analo-
gously, they are isomorphic if E is an isomorphism.

Theorem 5.14. The following statements are equivalent for an enriched cate-
gory K up to concrete equivalence:
(1) K is a variety of ordered algebras,
(2) K = SindT op for a discrete Lawvere theory T , and
(3) K = ModT for a discrete Lawvere theory T .

Proof. (1)⇔(3) follows from 5.6.
(1)⇒(2) follows from 5.12.
(2)⇒(1): Following [10, Proposition 8.1], SindT op ⊆ ModT . Due to [12,

Theorem 7.7], T op is the category of free T -algebras on finite discrete posets.
Due to 5.12, SindT op = ModT . And we already know that SindT op is a
concretely equivalent to variety of ordered algebras. �

6. Varieties as concrete categories

In Section 4 we have characterized varieties V of ordered algebras as abstract
categories enriched over Pos. In the present section we derive a characteriza-
tion of the forgetful functors U : V → Pos, i.e., varieties as concrete categories.
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As mentioned in Related Work, Bloom and Wright presented a characterization
in [6]. In this section we try and compare this with our results. For categories
which are exact (in the enriched sense over Pos) another such characterization
is due to Kurz and Velebil ([11], Theorem 5.7), however, we are not working
with exactness in our paper.

There is not much difference between characterizing varieties abstractly
or concretely:

Remark 6.1. Let K be a category with tensors.
(1) Every generator G defines a faithful functor

U = K(G,−) : K → Pos

with a left adjoint

φ = − ⊗ G : Pos → K .

(2) Every faithful functor U : K → Pos with a left adjoint F has the
above form for the generator G = φ1.

Thus Theorem 4.8 has the following

Corollary 6.2. A concrete category (K, U) over Pos is equivalent to a variety
iff
(1) K has tensors, subkernel pairs and reflexive coinserters, and
(2) U is a finitary right adjoint which reflects isomorphisms and preserves

reflexive coinserters.

Proof. (a) Let U be the forgetful functor of a variety K. From Example 4.6
we know that U is a right adjoint preserving reflexive coinserters. Following
Proposition 4.4, U reflects subregular epimorphisms. Hence it reflects isomor-
phisms.

(b) Conversely, let (1) and (2) hold. Denote by φ : Pos → K the left
adjoint of U and by T = Uφ the corresponding monad. ε : φU → Id

The object G = φ1 is a strong generator: the functor

E : K → PosK(G,G)op

of Notation 3.15(2) reflects isomorphisms because U does, and we have U ∼=
V.E for the forgetful functor V : PosK(G,G)op → Pos. Indeed, the posets
K(G,K) are isomorphic to UK (naturally in K ∈ K).

Since U is finitary, G is finitely presentable, thus abstractly finite (Ex-
ample 3.20(3)), and since U preserves reflexive coinserters, G is an effective
projective.

In the proof of Theorem 4.8 we have presented a variety K̄ and an
equivalence E : K → K̄ assigning to every object K an algebra on the poset
K(G,K) = UK and to every morphism f : K → L a homomorphism carried
by K(G, f) = Uf . Thus, E is an equivalence of concrete categories. �
Remark 6.3. The above corollary is related to the characterization of varieties
of ordered algebras due to Bloom and Wright [6]. Their main theorem works
with possibly infinitary signatures, but we present now the formulation just
for the finitary ones to make the comparison clearer.
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Theorem 6.4 (Bloom and Wright [6]). A concrete category (K, U) over Pos
is isomorphic to a variety iff

(1) K has coinserters and
(2) U is a finitary right adjoint which

a. preserves and reflects subregular epimorphisms,
b. reflects subkernel pairs, and
c. creates isomorphisms.

Condition (2c) is clearly related to the fact that the theorem deals with
isomorphic categories rather than equivalent ones.

There does not seem to be a direct proof of one of the above results from
the other one.
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Jǐŕı Adámek
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