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Abstract. The existing topological representation of an orthocomple-
mented lattice via the clopen orthoregular subsets of a Stone space
depends upon Alexander’s Subbase Theorem, which asserts that a topo-
logical space X is compact if every subbasic open cover of X admits of a
finite subcover. This is an easy consequence of the Ultrafilter Theorem—
whose proof depends upon Zorn’s Lemma, which is well known to be
equivalent to the Axiom of Choice. Within this work, we give a choice-free
topological representation of orthocomplemented lattices by means of a
special subclass of spectral spaces; choice-free in the sense that our repre-
sentation avoids use of Alexander’s Subbase Theorem, along with its asso-
ciated nonconstructive choice principles. We then introduce a new sub-
class of spectral spaces which we call upper Vietoris orthospaces in order
to characterize up to homeomorphism (and isomorphism with respect
to their orthospace reducts) the spectral spaces of proper lattice filters
used in our representation. It is then shown how our constructions give
rise to a choice-free dual equivalence of categories between the category
of orthocomplemented lattices and the dual category of upper Vietoris
orthospaces. Our duality combines Bezhanishvili and Holliday’s choice-
free spectral space approach to Stone duality for Boolean algebras with
Goldblatt and Bimbó’s choice-dependent orthospace approach to Stone
duality for orthocomplemented lattices.
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1. Introduction

Assuming Alexander’s Subbase Theorem—which asserts that a topological
space X is compact if every subbasic open cover of X admits of a finite
subcover—Goldblatt [15] constructed, for an arbitrary orthocomplemented lat-
tice L, a binary relational structure X±

L , or an orthospace, consisting of all
proper lattice filters F(L) of L (with its associated patch topology, which is
Stone) equipped with a binary orthogonal relation ⊥L⊆ F(L) × F(L) which is
irreflexive and symmetric. In addition, Goldblatt proved that (up to isomor-
phism) every orthocomplemented lattice L arises via the clopen orthoregular
(see Definition 3.4) subsets of X±

L = (X±
L ,⊥L) ordered by set-theoretic inclu-

sion. Much later, Bimbó in [5] introduced a class of topological orthospaces as
a means to characterize (up to homeomorphism and isomorphism with respect
to ⊥) the dual space of X±

L and used this to prove that the category of ortho-
complemented lattices is dually equivalent to the category of orthospaces.

Note that the topological representation just described depends on the
Axiom of Choice, as the proof of Alexander’s Subbase Theorem assumes the
Ultrafilter Theorem, whose proof depends upon Zorn’s Lemma, which is equiv-
alent to the Axiom of Choice. We refer to [19,31] for an in-depth exposition
concerning how the above choice-principles hang together. The indispensabil-
ity of the Axiom of Choice within Goldblatt’s representation is a common
facet among related topological representation theorems of various classes of
ordered algebraic structures. Indeed, Stone’s representation of Boolean alge-
bras via Stone spaces in [32], Priestley’s representation of distributive lattices
via Priestley spaces in [30], Esakia’s representation of Heyting algebras via
Esakia spaces in [13,14], and Jónsson and Tarski’s representation of modal
algebras via modal spaces in [25], all depend upon some nonconstructive choice
principle.

It was however recently demonstrated by Bezhanishvili and Holliday in
[4] that a choice-free topological representation of Boolean algebras is achiev-
able, one which is independent of the Boolean Prime Ideal Theorem. Whereas
Stone’s choice-dependent representation of Boolean algebras shows that any
Boolean algebra B be can represented via the clopen sets of a Stone space X,
Bezhanishvili and Holliday demonstrated independently of the Boolean Prime
Ideal Theorem that every Boolean algebra B arises via the compact open sub-
sets of a spectral space X, which are also regular open in the Alexandroff topol-
ogy UP(X,�) where � is the specialization order over X. In addition, they
established a choice-free categorical dual equivalence between the category of
Boolean algebras and Boolean homomomorphisms and the dual category of
upper Vietoris spaces and spectral p-morphisms.

Their techniques stemmed from Stone’s observation in [33] that distribu-
tive lattices can be represented via the compact open subsets of a subclass
of spectral spaces as well as Tarski’s discovery in [34,35] that the regular
open subsets of a spectral space give rise to a Boolean algebra. In addition,
they incorporated techniques developed by Vietoris in [36] as the subclass of
spectral spaces they employ can also be shown as arising as the hyperspace of
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closed non-empty subsets of a Stone space that comes equipped with the upper
Vietoris topology. The duality established in [4] is closely related to Jipsen and
Moshier’s duality for arbitrary lattices developed in [28] in that they both use
spaces of all (proper) filters. More general duality results include a work by
Hofman, Mislove, and Stralka [22] for semilattices and another by González
and Jansana [17] for posets.

Within this work, we combine Bezhanishvili and Holliday’s choice-free
spectral space approach to Stone duality for Boolean algebras with Gold-
blatt and Bimbó’s choice-dependent orthospace approach to Stone duality for
orthocomplemented lattices as a means to prove a choice-free topological rep-
resentation theorem for the class of orthocomplemented lattices by means of a
special subclass of spectral spaces, independently of Alexander’s Subbase The-
orem and its associated nonconstructive choice principles. We then introduce
a new subclass of spectral spaces which we call upper Vietoris orthospaces as
a means to characterize (up to homeomorphism and isomorphism with respect
to ⊥) the spectral space of proper lattice filters used in our representation. We
then prove that the category induced by this class of spectral spaces, along
with their associated spectral weak p-morphisms, is dually equivalent to the
category of orthocomplemented lattices, along with their associated lattice
homomorphisms. In light of this duality, we proceed by developing a “duality
dictionary” which establishes how various lattice-theoretic concepts (as applied
to orthocomplemented lattices) can be translated into their corresponding dual
upper Vietoris orthospace counterparts.

Throughout the present paper, we assume the general motivations dis-
cussed by Herrlich in [19] of investigating mathematical structures based on
ZF instead of ZFC and also assume the motivations in [4] of applying this gen-
eral constructive (or choice-free) approach to mathematics to the topological
duality theory of ordered algebraic structures.

Our motivations for studying orthocomplemented lattices is two-fold:
First, orthocomplemented lattices, in comparison to Boolean algebras, Heyting
algebras, distributive lattices, etc., are a relatively understudied class of lattice
structures within duality theory. Second, the class of all orthocomplemented
lattices contains various subclasses of lattice structures that behave as alge-
braic models for various quantum logics. For instance, the algebraic model for
quantum logics of a finite dimensional Hilbert space is a modular lattice and
the algebraic model for quantum logics of an infinite dimensional Hilbert space
is an orthomodular lattice, both of which are the most important subclasses
of the class of orthocomplemented lattices. These insights arose, in part, from
the discoveries of Birkhoff and von Neumann in [7].

The contents of this paper are organized in the following manner: In
the second section, we establish the basic algebra of orthocomplemented lat-
tices and discuss some important examples. In the third section, we investigate
orthospaces, spectral spaces, and give the promised choice-free topological rep-
resentation theorem for orthcomplemented lattices. In the fourth section, we
characterize the choice-free duals of the spectral spaces used in our represen-
tation. In the fifth section, we prove the promised choice-free categorical dual
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equivalence theorem. In light of our duality theorem, in the sixth section we
develop a “duality dictionary” which establishes how various lattice-theoretic
concepts (as applied to orthocomplemented lattices) can be translated into
their corresponding dual UVO-space counterparts.

2. Orthocomplemented lattices

In this section, we review the basics of the theory of orthocomplemented lat-
tices. For a more detailed treatment of orthocomplemented lattices and impor-
tant subclasses of these lattices, refer to MacLaren in [27], Bruns and Harding
in [9], and Kalmbach in [26].

2.1. Foundations

We begin by defining the class of orthocomplemented lattices as a variety
(presentable in possibly many distinct signatures) characterized by satisfying
finitely many equations.

Definition 2.1. If L = (L;∧,∨,⊥ , 0, 1) is an algebra of type (2, 2, 1, 0, 0), then
L is an orthocomplemented lattice (henceforth, an ortholattice) when the fol-
lowing equations are satisfied:

(1) a ∧ (b ∧ c) = (a ∧ b) ∧ c (2) a ∨ (b ∨ c) = (a ∨ b) ∨ c
(3) a ∧ b = b ∧ c (4) a ∨ b = b ∨ c
(5) a ∧ (b ∨ a) = a (6) a ∨ (b ∧ a) = a
(7) 1 ∧ a = a (8) 0 ∨ a = a
(9) (a ∧ b)⊥ = a⊥ ∨ b⊥ (10) (a ∨ b)⊥ = a⊥ ∧ b⊥

(11) (a⊥ ∧ b⊥)⊥ = a ∨ b (12) (a⊥ ∨ b⊥)⊥ = a ∧ b
(13) a ∧ a⊥ = 0 (14) a ∨ a⊥ = 1.

Observe that the above formulation guarantees that every ortholattice is
a bounded complemented lattice satisfying De Morgan’s distribution laws for
orthocomplements over meets and joins, so that they are interdefinable lattice
operations with respect to orthocomplements.

Definition 2.2. If L = (L;∧,⊥ , 0) is an algebra of type (2, 1, 0) with a ∨ b :=
(a⊥ ∧ b⊥)⊥ and 1 := 0⊥, then L is an ortholattice if (L;∧,∨) is a lattice and
the following conditions are satisfied:
(1) a ∧ a⊥ = 0
(2) a ≤ b =⇒ b⊥ ≤ a⊥

(3) a⊥⊥ = a.

Conditions 2.2.2 and 2.2.3 guarantee that the orthocomplement opera-
tor ⊥ is a dual order isomorphism that is an involution. That the above two
formulations of an ortholattice coincide can be easily verified.

Although the equations within Definition 2.1 include some redundancies,
they make explicit the fact that the class of ortholattices can simply be viewed
as a variety in which the join and the meet operations need not satisfy the
distributive law, a property characteristic of Boolean algebras. In fact, an
algebra B = (A;∧,∨, ⊥, 0, 1) of type (2, 2, 1, 0, 0) is a Boolean algebra when
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Figure 1. the lattices 2 × 2 and O10

Figure 2. The lattices M3 and N5

B satisfies the equations within Definition 2.1 and in addition, satisfies the
following distribution laws:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (2.1)

Given that Definitions 2.1 and 2.2 of an ortholattice are equivalent, we will
adopt the latter for the sake of simplicity. The Hasse diagrams depicted in
Figure 1 are examples of ortholattices.

Clearly, the 2 × 2 lattice is an example of an ortholattice which is also a
Boolean algebra and hence a distributive lattice. The fact that ortholattices
however in general drop the distributive property is easily exhibited within the
O10 ortholattice which admits of sublattices A,B ⊆ O10 that are isomorphic
to the M3 and N5 lattices, depicted in Figure 2.

Note that this implies that the ortholattice O10 is non-distributive, and
hence, not a Boolean algebra. This is a consequence of the following well known
characterization theorem of distributive lattices.

Theorem 2.3 (Birkhoff [6] and Dedekind [11]). A lattice L is distributive if and
only if there exists no sublattice A ⊆ L isomorphic to either M3 or N5.

If L and L′ are ortholattices, then h : L → L′ is an ortholattice homomor-
phism if h preserves the ortholattice operations from L to L′. An ortholattice
homomorphism h : L → L′ is an isomorphism if h is bijective.

2.2. Examples

Example 2.4. Every Boolean algebra B with Boolean complements taken to
be orthocomplements is an ortholattice.
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Example 2.5. Let H be a Hilbert space over a field F (such as R or C); namely
a real or complex valued inner product space which is also a complete metric
space with respect to the metric induced by the inner product 〈·, ·〉 : H×H → F
associated with H. The collection L(H) of closed linear subspaces of H ordered
by subspace inclusion gives rise to an ortholattice in which each closed linear
subspace X ⊆ H admits of an orthogonal complement defined by X⊥ = {x ∈
H | ∀y ∈ X : 〈x, y〉 = 0}.

Remark 2.6. Note that in particular, if H is a finite dimensional Hilbert space,
then L(H) is a modular lattice and if H is an infinite dimensional Hilbert space,
then L(H) is an orthomodular lattice.

Refer to [3] and [7] for more details pertaining to the modular and ortho-
modular lattices induced by the lattice of closed linear subspaces of H.

3. Representation of ortholattices via spectral spaces

We proceed by examining orthospaces and spectral spaces. We then demon-
strate how certain spectral spaces give rise to the promised choice-free repre-
sentation of ortholattices. Refer to Bell in [3] for an in-depth exposition of the
general theory of orthospaces and Dickmann, Tressl, and Schwartz in [12] for
an in-depth exposition of the general theory of spectral spaces.

3.1. Orthospaces and orthoregularity

Definition 3.1. An orthospace is pair (X,⊥) such that X is a set and ⊥ ⊆ X2

is a binary orthogonality relation which is irreflexive (i.e., ∀x ∈ X, x ⊥ x) and
symmetric (i.e., ∀x, y ∈ X, if x ⊥ y, then y ⊥ x).

In this case,
(1) For every x ∈ X and Y ⊆ X, we define x ⊥ Y ⇐⇒ x ⊥ y for all y ∈ Y .
(2) Given any Y ⊆ X, we define Y ∗ = {x | x ⊥ Y }.

Informally, Y ∗ can be thought of as the set of all points in X that are
orthogonal to every point in Y . The first example of an orthogonality relation
we consider arises via the dot product over a vector space.

Example 3.2. Let R
n be the n-dimensional Euclidean space. Given non-zero

vectors x = [x1, . . . , xn], y = [y1, . . . , yn] ∈ R
n, we have x ⊥ y if and only if

x · y =
n∑

i=1

xiyi = 0.

Orthogonality relations also arise from the function space of integrable
functions that form a vector space equipped with some inner product.

Example 3.3. Define a continuous weight function w over some real closed
interval [a, b]. Then, two continuous functions f, g : R → R are orthogonal if

〈f, g〉w =
∫ b

a

f(x)g(x)w(x)dx = 0.
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For instance, the functions f(x) = 1 and g(x) = x are orthogonal if

〈f, g〉w =
∫ 1

−1

f(x)g(x)dx.

Definition 3.4. Let (X,⊥) be an orthospace. A subset Y ⊆ X is orthoregular
(or ⊥-regular) if and only if Y = Y ∗∗ = {z | z ⊥ Y ∗}.

Example 3.5. Any closed linear subspace X ⊆ R
n is orthoregular in the sense

that X⊥⊥ = X since R
n = X⊕X⊥ meaning that any vector x = [x1, . . . , xn] ∈

R
n can be uniquely written as x = y + z with y = [y1, . . . , yn] ∈ X and

z = [z1, . . . , zn] ∈ X⊥, which implies that 0 = x·z = (y+z)·z = y·z+z ·z = z ·z
and thus z = 0 and x = y.

3.2. Spectral spaces

It will be useful to fix the following notation for important subsets of relational
topological spaces that will be studied throughout this work.

Notation 3.6. Given a topologized orthospace (X,�,⊥, T ) where T ⊆ P(X) is
some topology and � is the specialization order over X, we define the following
collections of subsets of X as follows:
(1) C(X) is the collection of sets that are compact in X;
(2) O(X) is the collection of sets that are open in X;
(3) R(X) is the collection of sets that are orthoregular in X;
(4) UP(X) is the collection of sets that are open in the upset topology (i.e.,

the upward closed or upper set topology) on X;
(5) RO(X) is the collection of subsets that are regular open in the upset

topology UP(X,�) where � is the specialization order over X;
(6) CLOP(X) is the collection of sets that are clopen in X;
(7) CO(X) = C(X) ∩ O(X);
(8) COR(X) = CO(X) ∩ R(X);
(9) CORO(X) = CO(X) ∩ RO(X);

(10) CLOPR(X) = CLOP(X) ∩ R(X).

We will demonstrate that every ortholattice L can be represented as
COR(X) for some spectral space X.

Recall that a space X is a T0 space if X satisfies the weakest separation
axiom for topological spaces; namely, for points x, y ∈ X, if x = y, then there
exists an open set U ∈ O(X) such that x ∈ U and y ∈ U . A space X is a
compact space if every basic open cover of X admits of a finite subcover. A
space X is coherent if CO(X) is closed under intersection and forms a basis
for the topology over X. Lastly, a space X is sober if every completely prime
filter in the lattice O(X) of open sets of X is of the form:

OX(x) = {U ∈ O(X) | x ∈ U}
for some point x ∈ X. We now recall the definition of a spectral space and
then a classical instance of how spectral spaces arise.

Definition 3.7. A topological space X is a spectral space if:
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(1) X is a T0 space;
(2) X is a compact space;
(3) X is a coherent space; and
(4) X is a sober space.

Recall that the spectrum of a commutative ring R is given by spec(R) =
{x ⊆ R | x is a prime ideal} endowed with the Zarski topology of closed sets
of the form {x ∈ spec(R) | y ⊆ x} for some ideal y ⊆ R.

Theorem 3.8. (Hochster [20]) A topological space X is a spectral space if and
only if X is homeomorphic to spec(R) for some commutative ring R.

The following results highlight the importance of spectral spaces for the
purposes of the present article.

Theorem 3.9. (Stone [33]) Every distributive lattice can be represented (up to
isomorphism) as CO(X) for some spectral space X.

Theorem 3.10. (Bezhanishvili and Holliday [4]) Every Boolean algebra can be
represented (up to isomorphism) as CORO(X) for some spectral space X.

Our representation theorem for ortholattices (in Theorem 3.14) is very
much an analogue of the above representation theorem for Boolean algebras.

Definition 3.11. Let L be an ortholattice, let F(L) be the collection of all
proper lattice filters of L, and define â = {x ∈ F(L) | a ∈ x}. Moreover, let
⊥L⊆ F(L) × F(L) be the orthogonality relation defined by:

x ⊥L y ⇐⇒ ∃a ∈ L : a⊥ ∈ x & a ∈ y.

Then, we define the following topological spaces:
(1) X+

L = (X+
L ,⊥L) is the space of proper lattice filters of L whose topology

is generated by {â | a ∈ L}, known as the spectral topology over X+
L .

(2) X±
L = (X±

L ,⊥L) is the space of proper lattice filters of L whose topology
is generated by {â | a ∈ L} ∪ {�â | a ∈ L} (where � is the set-theoretic
complement operator) known as the patch topology over X±

L .

Note that â ∩ b̂ = â ∧ b and so the subbasis {â | a ∈ L} of the spectral
topology for the space X+

L is closed under binary intersections. Moreover, note
that since ⊥L is an orthogonality relation over F(L), ⊥L is symmetric so for
x, y ∈ F(L), we can alternatively define x ⊥L y if and only if there exists some
a ∈ L such that a ∈ x and a⊥ ∈ y.

3.3. The Stone space of an ortholattice

Assuming Alexander’s Subbase Theorem, it was shown in [15] that the space
X±

L with its associated patch topology is a Stone space. As demonstrated in
the following proposition, the use of some choice principle in this claim is
essential.

Proposition 3.12. The following are equivalent:
(1) PIT, the Prime Ideal Theorem for Boolean algebras.
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(2) The space X±
L is compact for all Boolean algebras L.

Before the proof, it is useful to recall that the notion of presentation used
in group theory makes sense in any quasivariety, as noted, for instance, by
Hodges [21, Section 9.2]. For instance, the structure defined by the presentation
in (3.1) below is the quotient of the free Boolean algebra generated by

⋃
i∈I Si

by the congruence generated by those pairs (a ∧ b, 0) satisfying (∗).

Proof. To see that Condition 3.12.(1) implies Condition 3.12.(2), note that
the PIT proves the compactness of X±

L for any Boolean algebra L as the only
choice principle used in Goldblatt [15] Alexander’s Subbase Theorem, which
is equivalent to PIT.

To see that Condition 3.12.(2) implies Condition 3.12.(1), assume that
X±

L is compact for all Boolean algebras L. To show PIT, it suffices [24, Theo-
rem 1] to prove: (1) the existence of a choice function for an arbitrary family of
nonempty finite sets, and (2) the Weak Rado Selection Lemma (whose state-
ment can be found below).

For the proof of the first statement, let S := (Si)i∈I be a family of
nonempty finite sets. Without loss of generality, we may assume that members
of S are pairwise disjoint. Let L be the Boolean algebra presented by

〈
⋃

i∈I

Si |

⎧
⎪⎨

⎪⎩
a ∧ b ≈ 0 | a = b ∈ Si, i ∈ I︸ ︷︷ ︸

(∗)

⎫
⎪⎬

⎪⎭

〉
. (3.1)

Consider X±
L . For I ′ ⊆fin I, let FI′ = {u ∈ X±

L | ∀i ∈ I ′ ∃a ∈ Si a ∈ u}. It can
be shown that F := (FI′)I′∈Pfin(I) is a filter basis of X±

L . Since X±
L is compact,

F has a cluster point u+. We show that f := {(i, a) | i ∈ I, a ∈ Si, a ∈ u+}
is a choice function for S. Since u+ is a proper filter of L, at most one a ∈ Si

can belong to u+ by the construction of L. This shows that f is a function.
We now show that dom f = I. Let i ∈ I be arbitrary. Suppose by way of
contradiction that Si ∩ u+ = ∅. Then �â is a neighborhood of u+ for a ∈ Si,
and so is U :=

⋂
a∈Si

�â, which is open as Si is finite. Since u+ is a cluster
point, U ∩ F{i} is nonempty, i.e., ∀a ∈ Si ∃u ∈ F{i} a ∈ u, contradicting the
definition of F{i}.

For the proof of the second statement, we will prove the Weak Rado
Selection Lemma by showing the following: Suppose that for a set Λ there is
a family of functions (γS)S∈Pfin(Λ) such that γS : S → {±1}. Then there is
f : Λ → {±1} such that for all S ⊆fin Λ there exists T ⊆fin Λ with S ⊆ T and
f � S = γT � S.

To that end, let (γS)S be given. Let a Boolean algebra L be defined by
using the same notion presentation as before: L = 〈λ+, λ− | λ+ ≈ ¬λ−〉λ∈Λ,
where we have generators λ+, λ− corresponding to each λ ∈ Λ. For S ⊆fin Λ,
let uS be the filter of L generated by {λ± | λ ∈ Λ, γS(λ) = ±1}. It can be
shown that uS is proper so uS ∈ X±

L . Consider the net (uS)S∈Pfin(Λ), where
the indices are ordered by inclusion. Since X±

L is compact, the net has a cluster
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point u∞. Now we have

∀λ ∈ Λ ∀S ⊆fin Λ ∃T ⊇ S[u∞ ∈ λ̂± ⇒ uT ∈ λ̂± and u∞ ∈ �λ̂± ⇒ uT ∈ �λ̂±],

i.e.,
[λ± ∈ u∞ ⇐⇒ λ± ∈ uT ]. (3.2)

Let f = {(λ,±1) | λ± ∈ u∞}. By a similar argument as before, f is a function
Λ → {±1}. Also, by (3.2), ∀S ⊆fin Λ ∃T ⊇ S f � T = γT (a fortiori, f � S =
γT � S). �

3.4. The representation theorem

In contrast, we will demonstrate independently of Alexander’s Subbase The-
orem (along with its associated nonconstructive choice-principles) that the
space X+

L with its associated spectral topology is a spectral space that repre-
sents (up to isomorphism) the original ortholattice L. We first verify that for
every ortholattice L, the space X+

L gives rise to a spectral space.

Proposition 3.13. For every ortholattice L, the space X+
L is a spectral space

whose specialization order � is given by set-theoretic inclusion.

Proof. To see that X+
L is a T0 space, assume that x, y ∈ X+

L are such that
x = y. If we then suppose without loss of generality that a ∈ x \ y, then a ∈ x
and a ∈ y which implies that x ∈ â and y ∈ â where â ∈ O(X+

L ).
We now show that in fact â is compact for each a ∈ L, whence 1̂ = X+

L

is also compact. Since by definition of the space X+
L , sets of the form â are a

basis for X+
L , it suffices to show that if â ⊆

⋃
i∈I b̂i, then there exists a finite

subcover. With that in mind, assume that â ⊆
⋃

i∈I b̂i, then the principal
filter ↑a = {b ∈ L | a ≤ b} contains one of the bis, which by the definition of
principal filters implies that a ≤ bi which means â ⊆ b̂i, so bi is itself a finite
subcover.

To see that X+
L is a coherent space, first observe that by definition of X+

L ,
it immediately follows that CO(X+

L ) forms a basis. To show that CO(X+
L ) is

closed under binary intersections, let U, V ∈ CO(X+
L ). Then, observe that for

finite index sets I and K, we have U =
⋃

i∈I âi and V =
⋃

k∈K b̂k so

U ∩ V =
⋃

i∈I,k∈K

(âi ∩ b̂k) =
⋃

i∈I,k∈K

âi ∧ bk

and thus U ∩ V is a finite union of compact open sets and therefore we have
U ∩ V ∈ CO(X+

L ).
To show that X+

L is a sober space, it will be sufficient to show that every
completely prime filter xp ⊆ O(X+

L ) is of the form

OX+
L

(x) = {U ∈ O(X+
L ) | x ∈ U}

for some x ∈ X+
L . Hence, let x be the filter in L generated by the set {a ∈

L | â ∈ xp}. The equality xp = OX+
L

(x) is can be seen by first observing that
the inclusion OX+

L
(x) ⊆ xp is immediate by the definition of x and xp being

a filter. For the converse inclusion xp ⊆ OX+
L

(x), assume that
⋃

i∈I âi ∈ xp.
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Since by hypothesis, xp is a completely prime filter, there exists some ai such
that âi ∈ xp, which means that ai ∈ x, hence x ∈ âi. Therefore, we have that
âi ∈ OX+

L
(x) so in particular, we have

⋃
i∈I âi ∈ OX+

L
(x). Therefore, X+

L is a
spectral space.

Finally, note that since X+
L is a T0 space, we have that for x, y ∈ X+

L ,
x ⊆ y implies that x � y. For the converse direction, suppose x ⊆ y. Then for
each basic open â, if x ∈ â i.e., a ∈ x, then a ∈ y i.e., y ∈ â, which implies
that x � y. �

Now that we have seen that given an ortholattice L, spaces of the form
X+

L form a subclass of spectral spaces, we proceed to the promised choice-free
representation theorem for ortholattices.

Theorem 3.14. Given an ortholattice L, the map •̂ : L → COR(X+
L ) is an iso-

morphism where COR(X+
L ) is an ortholattice ordered by set-theoretic inclu-

sion, whose operation for meet is ∩, whose operation for orthocomplement is
∗, and whose bottom universal bound is ∅.

Proof. We first show that the mapping •̂ is an ortholattice homomorphism
L → R(X+

L ), where the codomain is known to be an ortholattice under the
operations ∩, ∗, and ∅ [15, Proposition 1]. We first check that •̂ preserves meets
by demonstrating â ∧ b = â ∩ b̂. For the â ∧ b ⊆ â ∩ b̂ inclusion, assume that
x ∈ â ∧ b so that a ∧ b ∈ x. Then, since a ∧ b ≤ a and a ∧ b ≤ b, we have that
a ∈ x and b ∈ x as x is a filter. Hence, we find x ∈ â and x ∈ b̂, so x ∈ â ∩ b̂.
For the â ∩ b̂ ⊆ â ∧ b inclusion, assume that x ∈ â ∩ b̂. Then, x ∈ â and x ∈ b̂

so a ∈ x and b ∈ x. Since x is a filter, we find that a ∧ b ∈ x and so x ∈ â ∧ b,
as required. Hence, the function •̂ is a homomorphism for ∧.

We now verify that •̂ preserves orthocomplements by demonstrating â⊥ =
(â)∗. For the â⊥ ⊆ (â)∗ inclusion, suppose x ∈ â⊥. Then a⊥ ∈ x which implies
that x ⊥L y for every y ∈ â so x ∈ (â)∗. For the inclusion (â)∗ ⊆ â⊥, suppose
that x ∈ (â)∗ so x ⊥L y for every y ∈ â. Let y = ↑ a = {b ∈ L | b ≥ a} be
the principal filter generated by a ∈ L. Then, we have y =↑a ∈ â so x ⊥L y.
Hence, we have that there exists some b ∈ L such that b⊥ ∈ x and b ∈ y i.e.,
a ≤ b which by Condition 2.2.2 implies that b⊥ ≤ a⊥. Therefore, we have that
a⊥ ∈ x i.e., x ∈ â⊥, as required. Lastly, note that the equality 0̂ = ∅ is obvious.

To show that •̂ is an injection, let a, b ∈ L such that a = b. If a ≤ b, then
↑a ∈ â\ b̂ which means â = b̂. To see that the range of •̂ is COR(X+

L ), suppose
that U ∈ COR(X+

L ). Since U is compact open, we have that U =
⋃n

i=1 âi

for a1, . . . an ∈ L, that is, U is a finite union of basic opens. Since U is also
⊥-regular, we calculate

n̂∨

i=1

ai =
( n⋃

i=1

âi

)∗∗
= U∗∗ = U

so U is in the image of •̂. Since COR is the image of an ortholattice homo-
morphism, (COR(X+

L ),∩,∗ , ∅) is an ortholattice. �
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4. The dual space of an ortholattice

In describing topological spaces throughout this work, we will denote a general
topological space by X = (X, T ) where X is a set and T ⊆ P(X) is some
topology over X. Just as in our discussion of lattices, we will often conflate a
topological space with its underlying carrier set. We proceed by characterizing
the class of spectral spaces which are homeomorphic to the space X+

L for some
ortholattice L.

4.1. UVO-spaces

The following definition is an analogue of the construction given in [4] of the
class of spectral spaces which are homeomorphic to the space X+

B for some
Boolean algebra B.

Definition 4.1. Let X = (X,�,⊥, T ) be an ordered topological space endowed
with an orthogonal binary relation ⊥⊆ X2 and whose specialization order is �,
then X is an upper Vietoris orthospace (henceforth, a UVO-space) whenever
the following conditions are satisfied:
(1) X is a T0 space;
(2) COR(X) is closed under ∩ and ∗;
(3) COR(X) is a basis for X;
(4) Every proper filter in COR(X) is of the form:

CORX(x) = {U ∈ COR(X) | x ∈ U}
for some x ∈ X; and

(5) x ⊥ y =⇒ ∃U ∈ COR(X) : x ∈ U & y ∈ U∗

Note that given a UVO-space X, the requirement that COR(X) form a
basis for X implies the following analogue of the Priestley’s separation axiom:

x � y =⇒ ∃U ∈ COR(X) : x ∈ U & y ∈ U.

Notice that if we replace the compact open ⊥-regular subsets of X by the
clopen upsets of X, then we arrive exactly at Priestley’s separation for the
dual space of a bounded distributive lattice. Moreover, note that the fourth
condition is an analogue of the sobriety condition of a spectral space.

The construction which associates to each UVO-space X an ortholattice
L is provided to us by the following lemma.

Lemma 4.2. If X is a UVO-space, then L = (COR(X),∩,∗ , ∅) is an ortholat-
tice.

Proof. Here, we define the joins of L by De Morgan’s distribution laws for
complements over meets and set 1 = ∅∗. We first verify that COR(X) is closed
under the relevant operations. Clearly ∅ ∈ CO(X) and since ∅ = ∅∗∗, we have
that ∅ ∈ COR(X). By Condition 4.1.2, if U ∈ COR(X) then U∗ ∈ COR(X)
and if U, V ∈ COR(X), then U ∩ V ∈ COR(X).

To see that the algebra induced by COR(X) is an ortholattice, first
observe that by the irreflexivity of ⊥, we have that U ∩ U∗ = ∅ for every
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U ∈ COR(X). If on the other hand there was some y ∈ U ∩U∗, then by defini-
tion of U∗, we would have y ∈ {x | ∀y ∈ U : x ⊥ y} which contradicts the fact
that ⊥ is irreflexive. Hence Condition 2.2.1 is satisfied. Given the definition
of the ∗ operator, the symmetry of ⊥ guarantees that ∗ is an order-reversing
function, so Condition 2.2.2 is satisfied. By the ⊥-regularity of COR(X), if
U ∈ COR(X), then U = U∗∗ so Condition 2.2.3 is satisfied. �

We now must conversely verify that every ortholattice gives rise to a
UVO-space.

Lemma 4.3. If L is an ortholattice, then X+
L = (X+

L ,⊥L) is a UVO-space.

Proof. We first verify that ⊥L⊆ F(L)×F(L) is indeed an orthogonality relation
over the proper filters of L. For irreflexivity, assume by contradiction that there
exists x ∈ F(L) such that x ⊥L x. Then, there exists a⊥ ∈ x such that a ∈ x.
Since x is a filter, we have that a ∧ a⊥ ∈ x which by Condition 2.2.1 implies
that 0 ∈ x which contradicts the fact that x is a proper lattice filter over L.
Therefore, ⊥L is irreflexive. For symmetry assume that x, y ∈ F(L) are such
that x ⊥L y. Then by definition, there exists a⊥ ∈ x such that a ∈ y. By
Condition 2.2.3, we have that a⊥⊥ = a and so a⊥⊥ ∈ y but since a⊥ ∈ x,
we have that y ⊥L x by the definition of ⊥L. Hence, we conclude that ⊥L is
symmetric.

We already know that X+
L is a T0 space from Proposition 3.13. Note

that by Theorem 3.14, if U, V ∈ COR(X+
L ), then U = â and V = b̂ for

some a, b ∈ L. Moreover, we saw that â ∩ b̂ = â ∧ b and (â)∗ = â⊥ with
â ∧ b ∈ COR(X+

L ) and â⊥ ∈ COR(X+
L ). Since by definition, sets of the form

â for some a ∈ L form a basis for the space X+
L , it follows that the second

and third conditions are satisfied. For the fourth condition, let x be a proper
filter in COR(X+

L ). Then y = {a ∈ L | â ∈ x} is a proper filter in L. It is easy
to verify that CORX+

L
(y) = x. Finally, for the fifth condition, let x, y ∈ F(L)

such that x ⊥L y. Then there exists some a ∈ L such that a ∈ x and a⊥ ∈ y.
By the definition of â, we have that x ∈ â and that y ∈ â⊥, but since •̂ is
a homomorphism for ⊥, we have that y ∈ (â)∗. Again, by Theorem 3.14, for
U ∈ COR(X+

L ), we have U = â for some a ∈ L, which means that there exists
some U ∈ COR(X+

L ) such that x ∈ U and y ∈ U∗, as desired. �

4.2. The characterization theorem for X+
L

We now proceed by demonstrating that the class of UVO-spaces provides us
with the desired topological characterization of the class of spectral spaces
used in our representation.

Theorem 4.4. For each UVO-space X, the map X → X+
COR(X) is a homeo-

morphism and an isomorphism with respect to the orthospace reducts (X,⊥)
and (X+

COR(X),⊥).

Proof. We will show that the map g : x �→ CORX(x) gives the desired home-
omorphism from X to X+

COR(X). To see that g is an injective function, let
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x, y ∈ X and assume that x = y. Since X is a T0 space, we have that either
x � y or y � x. If x � y, then from Condition 4.1.3 (which, as already men-
tioned, implies our analogue of the Priestley separation axiom), we have that
there exists some U ∈ COR(X) such that x ∈ U and y ∈ U , which implies
that U ∈ CORX(x) and U ∈ CORX(y) so we have the desired inequality
CORX(x) = CORX(y). If on the other hand, we have that y � x, then we
similarly find that there exists some U ∈ COR(X) such that y ∈ U but x ∈ U ,
which implies that CORX(x) = CORX(y). As the surjectivity of g is immedi-
ate from Condition 4.1.4, we have established that g is a bijective function.

To see that g is continuous, it will suffice to demonstrate that the inverse
image of each basic open set in X+

COR(X) is an open set in X. Note that each

basic open set in X+
COR(X) is of the form Û for some U ∈ X+

COR(X). The
continuity of g can then be proved by observing the following calculation:

g−1[Û ] = {x ∈ X | CORX(x) ∈ Û}
= {x ∈ X | U ∈ CORX(x)}
= {x ∈ X | x ∈ U}
= U.

The continuity of g−1 is established by calculating the image of g as follows:

g[U ] = {CORX(x) | x ∈ U}
= {CORX(x) | U ∈ CORX(x)}
= Û .

Now that we have established that g is a homeomorphism of topological
spaces, we proceed by verifying that g is an isomorphism with respect to the
orthospace reducts. Suppose for x, y ∈ X, we have g(x) ⊥ g(y). Then by the
definition of g, we have that CORX(x) ⊥ CORX(y). By the definition of ⊥, this
implies that there exists some U ∈ COR(X) such that U ∈ CORX(x) and U∗ ∈
CORX(y) which means that x ∈ U and y ∈ U∗. By universal instantiation and
the definition of the ∗ operator, we have that x ⊥ y. Conversely, let x, y ∈ X
and suppose that x ⊥ y. By hypothesis, X is a UVO-space and so by Condition
4.1.5, there exists some U ∈ COR(X) such that x ∈ U and y ∈ U∗. By the
definition of g, this means that U ∈ CORX(x) and U∗ ∈ CORX(y). Hence, by
the definition of ⊥, we have that CORX(x) ⊥ CORX(y) i.e., g(x) ⊥ g(y). �

Corollary 4.5. Let X be a UVO-space. Then:

(1) X is a spectral space.
(2) Every element in CO(X) is a finite union of elements in COR(X).

Proof. For part 1, note that by Theorem 4.4, we have that every UVO-space
X is homeomorphic to the space X+

COR(X), which is a spectral space by Propo-
sition 3.13, since COR(X) is an ortholattice whenever X is a UVO-space by
Lemma 4.2. For part 2, let X be a UVO-space and let U ∈ CO(X). Then by
Condition 4.1.3, U is a finite union of elements from COR(X). �



Vol. 83 (2022) Choice-free duality for orthocomplemented lattices Page 15 of 32 37

5. The category of UVO-spaces

We now proceed by investigating the abstract category-theoretic structure
underlying the constructions and results achieved in the previous two sections.
For an in-depth exposition of pure category theory, refer to [1].

Definition 5.1. Let OrthLatt be the category whose collection of objects are
given by the class of ortholattices and whose collection of morphisms are given
by the class of ortholattice homomorphisms between them.

It is clear that isomorphisms in the category OrthLatt coincide with
algebraic isomorphisms.

5.1. UVO-mappings

Similarly to the categorical dual equivalence result in [4] between the cate-
gory BoolAlg of Boolean algebras and Boolean homomorphisms and the cat-
egory UV of UV-spaces and UV-mappings, our conception of an appropriately
defined continuous function between UVO-spaces depends upon the notions of
a spectral mapping and a weak p-morphism.

Definition 5.2. Given spectral spaces X and X ′, a map f : X → X ′ is a spectral
map if f−1[U ] ∈ CO(X) for every U ∈ CO(X ′).

Example 5.3. If X is a spectral space and Y is a Stone space, then the map
f : X → Y is a spectral map if and only if f is a continuous function.

Clearly, any spectral map is a continuous function but the converse is not
in general true, as can be easily seen through the following example.

Example 5.4. Let X be an infinite Stone space and let Y be the Sierpińsky
space; namely the topological space whose carrier set is the two-element set
{0, 1} and whose topology is generated by {{1}}. Note that {1} is compact
open. Take a non-isolated point x ∈ X. Then �{x} is not compact. The char-
acteristic function f : X → Y of this open set is continuous but not spectral
since f−1({1}) = �{x} is not compact.

Definition 5.5. Let (X,⊥) and (X,⊥′) be UVO-spaces and f : X → X ′ be a
function. Such a function is weakly p-morphic, or a weak p-morphism, if it is
a homomorphism with respect to the relations ⊥ and ⊥′, and for every y ∈ X
and z ∈ X ′, if z ⊥ f(y), then there exists x ∈ X such that x ⊥ y and that
z � f(x).

Note that a function is weakly p-morphic whenever it is p-morphic with
respect to the complements of the orthogonality relations.

With the notions of a spectral map and a weak p-morphism in mind, we
arrive at the notion of a UVO-map.

Definition 5.6. If X and X ′ are UVO-spaces, then a map f : X → X ′ is a
UVO-map if f is a spectral map and a weak p-morphism.

The above construction of a UVO-map between UVO-spaces is highly
reminiscent to the construction of a continuous map between two Stone spaces
of an ortholattice, as defined in [5].
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Definition 5.7. If X and Y are UVO-spaces, then a UVO-map f : X → Y is a
homeomorphism if f is a homeomorphism as a continuous map and an isomor-
phism (or bijective embedding) with respect to the orthospace (orthoframe)
reducts (X,⊥) and (Y,⊥) of X and Y respectively.

Definition 5.8. Let UVO be the category whose collection of objects are given
by the class of UVO-spaces and whose collection of morphisms are given by
the class UVO-mappings between them.

Note that the isomorphisms in UVO are given exactly by those UVO-
maps which are homeomorphisms as described in Definition 5.7.

5.2. Basic results about UVO-mappings

The following results will be useful in our proof of the categorical dual equiv-
alence between OrthLatt and UVO.

Proposition 5.9. If X and X ′ are UVO-spaces and f : X → X ′ is a UVO-map,
then f−1[U ] ∈ COR(X) for each U ∈ COR(X ′).

Proof. Since f is spectral by hypothesis, the inverse image f−1[U ] of such U is
compact open. It was proved by Bimbó [5, Lemma 3.9] within ZF that f−1[U ]
for a orthoregular U is again orthoregular. �
Proposition 5.10. If X and X ′ are UVO-spaces and f : X → X ′ is a map such
that f−1[U ] ∈ CO(X) for every U ∈ COR(X ′), then f is a spectral map.

Proof. Suppose that X and X ′ are UVO-spaces and that f : X → X ′ is a UVO-
map. Then by Corollary 4.5, we find that U =

⋃n
i=1 Ui for Ui ∈ COR(X ′),

which yields the following equalities:

f−1[U ] = f−1

[
n⋃

i=1

Ui

]
=

n⋃

i=1

f−1[Ui].

By hypothesis, we have that f−1[Ui] ∈ CO(X) which implies that f−1[U ] is a
finite union of compact opens and thus f is a spectral map. �
Lemma 5.11. Let X and X ′ be spectral spaces and let f : X → X ′ be a map.
If for each set U in some subbasis of X ′, we have f−1[U ] ∈ CO(X), then f is
a spectral map.

Proof. By definition, every open set U ∈ O(X) is a union of finite intersections
of subbasic open sets so every compact open set U ∈ CO(X) is a finite union⋃n

i=1 Ui of finite intersections of subbasic sets. Then, since

f−1[U ] = f−1

[
n⋃

i=1

Ui

]
=

n⋃

i=1

f−1[Ui]

it follows that f−1[U ] ∈ CO(X) if every f−1[Ui] ∈ CO(X). Moreover, given
that Ui =

⋂m
j=1 Vj where each Vj is a subbasic set and given that

f−1[Ui] = f−1

[
m⋂

j=1

Vj

]
=

m⋂

j=1

f−1[Vj ]
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it similarly follows that f−1[Ui] ∈ CO(X) if every f−1[Vj ] ∈ CO(X). Finally,
since by hypothesis, the inverse image of each Vj is compact open, we have
that f is a spectral map, as desired. �

5.3. The main result

We now proceed with the promised choice-free categorical dual equivalence
result between the categories OrthLatt and UVO.

Theorem 5.12. The category OrthLatt of ortholattices and ortholattice homo-
morphisms and the category UVO of UVO-spaces and UVO-mappings consti-
tute a dual equivalence of categories.

Proof. Let L and L′ be ortholattices and let h : L → L′ be an ortholattice
homomorphism. Given x ∈ X+

L , define h+(x) = h−1[x]. Since h is an ortholat-
tice homomorphism, h+(x) is a proper lattice filter in L. Hence, we have an
induced map h+ : X+

L′ → X+
L . We want to show that h+ is a UVO-map. We

first verify that h+ is a spectral map. By Lemma 5.11, it will suffice to show
that for each basic open â in the space X+

L , we have that h−1
+ [â] ∈ CO(X+

L ).
This is achieved by observing the following calculation:

h−1
+ [â] = {x ∈ X+

L′ | h+(x) ∈ â}
= {x ∈ X+

L′ | h−1[x] ∈ â}
= {x ∈ X+

L′ | a ∈ h−1[x]}
= {x ∈ X+

L′ | h(a) ∈ x}

= ĥ(a).

This is compact open.
It can be proved that h+ is weakly p-morphic in the same way as Bimbó [5,

Lemma 3.9].
For the other direction, suppose that X and X ′ are UVO-spaces and that

f : X → X ′ is a UVO-map. Given any U ∈ COR(X ′), define f+(U ′) = f−1[U ].
Note that by Proposition 5.9, we have that f+(U) = f−1[U ] ∈ COR(X) since
f is by hypothesis a UVO-map. It can be proved that h+ is an ortholattice
homomorphism in the same way as Bimbó [5, Lemma 3.10].

Clearly (•)+ preserves identity maps and the composition structure.
Hence (•)+, COR(•), along with Lemmas 4.3 and 4.2, give rise to contravari-
ant functors (•)+ : OrthLatt → UVO and COR(•) : UVO → OrthLatt where
(•)+ is defined on objects and morphisms by

L �→ X+
L , h : L → L′ �→ h+ : X+

L′ → X+
L

and COR(•) is defined on objects and morphisms by

X �→ COR(X), f : X → X ′ �→ f+ : COR(X ′) → COR(X).
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In light of Theorem 3.14 which established that every ortholattice L is isomor-
phic to COR(X+

L ), it is not difficult to verify that every ortholattice homo-
morphism h : L → L′ makes the following diagram commute:

L L′

COR(X+
L ) COR(X+

L′)

h

(h+)+

which implies that each component ηL : 1L(L) → COR(•) ◦ (•)+(L) of the
natural transformation η : 1OrthLatt → COR(•) ◦ (•)+ is an isomorphism.

Similarly, in light of Theorem 4.4, which established that every UVO-
space X is homeomorphic to X+

COR(X) and order isomorphic with respect to
the complements of the orthogonality relations, it is not difficult to verify that
every UVO-map f : X → X ′ makes the below diagram commute:

X X ′

X+
COR(X) X+

COR(X′)

f

(f+)+

which implies that each component θX : 1X(X) → (•)+ ◦ COR(•)(X) of the
natural transformation θ : 1UVO → (•)+ ◦ COR(•) is an isomorphism, which
completes our proof that the contravariant functors COR(•) and (•)+ consti-
tute a dual equivalence of categories. �

6. Duality dictionary

In light of Theorem 5.12, we proceed by developing a “duality dictionary” (as
depicted in Figure 3) for the purposes of explicitly establishing how one can
translate between various lattice-theoretic concepts (as applied to the category
OrthLatt) and their corresponding dual topological concepts in the category
UVO. For an analogous duality dictionary relating the category of Boolean
algebras BoolAlg, the category of UV-spaces UV, and the category of Stone
spaces Stone, refer to [4].

6.1. Complete lattices

Definition 6.1. Let X be a UVO-space, then X is complete if for every open
set U ∈ O(X), we have that U∗◦∗ ∈ COR(X). (Here, and where appropriate
in terms of typography, we sometimes write (•)◦ for the interior of a set .)

We now verify that complete UVO-spaces and the duals of complete
ortholattices coincide.

Proposition 6.2. Let L be an ortholattice and let X be its dual UVO-space.
Then:
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Figure 3. Duality dictionary for Orthlatt and UVO

(1) A family {Ui}i∈I ⊆ COR(X) has a greatest lower bound in COR(X) iff
Int
(⋂

i∈I Ui

)
∈ COR(X), in which case

∧

i∈I

Ui = Int
(⋂

i∈I

Ui

)
.

(2) A family {Ui}i∈I ⊆ COR(X) has a least upper bound in COR(X) iff
(
⋃

i∈I Ui)∗◦∗ ∈ COR(X), in which case

∨

i∈I

Ui =

(
⋃

i∈I

Ui

)∗◦∗
.

(3) L is a complete ortholattice iff X is a complete UVO-space.

Proof. For part 1, observe that Int
(⋂

i∈I Ui

)
= inf({Ui}i∈I) for {Ui}i∈I ⊆

COR(X) immediately follows from our hypothesis Int(
⋂

i∈I Ui) ∈ COR(X).
The for left to right implication of part 1, assume that

∧
i∈I Ui is defined in

COR(X). Note that by Theorem 3.14, for every i ∈ I, there exists some âi ∈ L
such that Ui = âi, and since the map •̂ : L → COR(X+

L ) defined by a �→ â is
an ortholattice isomorphism, we have the following equalities:

∧

i∈I

Ui =
∧

i∈I

âi =
∧̂

i∈I

ai.

Hence, it suffices to show that
∧̂

i∈I

ai = Int
(⋂

i∈I

âi

)
. (6.1)

We have
∧̂

i∈I ai ⊆ Int
(⋂

i∈I âi

)
as clearly

∧̂
i∈I ai ⊆

⋂
i∈I âi such that

∧̂
i∈I ai is an open set. To see that Int

(⋂
i∈I âi

)
⊆
∧̂

i∈I ai, suppose that

x ∈ Int
(⋂

i∈I âi

)
. Then there exists some U ∈ COR(X) such that x ∈ U ⊆

⋂
i∈I âi. Hence, by Theorem 3.14, we have that U = b̂ for some b ∈ L. Moreover,
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since b̂ ⊆
⋂

i∈I âi, it follows that b ≤
∧

i∈I ai. Then, since x ∈ b̂, we have b ∈ x

so
∧

i∈I ai ∈ x, hence x ∈
∧̂

i∈I ai.
For part 2, we first assume that

∨
i Ui exists. Let ai ∈ L be such that

âi = Ui. One can show that u ∈ (
⋃

i âi)∗◦∗ if and only if

∀v ∈ X

⎡

⎢⎣∃b ∈ v ∀i ∈ I ai ≤ b⊥
︸ ︷︷ ︸

(†)
=⇒ u ⊥ v

⎤

⎥⎦ .

With this in mind, let u ∈
∨̂

i Ui be arbitrary. We show u ∈ (
⋃

i âi)∗◦∗. Take
an arbitrary v ∈ X with (†). Since ai ≤ b⊥ for all i ∈ I, we have

∨
i ai ≤ b⊥.

The left-hand side of this inequality is in u by assumption, as is the right-hand
side. Recall b ∈ v to conclude u ⊥ v. We have established u ∈ (

⋃
i âi)∗◦∗. To

show the other inclusion, we prove u ∈ (
⋂

i âi)∗◦∗ for u ∈
∨̂

i ai. It suffices to
exhibit v ∈ X with the properties (†) and u ⊥ v. Let b = (

∨
i ai)⊥ and v = ↑ b.

Since b⊥ =
∨

i ai, the property (†) is satisfied. Now, since v is a principal filter,
u ⊥ v if and only if b⊥ ∈ u, and we assumed otherwise. Now we show that
if (
⋃

i âi)∗◦∗ ∈ COR(X), then (
⋃

i âi)∗◦∗ is the least upper bound of {Ui}i∈I .
Clearly, it is an upper bound of the family, so it suffices to show that if ĉ is
an upper bound of the family, then (

⋃
i âi)∗◦∗ ⊆ ĉ. Take an arbitrary u in the

left-hand side of the inequality. Let b = c⊥ and v = ↑ b. Since c = b⊥, and
ai ≤ c for all i ∈ I, the property (†) is satisfied. We conclude u ⊥ v, i.e., c ∈ u
as desired.

For part 3, we start by proving the left-to-right implication. Assume L
is a complete ortholattice so that for each A ⊆ L, we have that

∧
A and

∨
A

are defined. If U ∈ O(X), then by Definition 3.7, we have that

U =
⋃

{V ∈ COR(X) | V ⊆ U}.

Since by hypothesis, L is a complete ortholattice, by Theorem 3.14, so is the
corresponding unique (up to isomorphism) ortholattice induced by COR(X)
and hence

∨
{V ⊆ COR(X) | V ⊆ U} exists. By our proof of part 2, we have

∨
{V ⊆ COR(X) | V ⊆ U} =

(⋃
{V ⊆ COR(X) | V ⊆ U}

)∗◦∗
,

which implies that U∗◦∗ ∈ COR(X) as desired, making X a complete UVO-
space by definition. Conversely, suppose that X is a complete UVO-space.
Then for every family of subsets {Ui}i∈I ⊆ L, we have

⋃
i∈I âi ∈ O(X). X is

a complete UVO-space and so we have that
(⋃

i∈I âi

)∗◦∗ ∈ COR(X). By part
2, it follows that

∨
i∈I ai exists. Finally, recall that since the orthocomplement

operation of L is an isomorphism between L and the order dual of L, the
ortholattice L is complete if and only if arbitrary joins exist in L. We conclude
that L is complete if X is complete. �

6.2. Atoms

Notation 6.3. Let L be an ortholattice and let X be a UVO-space. We write
At(L) to denote the set of all atoms of L and write Xiso to denote the set of
all isolated points of X.
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Proposition 6.4. Given an ortholattice L and its dual UVO-space X, the map-
ping At(L) → Xiso defined by a �→↑a is a bijection.

Proof. Note that if a ∈ At(L), then â = {↑a} and since â ∈ O(X+
L ), it follows

that ↑a is an isolated point. It immediately follows that the map is injective
since clearly for all a, b ∈ L, if a = b then without loss of generality, there
exists some c ∈↑a such that c ∈↑b so ↑a =↑b.

To see that the map is a surjection, note that if x is an isolated point,
then {x} is an open set and since COR(X) forms a basis for a UVO-space
X, we have that {x} ∈ COR(X+

L ). Then by Theorem 3.14, there exists some
a ∈ L such that â = {x} which implies that a ∈ At(L). On the other hand, if
a ∈ At(L), then there exists some 0 = b ∈ L such that b < a but this implies
that ↑a, ↑b ∈ F(L) are such that ↑a =↑b with ↑a, ↑b ∈ â. Lastly, note that
since a ∈ At(L), we have â = {↑a} which means that x =↑a. �

6.3. Atomic lattices and atomless lattices

Recall that a lattice L is atomless if L contains no atoms and is atomic if every
element a ∈ L can be written as a possibly infinite join of atoms. The follow-
ing UVO-space characterization of an atomless ortholattice is an immediate
corollary of Proposition 6.4.

Corollary 6.5. Let L be an ortholattice and let X be its dual UVO-space. Then,
L is atomless if and only if Xiso = ∅.

Proof. Since by Proposition 6.4, the collection of atoms At(L) of an ortholat-
tice L are in bijection with the isolated points Xiso of its corresponding dual
UVO-space X, it is clear that the collection of isolated points in X is empty
if and only if there exist no atoms in L. �

Proposition 6.6. Let L be an ortholattice and let X be its dual UVO-space.
Then, the following statements are equivalent:

(1) L is atomic;
(2) Cl(Xiso) = X.

Proof. To show the forward implication, assume that L is complete, and take
u ∈ X. It suffices to show that for every basic open neighborhood U � u, the
subset Xiso intersects with U nontrivially. Find a ∈ L \ {0} such that U = â.
By atomicity, there is an atom b ≤ a, i.e., ↑ b ∈ â, and ↑ b ∈ Xiso.

To show the other implication, let a ∈ L \ {0} be arbitrary. We will find
an atom b ≤ a. Consider ↑ a ∈ X and a neighborhood â. Since Xiso is dense, â
intersects nontrivially with Xiso at, say, u. Recall that u is of the form ↑ b for
some atom b. Since ↑ b ∈ â, we have b ≤ a. �

6.4. Injective and surjective homomorphism

Definition 6.7. Let X and Y be UVO-spaces. A UVO-map f : X → Y is a
UVO-embedding if f is injective and for every U ∈ COR(X), there exists some
V ∈ COR(Y ) such that f [U ] = f [X] ∩ V .
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Proposition 6.8. Let L and L′ be ortholattices, let h : L → L′ be an ortholattice
homomorphism, and let h+ : X+

L′ → X+
L be the corresponding dual UVO-map

of h. Then, h+ is a surjective UVO-map if h is an injective ortholattice homo-
morphism. Moreover, h+ is a UVO-embedding if h is a surjective ortholattice
homomorphism.

Proof. For the first part, assume that h : L → L′ is an injective ortholattice
homomorphism, and let x ∈ X+

L and y = {b ∈ L | ∃a ∈ h[x] : a ≤ b}. Clearly,
y is the inverse h-image of x. We want to show that y is a proper filter. To
see this, note that if 0′ ∈ y, then 0′ ∈ h[x] which implies the existence of
some a ∈ x such that h(a) = 0′. By hypothesis, x is a proper filter, which
implies that a = 0, but this contradicts the fact that h(0) = 0′ together with
our hypothesis that h is injective. Hence, it follows that h+ is a surjective
UVO-map.

For the second part, let x, y ⊆ L′ be filters such that x = y. Without
loss of generality, there exists some a ∈ L′ such that a ∈ x but a ∈ y. By
hypothesis, h is a surjective ortholattice homomorphism and therefore, there
exists some b ∈ L such that h(b) = a. It is easy to see that b ∈ h−1[x] and
b ∈ h−1[y], which implies that h−1[x] = h−1[y]. Hence, h+ is an injective
UVO-map.

To see that h+ satisfies the UVO-embedding condition, first take an
arbitrary U ∈ COR(X+

L′). Note that by Theorem 3.14, U is of the form â
for some a ∈ L′. Again, by our hypothesis that h is a surjective homomor-
phism, there exists some b ∈ L such that h(b) = a. It suffices to show that
h+[â] = h+[X+

L′ ] ∩ b̂. To show the left-to-right inclusion, take an arbitrary
x′ ∈ h+[â], i.e., x = h−1[x′] for some x ∈ â. We now have b ∈ x, and we are
done. To see the other inclusion, take an arbitrary x ∈ h+[X+

L′ ] ∩ b̂. There
exists x′ ∈ X+

L′ for which x = h+(x′), i.e., x = h−1[x′]. Since b ∈ x as well, we
conclude that x′ ∈ â. This shows that x ∈ h+[â]. �

Proposition 6.9. Let X and X ′ be UVO-spaces, let f : X → X ′ be a UVO-map,
and let f+ : COR(X ′) → COR(X) be the corresponding ortholattice homomor-
phism dual to f . Then, f+ is an injective ortholattice homomorphism if f is a
surjective UVO-map. Moreover, the map f+ is a surjective ortholattice homo-
morphism if f is a UVO-embedding.

Proof. For the first part, let X and X ′ be UVO-spaces, and let f : X → X ′

be a surjective UVO-map. Now suppose that U, V ∈ COR(X) are such that
U = V . Without loss of generality, if y ∈ U\V , then since f is surjective, there
exists some x ∈ X such that f(x) = y so x ∈ f−1[U ] and x ∈ f−1[V ]. Since
f−1[U ] = f+(U) and f−1[V ] = f+(V ), we have f+(U) = f+(V ). Hence, f+

is an injective ortholattice homomorphism.
For the second part, let X and X ′ be UVO-spaces and let f : X → X ′

be a UVO-embedding. If U ∈ COR(X), then since f is a UVO-embedding, by
Definition 6.7, there exists some V ∈ COR(X ′) such that f [U ] = f [X] ∩ V ,
which implies that f−1[f [U ]] = f−1[f [X] ∩ V ]. Now observe that

f−1[f [X] ∩ V ] = f−1[f [X]] ∩ f−1[V ] = X ∩ f−1[V ] = f−1[V ].
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By hypothesis, f is a UVO-embedding and therefore injective, which guaran-
tees that f−1[f [U ]] = U so f−1[V ] = U and since f−1[V ] = f+(V ), we have
f+(V ) = U , as desired. �
6.5. Subalgebra

Corollary 6.10. Let L be an ortholattice and let X be its dual UVO-space.
Then, there exists a one-to-one correspondence between the subalgebras of L
and the images via surjective UVO-maps of X.

Proof. The result follows immediately by Theorem 5.12, the first part of
Proposition 6.8 (i.e., that h+ is a surjective UVO-map if its dual ortholat-
tice homomorphism h is injective), and the first part of Proposition 6.9 (i.e.,
that f+ is an injective ortholattice homomorphism if its dual UVO-map f is
surjective). �
6.6. Direct product

Definition 6.11. If X and Y are UVO-spaces, then their UVO-sum X + Y is
the space whose underlying carrier set is of the following shape

X + Y := X ∪ Y ∪ (X × Y )

and whose topology is generated by sets of the form U ∪ V ∪ (U × V ) for
U ∈ COR(X) and V ∈ COR(Y ), together with the orthogonality relation
⊥X+Y , which is defined as the symmetric closure of:

⊥X ∪ ⊥Y ∪(X × Y )
∪ {〈〈x, y〉, x′〉 | x ⊥X x′} ∪ {〈〈x, y〉, y′〉 | y ⊥Y y′}
∪ {〈x, y〉, 〈x′, y′〉 | x ⊥X x′, y ⊥Y y′}.

Proposition 6.12. Let X and Y be UVO-spaces whose specialization orders are
�X and �Y respectively. Then, the specialization order �X+Y of their UVO-
sum X + Y is given by:

Ω� :=�X ∪ �Y ∪{〈〈x, y〉, x′〉 | x �X x′} ∪ {〈〈x, y〉, y′〉 | y �Y y′}
∪ {〈x, y〉, 〈x′, y′〉 | x �X x′, y �Y y′}.

Proof. Assume that 〈z, z′〉 ∈ Ω� such that z ∈ W = U ∪ V ∪ (U × V ) ∈
O(X +Y ) for U ∈ COR(X) and V ∈ COR(Y ). We want to show that z′ ∈ W .
In the case when z �X z′, we have z ∈ U ∈ COR(X) so z′ ∈ U ∈ COR(X),
hence z′ ∈ W . In the case when z = 〈x, y〉, we have 〈x, y〉 ∈ U × V with
x ∈ U ∈ COR(X) and y ∈ V ∈ COR(Y ). Thus, if x �X z′, it follows that
z′ ∈ U ∈ COR(X) and therefore, z′ ∈ W . The proof of the case for z �Y z′

and the case for z′ = 〈x′, y′〉, x �X x′, and y �Y y′ run analogously, as does
the converse direction under the assumption that 〈z, z′〉 ∈ Ω�. �

The following result follows from Theorem 4.4 and is useful in diagram-
matically presenting examples of finite UVO-spaces in terms of the specializa-
tion ordering of their points.

Proposition 6.13. If X is a finite UVO-space, then (X,�) can be constructed
from an ortholattice by deleting its bottom universal bound and taking its order-
theoretic dual.
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Figure 4. The ortholattice O6, the ortholattice O2, the
UVO-space X+

O6
, and the UVO-space X+

O2

Proof. First note that by Lemma 4.2, if X is a finite UVO-space, then COR(X)
is a finite ortholattice. By Theorem 4.4, X is homeomorphic to the space
X+

COR(X) of proper lattice filters of COR(X), which is a T0 space by Lemma
4.3. Hence, (X,�) is order isomorphic to the poset (X+

COR(X),⊆) of proper
lattice filters of COR(X) ordered by set-theoretic inclusion. Since any filter
of a finite ortholattice is a principal filter, we have that (X,�) is isomorphic
with respect to the ortholattice of proper principal filters of COR(X), which
is isomorphic to the lattice (COR(X) \ {∅},⊇). �
Example 6.14. Consider the ortholattices O2 and O6, along with their respec-
tive UVO-spaces X+

O2
and X+

O6
depicted in Figure 4. The direct product

O2 × O6 and its UVO-sum X+
O2

+ X+
O6

are depicted in Figure 5. For the
purpose of visualizing these examples, we represent the specialization order
between two points of a UVO-space by a dotted line and the underlying par-
tial ordering of an ortholattice by a solid line. We omit the orthogonality
relations of these UVO-spaces from these diagrams for the sake of simplicity,
but still explicitly describe them below.

⊥X+
O6

= {〈y1, y2〉, 〈y1, y4〉, 〈y3, y2〉, 〈y3, y4〉}, ⊥X+
O2

= ∅

⊥X+
O2

+X+
O6

= {⊥X+
O6

,⊥X+
O2

, 〈〈z, y1〉, y2〉, 〈〈z, y1〉, y4〉, 〈〈z, y2, 〉y1〉,

〈〈z, y2〉, y3〉, 〈〈z, y3〉, y2〉, 〈〈z, y3〉, y4〉, 〈〈z, y4〉, y1〉, 〈〈z, y4〉, y3〉}

Proposition 6.15. If L and L′ are ortholattices and X+
L and X+

L′ are their
respective dual UVO-spaces, then there is a homeomorphism f : X+

L×L′ →
X+

L + X+
L′ that is an isomorphism with respect to their orthospace reducts.

Proof. For each point x ∈ X+
L×L′ i.e., every proper filter x ∈ F(L × L′), let

xL = {a ∈ L | ∃b ∈ L′ : 〈a, b〉 ∈ x}, xL′ = {b ∈ L′ | ∃a ∈ L : 〈a, b〉 ∈ x},

Clearly, we have that xL ∈ F(L) and xL′ ∈ F(L′). Now define f by

f(x) =

⎧
⎪⎨

⎪⎩

xL if xL′ is improper,
xL′ if xL is improper,
〈xL, xL′〉 otherwise.

The injectivity of f follows easily from the fact that x = xL×xL′ for every
filter x ∈ X+

L×L′ . To see that f is a surjective function, let y ∈ X+
L +X+

L′ . In the
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Figure 5. The direct product ortholattice O2 × O6 and its
dual UVO-sum X+

O2
+ X+

O6

case when y ∈ X+
L , we have that for the proper filter x := y × L′ ∈ X+

L×L′ , it
follows that y = xL′ and that xL is improper. Therefore, we find that f(x) = y.
The proof for the case when y ∈ X+

L′ runs analogously. Lastly, for yL ∈ X+
L

and yL′ ∈ X+
L′ , in the case when y = 〈yL, yL′〉, since (yL × yL′

)L = yL and
(yL ×yL′

)L′ = yL′
, it is easy to see that yL ×yL′ ∈ X+

L×L′ where f(yL ×yL′
) =

y. Hence, f is a bijection.
We now verify that f is a continuous function. First observe that by

Definition 6.11, each basic open set within X+
L + X+

L′ is of the following shape
U ∪ V ∪ (U × V ) for U ∈ COR(X+

L ) and V ∈ COR(X+
L′). By Theorem 3.14,

each U ∈ COR(X+
L ) is of the form â for some a ∈ L, and so

U ∪ V ∪ (U × V ) = â ∪ b̂ ∪ (â × b̂)

for a ∈ L and b ∈ L′. We now verify that the inverse image of each basic open
set is a union of basic open sets in X+

L×L′ by the following calculation:

f−1[â ∪ b̂ ∪ (â × b̂)] = f−1[â] ∪ f−1 [̂b] ∪ f−1[â × b̂] = 〈̂a, 0〉 ∪ 〈̂0, b〉 ∪ 〈̂a, b〉

Hence, f−1[â ∪ b̂ ∪ (â × b̂)] can be written as the union of basic open sets in
the space X+

L×L′ , so f is a continuous function. To see that its inverse f−1 is
a continuous function, note that for each basic open set 〈a, b〉 ∈ X+

L×L,

〈̂a, b〉 = {x ∈ F(L × L′) | 〈a, b〉 ∈ x, xL′ is improper}
∪{x ∈ F(L × L′) | 〈a, b〉 ∈ x, xL is improper}

∪{x ∈ F(L × L′) | 〈a, b〉 ∈ x : xL ∈ F(L), xL′ ∈ F(L′)}

which implies that f [〈̂a, b〉] = â ∪ b̂ ∪ (â × b̂) so that f [〈̂a, b〉] is basic open in
the space X+

L + X+
L′ , as required.
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Finally, we show that f is an isomorphism with respect to the orthospace
reducts. Let ⊥s and ⊥ be the orthogonality relations of the codomain and the
domain of f , respectively. The preceding argument shows that the inverse map
f−1 of f is given by f−1(x) = x × L′, f−1(y) = L × y, and f−1(x, y) = x × y,
where x ∈ X+

L and y ∈ X+
L′ . Let u, v ∈ X+

L + X+
L′ . An argument showing

that u ⊥s v if and only if f−1(u) ⊥ f−1(v) involves a case analysis based on
whether u and v belong to X+

L , X+
L′ , or X+

L × X+
L′ . We present an argument

for the case u ∈ X+
L and v = 〈w,w′〉 ∈ X+

L × X+
L′ as the other cases can be

handled in similar ways. By the definition of ⊥s, we have that u ⊥s v if and
only if there exists a ∈ w such that a⊥ ∈ u. On the other hand,

f−1(u) ⊥ f−1(v) ⇐⇒ u × L′ ⊥ w × w′

⇐⇒ ∃〈a, a′〉 ∈ w × w′ : 〈a⊥, a′⊥〉 ∈ u × L′

⇐⇒ ∃a ∈ w : a⊥ ∈ L,

proving the claim for this particular case. �

Corollary 6.16. If X and Y are UVO-spaces, then their UVO-sum X +Y is a
UVO-space. Moreover, the mapping f : COR(X + Y ) → COR(X) × COR(Y )
is an ortholattice isomorphism. �

Proof. Clearly, by Theorem 4.4, both X → X+
COR(X) and Y → X+

COR(Y ) are
homeomorphisms (and isomorphisms with respect to ⊥) and thus there is a
homeomorphism X +Y → X+

COR(X)+X+
COR(Y ). Then by Proposition 6.15, we

find that X+
COR(X) +X+

COR(Y ) → X+
COR(X)×COR(Y ) is a homeomorphism. The

above homeomorphisms are sufficient in establishing the fact that the UVO-
sum X + Y is a UVO-space if X and Y are UVO-spaces. For the second part,
simply apply Theorem 5.12 and Proposition 6.15.

It is easy to check that every UVO-sum X + Y comes equipped with
canonical coprojections κ1 : X → X + Y and κ2 : Y → X + Y satisfying the
universal mapping property for categorical coproducts that for any UVO-space
Z and pair of UVO-maps f : X → Z and g : Y → Z, there exists a unique
UVO-map 〈f, g〉 : X + Y → Z making the following diagram commute:

Z

X X + Y Y

f

κ1

〈f,g〉 g

κ2

Hence, given any two UVO-spaces X and Y , their UVO-sum X+Y is a coprod-
uct in the category UVO. As a consequence, it follows that if X1, . . . , Xn are
UVO-spaces, then X1 + · · · + Xn is a UVO-space.

6.7. Lattice completions

Notation 6.17. Let L be a lattice and let A ⊆ L. Then:
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(1) Au is the collection of upper bounds of A, i.e.,

Au = {a ∈ L | ∀b ∈ A : b ≤ a}.

(2) Al is the collection of lower bounds of A, i.e.,

Al = {a ∈ L | ∀b ∈ A : a ≤ b}.

Definition 6.18. Given a lattice L, a subset A ⊆ L is normal iff A = Aul. We
denote the collection of all normal subsets of L by Norm(L).

We call a point u of a UVO-space X principal if there exists an open
neighborhood U of u such that v ∈ U for every v � u distinct from u.

Proposition 6.19. Let L be an ortholattice and X its dual UVO-space. A point
in X is principal in the sense above if and only if it is a principal filter.

Proof. It is clear that if u ∈ X is a principal filter, then it is principal in the
sense above. Suppose that u ∈ X is principal in our sense. Take a neighborhood
U of u as in the definition of principality and then a basic open set â such
that u ∈ â ⊆ U . Let v be the principal filter generated by a. Assume by way
of contradiction that u is not a principal filter. Then, v � u and v = u. By
principality, we have v ∈ U and a fortiori v ∈ â, which is a contradiction. �

For a UVO-space X, let P(X) be the orthoframe of principal points of
X with the induced orthogonality relation. We then have the following UVO-
space translation of the MacNeille completion of an ortholattice.

Theorem 6.20. Let L be an ortholattice and let X be its dual UVO-space. Then,
the lattice R(P(X)) is (up to isomorphism) the MacNeille completion of L.

Proof. MacLaren [27, Theorems 2.3–2.5] showed that the MacNeille comple-
tion of L is isomorphic to R(L,‹), where ‹ is a binary relation on (the domain
of) L defined by a ‹ b ⇐⇒ a ≤ b⊥. We see that R(L,‹) is isomorphic to
R(L−,‹), where (L−,‹) is the relational substructure of L with the domain
L− = L\{0}. To see this, first observe that 0 ‹ a for all a ∈ L and that 0 ∈ U
for all U ∈ R(L,‹). From this, it follows that U �→ U \ {0} for U ∈ R(L,‹)
is the desired isomorphism. It now suffices to show that (L−,‹) is isomorphic
to P(X) = (P(X),⊥). To see this, first note that for an arbitrary c ∈ L and
u ∈ X, we have u ⊥ ⇑ c, where ⇑ c is the principal filter generated by c, if and
only if c⊥ ∈ u. Hence, (⇑ a) ⊥ (⇑ b) if and only if b⊥ ∈ ⇑ a, i.e., b⊥ ≥ a. �

We proceed with a characterization of canonical extensions as defined by
Harding [18, p. 92] (see also [9, Theorem 8.7]).

Theorem 6.21. Let L be an ortholattice and let X be its dual UVO-space. Then
L′ := R(X) is (up to isomorphism) the canonical extension of L.

Proof. For u ∈ X+
L , the set {u}⊥⊥ ∈ L′ is a meet of elements of L: u =∧

{â | â ⊇ {u}⊥⊥}. The inclusion ⊆ is clear. To show ⊇, take v ∈ {u}⊥⊥.
If u ≤ v, then {u}⊥ ⊆ {v}⊥, so v ∈ {u}⊥⊥; hence, u ≤ v. Take a ∈ u \ v;
then u is in â, but v is not (•̂ denotes the embedding L → L′). Note that
u =

⋂
{â | â ⊇ {u}⊥⊥}. We have seen that {u}⊥⊥ ∈ L′ is a meet of elements
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of L. We now show that every element of L′ is a meet of joins of elements of
L. In particular, we claim that for Y ∈ L′ we have Y =

∨
{{u}⊥ | Y ⊇ {u}⊥}.

The inclusion ⊆ is clear. To show the inclusion in the other direction, we show
the contrapositive: if {u}⊥ ⊇ Y =⇒ {u}⊥ � v for every u, then v ∈ Y .
Assume the hypothesis; we show v ⊥ Y ⊥. Take an arbitrary u ∈ Y ⊥. Then
{u}⊥ ⊇ Y , so we have {u}⊥ � v, i.e., u ⊥ v.

Lastly, we verify that the embedding L → L′ is compact. Assume that
∧

i

âi ⊆
∨

j

b̂j (6.2)

for families A := {ai | i ∈ I}, B := {bj | j ∈ J} of elements of L. We show that
there exists finite subfamilies A′, B′ of A,B, respectively, such that

∧
A′ ≤∨

B′. Note that the right-hand side of formula (6.2) is equal to (
⋃

j b̂j)⊥⊥.
Now let u be the filter generated by A. Assume that u is improper. Then there
exists a finite A′ ⊆ A such that 0 =

∧
A′. Now we let B′ = ∅, and we are done.

Suppose, therefore, that u is proper. By construction, u is in the left-hand side
of formula (6.2) and thus in the right-hand side. Observe

u ∈

⎛

⎝
⋃

j

b̂j

⎞

⎠
⊥⊥

⇐⇒ ∀v[∀w[∃j bj ∈ w =⇒ w ⊥ v] =⇒ u ⊥ v], (6.3)

where the variables v and w range over X. Let v be the filter generated by
{b⊥

j | j ∈ J}. Assume that v is improper. Then for some finite B′ ⊆ B, we
have 0 =

∧
{b⊥ | b ∈ B′}, i.e., 1 =

∨
B′. Therefore, by a similar reasoning

as before, we may assume that v is proper. By formula (6.3), u ⊥ v. By
definition, there exists c ∈ u such that c⊥ ∈ v. By the construction of u and
v, we have

∧
A′ ≤ c and c⊥ ≥

∧
{b⊥ | b ∈ B′}. The latter implies c ≤

∨
B′, so

we have
∧

A′ ≤
∨

B′ as desired. �

6.8. Homomorphic images of orthomodular lattices

We conclude this section by characterizing the notion of homomorphic images
as applied to an orthomodular lattice, in UVO-spaces. We leave the character-
ization of homomorphic images as applied to ortholattices (the more general
case) as an open problem.

Recall that a subset S′ of a relational structure (S,R) where R is binary
is an inner substructure, or a generated subframe (S,R), if y ∈ S′ whenever
x ∈ S′ and xRy. For the remainder of this subsection, upsets simpliciter mean
sets upward closed with respect to the specialization order �.

Proposition 6.22. Let L be an orthomodular lattice and X be its dual UVO-
space. Let C(L) be the set of congruences on L and PUGS(L) the set of prin-
cipal upsets of X that are generated subframes of (X, ⊥). Then there is a
one-to-one correspondence between C(L) and PUGS(L).

Proof. For θ ∈ C(L), it is well known that [1]θ is a filter. Let f(θ) = ⇑[1]θ,
where ⇑ u for u ∈ X is the principal upset generated by u. We see that
f(θ) ∈ PUGS(L) and that f is a map C(L) → PUGS(L). Indeed, it suffices to
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show that f(θ) is a generated subframe with respect to the complement of the
orthogonality relation of X. Consider the canonical surjection π : L � L/θ.
The dual map π+ is a UVO-map and a fortiori a homeomorphism onto a sub-
space of X. We claim that ranπ+, the range of π+, is f(θ), whence it follows
that f(θ) is a generated subframe as π+ is weakly p-morphic and f(θ) is clearly
upward closed. To see that ranπ+ = f(θ), first recall that u ∈ ran π if and
only if there exists u′ ∈ F(L/θ) such that π−1[u′] = u. For every u′ ∈ F(L/θ),
we have [1]θ ∈ u′. Hence, if u ∈ ranπ+, then [1]θ ⊆ u. Conversely, if [1]θ ⊆ u,
assume a ∈ u and (a, a′) ∈ θ for a, a′ ∈ L. We show that a′ ∈ u, i.e., u ∈ ran π+.

Let → be the so-called Sasaki hook, i.e., x → y := x⊥ ∨ (y ∧ x) (see,
e.g., [29]). We have π(a → a′) = π(a) → π(a′) = 1 by assumption. Therefore,
a → a′ ∈ [1]θ ⊆ u. Since a ∧ (a → a′) ∈ u, we have a′ ∈ u as well.

For S ∈ PUGS(X), let g(S) = {(a, b) ∈ L2 | â ∩ S = b̂ ∩ S}. We show
that g(S) is a congruence on L and that g is a map PUGS(X) → C(X). It
suffices to show that g(S) respects ∧ and (•)⊥. The former case is evident.
For the latter goal, it suffices to show that for a, b ∈ L if â ∩ S = b̂ ∩ S, then
â⊥ ∩S = b̂⊥ ∩S. This can be proved by the translation into the normal modal
logic KTB of reflexive and symmetric frames.

It is easy to show that f and g are the inverses of each other by noting

[1]g(⇑ u) = {a ∈ L | â ∩ ⇑ u = ⇑ u} = {a | â ⊆ ⇑ u} = {a | u ∈ â} = u,

which completes the proof. �

7. Future work

We intend to investigate the following applications and related themes of the
results and constructions achieved in this work:

(1) Characterize the subclass of UVO-spaces which arise as the choice-free
dual spaces of the modular and orthomodular lattices.

(2) Develop a theory of topological models based on UVO-spaces for which
various non-classical logics (e.g. orthologic and quantum logic) are com-
plete. (Since the algebraic model for quantum logics of a finite dimen-
sional Hilbert space is a modular lattice and the algebraic model for
quantum logics of an infinite dimensional Hilbert space is an orthomod-
ular lattice, the open problem of characterizing the dual UVO-spaces of
the modular and orthomodular lattices must be accomplished before this
can be fully addressed).

(3) Investigate the connections between lattices of varieties of ortholattices
and lattices of varieties of modal algebras corresponding to KTB (the
normal modal logic of reflexive symmetric Kripke frames) and its variants.
Such frames can be seen as arising by taking the set-theoretic complement
of the orthogonality relation of an orthospace. We believe Goldblatt in
[16] develops the first step in this direction.
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