Algebra Univers. (2022) 83:23 © 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG 1420-8911/22/030001-6 published online June 27, 2022 https://doi.org/10.1007/s00012-022-00781-6

Algebra Universalis

The number fields that are O^* -fields

Jingjing Ma

Abstract. Using the theory on infinite primes of fields developed by Harrison in [2], the necessary and sufficient conditions are proved for real number fields to be O^* -fields, and many examples of O^* -fields are provided.

Mathematics Subject Classification. 06F25.

Keywords. Infinite prime, Real number field, O^* -field.

1. Introduction

Let R be an associative ring. If a partial order on R is contained in a total order on R, then we say that the partial order is extended to a total order. A ring is called an O^* -ring if each partial order is extended to a total order. This concept was introduced by Fuchs in [1], and as an open question in [1], he asked establishing ring-theoretical properties of O^* -rings. In [5], Steinberg provided the ring-theoretical characterization of the O^* -rings, and from his characterizations, the question becomes determining the O^* -fields [5, Theorem]. An O^* -field must be a subfield of \mathbb{R} , the field of real numbers, and must be algebraic over \mathbb{Q} , the field of rational numbers. Steinberg also pointed out that it is sufficient to determine which subfields of \mathbb{R} that is a finite extension of \mathbb{Q} are O^* -fields [5, p. 2557]. He proved that each real quadratic extension field of \mathbb{Q} is an O^* -field, and $\mathbb{Q}[\sqrt[4]{2}]$ is not an O^* -field. In [4], it is shown that a sequence of real quadratic extension of \mathbb{Q} is an O^* -field and $\mathbb{Q}[\sqrt[3]{n}]$, where n is a cubic-free positive integer, is an O^* -field. No other results on O^* -fields seem available in the literature.

In the present paper, by using the theory on the infinite primes of the number fields developed by Harrison in [2], the connection between the maximal partial orders on a number field R and the subfields of R is established, then necessary and sufficient conditions are obtained for a real number field being O^* . As a consequence, we show that, for instance, for a real number

Presented by W. Wm. McGovern.

field R if $[R : \mathbb{Q}]$ is an odd integer, then R is O^* , where $[R : \mathbb{Q}]$ denotes the dimension of R over \mathbb{Q} .

We review a few definitions from partially ordered rings. Let R be an associative ring and P be a subset of R. Then P is said to be the positive cone of a partial order if $P + P \subseteq P$, $PP \subseteq P$, and $P \cap -P = \{0\}$. We often just call P as a partial order on R. In this paper, we only consider partial orders on fields. By Zorn's Lemma, each partial order is contained in a maximal partial order. We denote by \mathbb{Q}^+ and \mathbb{R}^+ the positive cone of the usual total order on \mathbb{Q} and \mathbb{R} , respectively. For a maximal partial order P, $\mathbb{Q}^+ \subseteq P$ and P is division closed in the sense that for any two elements a, b in the field, if ab > 0 and a > 0, then b > 0.

For more information and undefined terminologies on partially ordered rings, the reader is referred to [1,3].

2. Infinite primes for fields

In this section, we collect some results from [2] that will be used in the following section. Let R be a field. A nonempty subset S is called a *preprime* if S is closed under the addition and multiplication in R, and $-1 \notin S$, that is,

$$S + S \subseteq S$$
, $SS \subseteq S$, and $-1 \notin S$.

A maximal preprime is called a *prime*. By Zorn's Lemma, each preprime is contained in a prime. A prime S is called *infinite* if $1 \in S$, otherwise S is called *finite*. An infinite prime S of R is called *full* if $R = S - S = \{a - b \mid a, b \in S\}$.

Let R be a number field that is n-dimensional over \mathbb{Q} . There exist exactly n isomorphisms (or embeddings) $\sigma_1, \sigma_2, \ldots, \sigma_n$ of R into \mathbb{C} , the field of complex numbers. Let ρ be the ordinary complex conjugate on \mathbb{C} . Assume $\rho \circ \sigma_i = \sigma_i$, for $1 \leq i \leq r$, and $\rho \circ \sigma_i = \sigma_{i+s}$ for $r < i \leq r+s$ with r+2s = n. Then

$$\sigma_1, \ldots, \sigma_r, \ \sigma_{r+1}, \ldots, \sigma_{r+s}, \rho \circ \sigma_{r+1}, \ldots, \rho \circ \sigma_{r+s}$$

are these isomorphisms, and $\sigma_1, \ldots, \sigma_r$ are called the *real infinite prime divisors* of R, and the sets $\{\sigma_{r+1}, \rho \circ \sigma_{r+1}\}, \ldots, \{\sigma_{r+s}, \rho \circ \sigma_{r+s}\}$ are called the *complex infinite prime divisors* of R.

- **Theorem 2.1** (1) ([2, Proposition 3.5]). Let R be a number field and let $\sigma_1, \ldots, \sigma_r$ be the real infinite prime divisors of R. The sets $\sigma_1^{-1}(\mathbb{R}^+), \ldots, \sigma_r^{-1}(\mathbb{R}^+)$ are distinct and consist exactly of all the full infinite primes of R.
 - (2) ([2, Proposition 3.6]). Let R be a number field. Let P be an infinite prime of R which is not full (i.e., $P - P \neq R$). Then there exists a complex infinite prime divisor $\{\sigma, \rho \circ \sigma\}$ of R with $P = \sigma^{-1}(\mathbb{R}^+)$. If R is a normal number field, then this gives a one-one correspondence between all the non-full infinite primes of R and all the complex infinite prime divisors of R.

In the present paper, we only consider the real number fields which are subfields of \mathbb{R} and finite dimensional over \mathbb{Q} . Let R be a real number field. For a subset H of R, define $E_H = H - H = \{a - b \mid a, b \in H\}$. The following result shows that in a real number field, infinite primes are precisely maximal partial orders.

Lemma 2.2. Let R be a real number field.

- (1) Let H be subset of R such that $H + H \subseteq H$, $HH \subseteq H$, and $\mathbb{Q}^+ \subseteq H$. Then E_H is a subfield of R.
- (2) If S is an infinite prime on R, then S is a maximal partial order on R.
- (3) If P is a maximal partial order on R, then P is an infinite prime on R.

Proof. (1) It is clear that E_H is a subring of R and a subspace of R over \mathbb{Q} . Take $0 \neq a \in E_H$, define $f_a : E_H \to E_H$ by $f_a(u) = au$ for any $u \in E_H$. Then f_a is a linear transformation from E_H to E_H over \mathbb{Q} . Since f_a is one-to-one and E_H is finite-dimensional over \mathbb{Q} , f_a is onto, so there exists $b \in E_H$ such that ab = 1. Thus E_H is a subfield of R.

(2) Let S be an infinite prime on R. From the proof of [2, Proposition 3.5], we have $S \cap -S = \{0\}$, so S is a partial order on R. Assume $S \subseteq P$, where P is a maximal partial order on R. If $-1 \in P$, then $1 \in P \cap -P = \{0\}$, a contradiction. Thus $-1 \notin P$ and P is a preprime. Since S is a maximal preprime and P is a preprime, $S \subseteq P$ implies that S = P and hence S is a maximal partial order on R.

(3) If P is a maximal partial order, then P is a preprime. Let $P \subseteq S$ which is an infinite prime. By (2), S is a maximal partial order, so P = S is an infinite prime.

Since in a real number field, the maximal partial orders and the infinite primes are the same, we freely use both names.

3. O^* -fields

For a field K and a subfield F of K, [K : F] denotes the dimension of K as an F-vector space. A partial order on a real number field R is called *directed* if each element is a difference of two positive elements. For an embedding σ from R to \mathbb{C} , it is clear that $\sigma^{-1}(\mathbb{R}^+)$ is a partial order on R.

Theorem 3.1. Let R be a real number field. Then following conditions are equivalent.

- (1) R is an O^* -field,
- (2) For each complex infinite prime divisor $(\sigma, \rho \circ \sigma)$ of R, $\sigma^{-1}(\mathbb{R}^+)$ is extended to a total order on R,
- (3) For each maximal partial order P on R, $E_P = R$,
- (4) Each maximal partial order P on R is directed,
- (5) Each maximal partial order P on R contains $[R : \mathbb{Q}]$ linearly independent vectors.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$ Let P be a maximal partial order on R. We show that P must be a total order. Since P is an infinite prime on R by Lemma 2.2, Theorem 2.1 implies that $P = \sigma^{-1}(\mathbb{R}^+)$, where σ is a real or complex infinite prime divisor of R, then P must be a total order by the assumption.

 $(1) \Rightarrow (3)$ Assume that there exists a maximal partial order P on R such that $E_P \neq R$. Take $z \in R \setminus E_P$. Then $z \notin P$ and $-z \notin P$, so P is not a total order and R is not O^* .

 $(3) \Rightarrow (1)$ Let *P* be a maximal partial order on *R*. We show that *P* must be a total order. By Lemma 2.2, *P* is an infinite prime. Since $E_P = P - P$ and $E_P = R$, R = P - P, that is *P* is a full infinite prime. By Theorem 2.1, $P = \sigma^{-1}(\mathbb{R}^+)$ for some real infinite prime divisor σ of *R*. Thus *P* is a total order on *R*.

 $(3) \Rightarrow (4)$ Let P be a maximal partial order. Then R = P - P, so P is a directed partial order.

(4) \Rightarrow (5) Let *P* be a maximal partial order on *R*, since *P* is directed, R = P - P, so *P* is a generating set of *R* as a vector space over \mathbb{Q} . Thus *P* contains $[R : \mathbb{Q}]$ linearly independent vectors.

 $(5) \Rightarrow (3)$ Let P be a maximal partial order on R. Since P contains $[R : \mathbb{Q}]$ linearly independent vectors, P - P is a subspace of $[R : \mathbb{Q}]$ -dimensional, and hence R = P - P.

The following result is an immediate consequences of Theorem 3.1.

Theorem 3.2. Let R be a real number field. If $[R : \mathbb{Q}] = n$ is an odd integer, then R is an O^* -field.

Proof. Let P be a maximal partial order on R and $[E_P : \mathbb{Q}] = k$. Then $k \mid n$. Since P is a full infinite prime in E_P , there exists a real infinite prime divisor σ of E_P such that $P = \sigma^{-1}(\mathbb{R}^+)$. It is well-known that σ can be extended to $[R : E_P] = n/k$ embeddings from R to \mathbb{C} , and since n/k is odd, one of those n/k embeddings must be a real infinite prime divisor of R, denoted by δ . Then $P = \sigma^{-1}(\mathbb{R}^+) \subseteq \delta^{-1}(\mathbb{R}^+)$, and hence $P = \delta^{-1}(\mathbb{R}^+)$ since P is a maximal partial order on R. Thus R is O^* .

There exist real number fields R in which $E_P = R$ is not true for all the maximal partial orders P, and hence R is not an O^* -field. The following example is due to Steinberg.

Example 3.3. Let $R = \mathbb{Q}[a]$ with $a = \sqrt[4]{2}$. The irreducible polynomial $f(x) = x^4 - 2$ has four roots: a, -a, ia, -ia, where $i^2 = -1$. Let σ be the embedding from R to \mathbb{C} that sends a to ia. Then $-a^2 \in \sigma^{-1}(\mathbb{R}^+)$. If $\sigma^{-1}(\mathbb{R}^+) = P$ is not a maximal partial order, then $P \subsetneq P_1$ for some maximal partial order P_1 . If P_1 is not a full infinite prime on R, then by Theorem 2.1, there exists a complex infinite prime divisor $\{\gamma, \rho \circ \gamma\}$ such that $P_1 = \gamma^{-1}(\mathbb{R}^+)$. However $\{\sigma, \rho \circ \sigma\}$ is the only complex infinite prime divisor of R, so $P = P_1$, a contradiction. Hence we must have $E_{P_1} = R$ and $P_1 = \delta^{-1}(\mathbb{R}^+)$ for some real infinite prime divisor δ of R. Then δ is either the identity mapping or the embedding that sends a to -a. In either case, $a^2 \in P_1$. On the other hand, $-a^2 \in P \subsetneq P_1$, so $a^2 \in P_1 \cap -P_1$, a contradiction. Thus P is a maximal partial order on R. It follows that R is not O^* by Theorem 3.1.

Similar to Steinberg's example, if n is a positive integer divisible by 4, then $\mathbb{Q}[\sqrt[n]{2}]$ is not an O^* -field since the partial ordered $P = \mathbb{Q}^+ + \mathbb{Q}^+(-a^{\frac{n}{2}})$, where $a = \sqrt[n]{2}$, cannot be extended to a total order.

Let R be a real number field with $[R : \mathbb{Q}] = 4$. It is possible for R to be an O^* -field as shown in Example 3.6.

Theorem 3.4. If $R = \mathbb{Q}[\sqrt[2n]{p}]$, where p is a prime number and n is a odd integer, then R is O^* .

Proof. Let P be a maximal partial order on R and $a = \sqrt[2n]{p}$, $b = a^n = \sqrt{p}$. Then $b^2 = p$. We first show that either $b \in P$ or $-b \in P$. Assume $-b \notin P$. Define P' = P + Pb. It is clear that $P' + P' \subseteq P'$ and $P'P' \subseteq P'$. Suppose that $P' \cap -P' \neq \{0\}$. Let $0 \neq w \in P' \cap -P'$. Then $w = \alpha + \beta b$ and $-w = \alpha' + \beta' b$, where $\alpha, \alpha', \beta, \beta' \in P$. Then $(\alpha + \alpha') + (\beta + \beta')b = 0$ and $w \neq 0$ implies $\beta + \beta' \neq 0$ and hence $-b = (\beta + \beta')^{-1}(\alpha + \alpha') \in P$ since P is division closed, a contradiction. Thus $P' \cap -P' = \{0\}$, so P' is a partial order. It follows that P = P' and $b \in P$. Thus either $b \in P$ or $-b \in P$. Without loss of generality, we may assume $b \in P$.

Since $\mathbb{Q}[b]$ is a subfield of R and $\mathbb{Q}[b] \subseteq E_P, 2 \mid [E_P : \mathbb{Q}]$, so $[E_P : \mathbb{Q}] = 2k$, where k is a positive integer and $k \mid n$. It follows that $[R : E_P] = n/k$ is an odd integer. By a similar argument of Theorem 3.2, each real infinite prime divisor of E_P is extended to a real infinite prime divisor of R, so P must be a total order.

In the following we collect some conditions that make a real number field being O^* . Let R be a real number field. By Primitive Element Theorem, R is a simple extension over \mathbb{Q} , that is, $R = \mathbb{Q}[a]$ for some $a \in R$.

Theorem 3.5. Let R be a real number field.

- (1) Suppose that $R = \mathbb{Q}[a]$. Let $f(x) \in \mathbb{Q}[x]$ be the irreducible polynomial such that f(a) = 0. If each root of f(x) is a real number, then R is an O^* -field.
- (2) Let R be a real number field. If for each complex infinite prime divisor $\{\sigma, \rho \circ \sigma\}, \sigma^{-1}(\mathbb{R}^+)$ is not prime, then R is an O^* -field.
- (3) Let R be a real number field and $R = \mathbb{Q}[a]$ with the minimal polynomial f(x) of a over \mathbb{Q} . If f(x) has a pure imaginary root, then R is not an O^* -field.

Proof. (1) Let P be a maximal partial order on R. If P is not a full infinite prime, then, by Theorem 2.1, $P = \sigma^{-1}(\mathbb{R}^+)$ for a complex infinite prime divisor $\{\sigma, \rho \circ \sigma\}$, a contradiction since the minimal polynomial f(x) of a has only real roots. Thus P is full and $E_P = R$.

(2) Let P be a maximal partial order on R. Then P is an infinite prime by Lemma 2.2. So, by Theorem 2.1, $P = \sigma^{-1}(\mathbb{R}^+)$ for some real infinite prime σ by the assumption, so P is a total order on R.

(3) Suppose that $z = ib, b \in \mathbb{R}$ is a root of f(x). Then there exists an embedding σ from R to \mathbb{C} that sends a to ib. Let $P = \sigma^{-1}(\mathbb{R}^+)$. Then P is a partial order on R. Since $\sigma(-a^2) = -(ib)^2 = b^2 \in \mathbb{R}^+$, $-a^2 \in P$, so P cannot be extended to a total order and R is not O^* .

As an application of Theorem 3.5, we determine all the O^* -fields R with $[R:\mathbb{Q}] = 4$.

Example 3.6. Let R be a real number field with $[R : \mathbb{Q}] = 4$. Assume that $R = \mathbb{Q}[\alpha]$, where $\alpha \in \mathbb{R}$ is a root of an irreducible polynomial f(x) of degree 4 over \mathbb{Q} . We consider following cases.

- (1) f(x) has 4 real roots. By Theorem 3.5(1), R is O^* .
- (2) f(x) has 2 real roots and 2 pure imaginary roots. By Theorem 3.5(3), R is not O^* .
- (3) f(x) has 2 real roots and 2 complex roots with nonzero real part. Let $\{\sigma, \rho \circ \sigma\}$ be the complex infinite prime divisor of R. Let $E = \sigma^{-1}(\mathbb{R})$. Then E is a subfield of R, so E = R, $[E : \mathbb{Q}] = 2$, or $E = \mathbb{Q}$. Let r be a real root of f(x) such that $\sigma(r)$ is a complex root of f(x). Then $r, -r \notin E$, so $E \neq R$. If $E = \mathbb{Q}$, then $\sigma^{-1}(\mathbb{R}^+) = \mathbb{Q}^+$ is not a prime. Assume that $[E : \mathbb{Q}] = 2$. Then $E = \mathbb{Q}[\beta]$ for some $\beta \in \mathbb{R}$. Then $\sigma^{-1}(\mathbb{R}^+) = E \cap \mathbb{R}^+$ or $E \cap -\mathbb{R}^+$, and hence $\sigma^{-1}(\mathbb{R}^+) \subsetneq R \cap \mathbb{R}^+$ or $R \cap -\mathbb{R}^+$, respectively. Thus $\sigma^{-1}(\mathbb{R}^+)$ is not a prime. By Theorem 3.5(2), R is O^* .

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, New York (1963)
- [2] Harrison, D.: Finite and infinite primes for rings and fields. Mem. Am. Math. Soc. 68 (1966)
- [3] Ma, J.: Lecture notes on algebraic structure of lattice-ordered rings. World Scientific Publishing, Singapore (2014)
- [4] Ma, J., Yang, Y.: Commutative L*-rings II. Quaest. Math. 5, 719–727 (2018)
- [5] Steinberg, S.: A characterization of rings in which each partial order is contained in a total order. Proc. Am. Math. Soc. 125, 2555–2558 (1997)

Jingjing Ma Department of Mathematics and Statistics University of Houston-Clear Lake Houston TX 77058 USA e-mail: ma@uhcl.edu URL: http://www.math.uhcl.edu/ma

Received: 27 August 2021. Accepted: 13 May 2022.