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The number fields that are O∗-fields

Jingjing Ma

Abstract. Using the theory on infinite primes of fields developed by Har-
rison in [2], the necessary and sufficient conditions are proved for real
number fields to be O∗-fields, and many examples of O∗-fields are pro-
vided.
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1. Introduction

Let R be an associative ring. If a partial order on R is contained in a total
order on R, then we say that the partial order is extended to a total order.
A ring is called an O∗-ring if each partial order is extended to a total order.
This concept was introduced by Fuchs in [1], and as an open question in [1],
he asked establishing ring-theoretical properties of O∗-rings. In [5], Steinberg
provided the ring-theoretical characterization of the O∗-rings, and from his
characterizations, the question becomes determining the O∗-fields [5, Theo-
rem]. An O∗-field must be a subfield of R, the field of real numbers, and must
be algebraic over Q, the field of rational numbers. Steinberg also pointed out
that it is sufficient to determine which subfields of R that is a finite extension
of Q are O∗-fields [5, p. 2557]. He proved that each real quadratic extension
field of Q is an O∗-field, and Q[ 4

√
2] is not an O∗-field. In [4], it is shown that

a sequence of real quadratic extension of Q is an O∗-field and Q[ 3
√

n], where
n is a cubic-free positive integer, is an O∗-field. No other results on O∗-fields
seem available in the literature.

In the present paper, by using the theory on the infinite primes of the
number fields developed by Harrison in [2], the connection between the max-
imal partial orders on a number field R and the subfields of R is established,
then necessary and sufficient conditions are obtained for a real number field
being O∗. As a consequence, we show that, for instance, for a real number
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field R if [R : Q] is an odd integer, then R is O∗, where [R : Q] denotes the
dimension of R over Q.

We review a few definitions from partially ordered rings. Let R be an
associative ring and P be a subset of R. Then P is said to be the positive cone
of a partial order if P + P ⊆ P , PP ⊆ P , and P ∩ −P = {0}. We often just
call P as a partial order on R. In this paper, we only consider partial orders on
fields. By Zorn’s Lemma, each partial order is contained in a maximal partial
order. We denote by Q

+ and R
+ the positive cone of the usual total order

on Q and R, respectively. For a maximal partial order P , Q
+ ⊆ P and P is

division closed in the sense that for any two elements a, b in the field, if ab > 0
and a > 0, then b > 0.

For more information and undefined terminologies on partially ordered
rings, the reader is referred to [1,3].

2. Infinite primes for fields

In this section, we collect some results from [2] that will be used in the following
section. Let R be a field. A nonempty subset S is called a preprime if S is closed
under the addition and multiplication in R, and −1 �∈ S, that is,

S + S ⊆ S, SS ⊆ S, and − 1 �∈ S.

A maximal preprime is called a prime. By Zorn’s Lemma, each preprime is
contained in a prime. A prime S is called infinite if 1 ∈ S, otherwise S is called
finite. An infinite prime S of R is called full if R = S − S = {a − b | a, b ∈ S}.

Let R be a number field that is n-dimensional over Q. There exist exactly
n isomorphisms (or embeddings) σ1, σ2, . . . , σn of R into C, the field of complex
numbers. Let ρ be the ordinary complex conjugate on C. Assume ρ ◦ σi = σi,
for 1 ≤ i ≤ r, and ρ ◦ σi = σi+s for r < i ≤ r + s with r + 2s = n. Then

σ1, . . . , σr, σr+1, . . . , σr+s, ρ ◦ σr+1, . . . , ρ ◦ σr+s

are these isomorphisms, and σ1, . . . , σr are called the real infinite prime di-
visors of R, and the sets {σr+1, ρ ◦ σr+1}, . . . , {σr+s, ρ ◦ σr+s} are called the
complex infinite prime divisors of R.

Theorem 2.1 (1) ([2, Proposition 3.5]). Let R be a number field and let σ1, . . . ,
σr be the real infinite prime divisors of R. The sets σ−1

1 (R+), . . . , σ−1
r (R+)

are distinct and consist exactly of all the full infinite primes of R.
(2) ([2, Proposition 3.6]). Let R be a number field. Let P be an infinite prime

of R which is not full (i.e., P − P �= R). Then there exists a complex
infinite prime divisor {σ, ρ◦σ} of R with P = σ−1(R+). If R is a normal
number field, then this gives a one-one correspondence between all the
non-full infinite primes of R and all the complex infinite prime divisors
of R.

In the present paper, we only consider the real number fields which are
subfields of R and finite dimensional over Q. Let R be a real number field. For
a subset H of R, define EH = H − H = {a − b | a, b ∈ H}. The following
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result shows that in a real number field, infinite primes are precisely maximal
partial orders.

Lemma 2.2. Let R be a real number field.
(1) Let H be subset of R such that H + H ⊆ H, HH ⊆ H, and Q

+ ⊆ H.
Then EH is a subfield of R.

(2) If S is an infinite prime on R, then S is a maximal partial order on R.
(3) If P is a maximal partial order on R, then P is an infinite prime on R.

Proof. (1) It is clear that EH is a subring of R and a subspace of R over Q.
Take 0 �= a ∈ EH , define fa : EH → EH by fa(u) = au for any u ∈ EH . Then
fa is a linear transformation from EH to EH over Q. Since fa is one-to-one
and EH is finite-dimensional over Q, fa is onto, so there exists b ∈ EH such
that ab = 1. Thus EH is a subfield of R.

(2) Let S be an infinite prime on R. From the proof of [2, Proposition
3.5], we have S ∩ −S = {0}, so S is a partial order on R. Assume S ⊆ P ,
where P is a maximal partial order on R. If −1 ∈ P , then 1 ∈ P ∩ −P = {0},
a contradiction. Thus −1 �∈ P and P is a preprime. Since S is a maximal
preprime and P is a preprime, S ⊆ P implies that S = P and hence S is a
maximal partial order on R.

(3) If P is a maximal partial order, then P is a preprime. Let P ⊆ S
which is an infinite prime. By (2), S is a maximal partial order, so P = S is
an infinite prime. �

Since in a real number field, the maximal partial orders and the infinite
primes are the same, we freely use both names.

3. O∗-fields

For a field K and a subfield F of K, [K : F ] denotes the dimension of K as
an F -vector space. A partial order on a real number field R is called directed
if each element is a difference of two positive elements. For an embedding σ
from R to C, it is clear that σ−1(R+) is a partial order on R.

Theorem 3.1. Let R be a real number field. Then following conditions are
equivalent.
(1) R is an O∗-field,
(2) For each complex infinite prime divisor (σ, ρ ◦ σ) of R, σ−1(R+) is ex-

tended to a total order on R,
(3) For each maximal partial order P on R, EP = R,
(4) Each maximal partial order P on R is directed,
(5) Each maximal partial order P on R contains [R : Q] linearly independent

vectors.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1) Let P be a maximal partial order on R. We show that P must

be a total order. Since P is an infinite prime on R by Lemma 2.2, Theorem 2.1
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implies that P = σ−1(R+), where σ is a real or complex infinite prime divisor
of R, then P must be a total order by the assumption.

(1) ⇒ (3) Assume that there exists a maximal partial order P on R such
that EP �= R. Take z ∈ R \ EP . Then z �∈ P and −z �∈ P , so P is not a total
order and R is not O∗.

(3) ⇒ (1) Let P be a maximal partial order on R. We show that P must
be a total order. By Lemma 2.2, P is an infinite prime. Since EP = P − P
and EP = R, R = P − P , that is P is a full infinite prime. By Theorem 2.1,
P = σ−1(R+) for some real infinite prime divisor σ of R. Thus P is a total
order on R.

(3) ⇒ (4) Let P be a maximal partial order. Then R = P − P , so P is a
directed partial order.

(4) ⇒ (5) Let P be a maximal partial order on R, since P is directed,
R = P − P , so P is a generating set of R as a vector space over Q. Thus P
contains [R : Q] linearly independent vectors.

(5) ⇒ (3) Let P be a maximal partial order on R. Since P contains [R : Q]
linearly independent vectors, P − P is a subspace of [R : Q]-dimensional, and
hence R = P − P . �

The following result is an immediate consequences of Theorem 3.1.

Theorem 3.2. Let R be a real number field. If [R : Q] = n is an odd integer,
then R is an O∗-field.

Proof. Let P be a maximal partial order on R and [EP : Q] = k. Then k | n.
Since P is a full infinite prime in EP , there exists a real infinite prime divisor
σ of EP such that P = σ−1(R+). It is well-known that σ can be extended
to [R : EP ] = n/k embeddings from R to C, and since n/k is odd, one of
those n/k embeddings must be a real infinite prime divisor of R, denoted by δ.
Then P = σ−1(R+) ⊆ δ−1(R+), and hence P = δ−1(R+) since P is a maximal
partial order on R. Thus R is O∗. �

There exist real number fields R in which EP = R is not true for all
the maximal partial orders P , and hence R is not an O∗-field. The following
example is due to Steinberg.

Example 3.3. Let R = Q[a] with a = 4
√

2. The irreducible polynomial f(x) =
x4 − 2 has four roots: a,−a, ia,−ia, where i2 = −1. Let σ be the embedding
from R to C that sends a to ia. Then −a2 ∈ σ−1(R+). If σ−1(R+) = P is not
a maximal partial order, then P � P1 for some maximal partial order P1. If P1

is not a full infinite prime on R, then by Theorem 2.1, there exists a complex
infinite prime divisor {γ, ρ ◦ γ} such that P1 = γ−1(R+). However {σ, ρ ◦ σ}
is the only complex infinite prime divisor of R, so P = P1, a contradiction.
Hence we must have EP1 = R and P1 = δ−1(R+) for some real infinite prime
divisor δ of R. Then δ is either the identity mapping or the embedding that
sends a to −a. In either case, a2 ∈ P1. On the other hand, −a2 ∈ P � P1, so
a2 ∈ P1 ∩ −P1, a contradiction. Thus P is a maximal partial order on R. It
follows that R is not O∗ by Theorem 3.1.
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Similar to Steinberg’s example, if n is a positive integer divisible by 4,
then Q[ n

√
2] is not an O∗-field since the partial ordered P = Q

+ + Q
+(−a

n
2 ),

where a = n
√

2, cannot be extended to a total order.
Let R be a real number field with [R : Q] = 4. It is possible for R to be

an O∗-field as shown in Example 3.6.

Theorem 3.4. If R = Q[ 2n
√

p], where p is a prime number and n is a odd
integer, then R is O∗.

Proof. Let P be a maximal partial order on R and a = 2n
√

p, b = an =
√

p.
Then b2 = p. We first show that either b ∈ P or −b ∈ P . Assume −b �∈ P .
Define P ′ = P +Pb. It is clear that P ′ +P ′ ⊆ P ′ and P ′P ′ ⊆ P ′. Suppose that
P ′ ∩ −P ′ �= {0}. Let 0 �= w ∈ P ′ ∩ −P ′. Then w = α + βb and −w = α′ + β′b,
where α, α′, β, β′ ∈ P . Then (α + α′) + (β + β′)b = 0 and w �= 0 implies
β + β′ �= 0 and hence −b = (β + β′)−1(α + α′) ∈ P since P is division closed,
a contradiction. Thus P ′ ∩ −P ′ = {0}, so P ′ is a partial order. It follows that
P = P ′ and b ∈ P . Thus either b ∈ P or −b ∈ P . Without loss of generality,
we may assume b ∈ P .

Since Q[b] is a subfield of R and Q[b] ⊆ EP , 2 | [EP : Q], so [EP : Q] = 2k,
where k is a positive integer and k | n. It follows that [R : EP ] = n/k is an
odd integer. By a similar argument of Theorem 3.2, each real infinite prime
divisor of EP is extended to a real infinite prime divisor of R, so P must be a
total order. �

In the following we collect some conditions that make a real number field
being O∗. Let R be a real number field. By Primitive Element Theorem, R is
a simple extension over Q, that is, R = Q[a] for some a ∈ R.

Theorem 3.5. Let R be a real number field.
(1) Suppose that R = Q[a]. Let f(x) ∈ Q[x] be the irreducible polynomial

such that f(a) = 0. If each root of f(x) is a real number, then R is an
O∗-field.

(2) Let R be a real number field. If for each complex infinite prime divisor
{σ, ρ ◦ σ}, σ−1(R+) is not prime, then R is an O∗-field.

(3) Let R be a real number field and R = Q[a] with the minimal polynomial
f(x) of a over Q. If f(x) has a pure imaginary root, then R is not an
O∗-field.

Proof. (1) Let P be a maximal partial order on R. If P is not a full infinite
prime, then, by Theorem 2.1, P = σ−1(R+) for a complex infinite prime divisor
{σ, ρ◦σ}, a contradiction since the minimal polynomial f(x) of a has only real
roots. Thus P is full and EP = R.

(2) Let P be a maximal partial order on R. Then P is an infinite prime
by Lemma 2.2. So, by Theorem 2.1, P = σ−1(R+) for some real infinite prime
σ by the assumption, so P is a total order on R.

(3) Suppose that z = ib, b ∈ R is a root of f(x). Then there exists an
embedding σ from R to C that sends a to ib. Let P = σ−1(R+). Then P is a
partial order on R. Since σ(−a2) = −(ib)2 = b2 ∈ R

+, −a2 ∈ P , so P cannot
be extended to a total order and R is not O∗. �
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As an application of Theorem 3.5, we determine all the O∗-fields R with
[R : Q] = 4.

Example 3.6. Let R be a real number field with [R : Q] = 4. Assume that
R = Q[α], where α ∈ R is a root of an irreducible polynomial f(x) of degree
4 over Q. We consider following cases.
(1) f(x) has 4 real roots. By Theorem 3.5(1), R is O∗.
(2) f(x) has 2 real roots and 2 pure imaginary roots. By Theorem 3.5(3), R

is not O∗.
(3) f(x) has 2 real roots and 2 complex roots with nonzero real part. Let

{σ, ρ ◦ σ} be the complex infinite prime divisor of R. Let E = σ−1(R).
Then E is a subfield of R, so E = R, [E : Q] = 2, or E = Q. Let r be a
real root of f(x) such that σ(r) is a complex root of f(x). Then r,−r �∈ E,
so E �= R. If E = Q, then σ−1(R+) = Q

+ is not a prime. Assume that
[E : Q] = 2. Then E = Q[β] for some β ∈ R. Then σ−1(R+) = E ∩ R

+ or
E ∩ −R

+, and hence σ−1(R+) � R ∩ R
+ or R ∩ −R

+, respectively. Thus
σ−1(R+) is not a prime. By Theorem 3.5(2), R is O∗.
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