
Algebra Univers. (2022) 83:14
c© 2022 The Author(s), under exclusive licence to Springer
Nature Switzerland AG
1420-8911/22/020001-30
published online March 20, 2022
https://doi.org/10.1007/s00012-022-00770-9 Algebra Universalis

An algebraic theory of clones

Antonio Bucciarelli and Antonino Salibra

Abstract. We introduce the notion of clone algebra (CA), intended to
found a one-sorted, purely algebraic theory of clones. CAs are defined by
identities and thus form a variety in the sense of universal algebra. The
most natural CAs, the ones the axioms are intended to characterise, are
algebras of functions, called functional clone algebras (FCA). The universe
of a FCA, called ω-clone, is a set of infinitary operations on a given set,
containing the projections and closed under finitary compositions. The
main result of this paper is the general representation theorem, where it
is shown that every CA is isomorphic to a FCA and that the variety CA is
generated by the class of finite-dimensional CAs. This implies that every
ω-clone is algebraically generated by a suitable family of clones by using
direct products, subalgebras and homomorphic images. We conclude the
paper with two applications. In the first one, we use clone algebras to give
an answer to a classical question about the lattices of equational theories.
The second application is to the study of the category of all varieties of
algebras.
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1. Introduction

Clones are sets of finitary operations on a given set that contain all the pro-
jections and are closed under composition. They play an important role in
universal algebra due to the fact that the set of all term operations of an alge-
bra always forms a clone. Moreover, important properties, like whether a given
subset forms a subalgebra, or whether a given map is a homomorphism, do
not depend on the specific fundamental operations of the considered algebra,
but rather on the clone of its term operations. Hence, comparing clones of
algebras is much more suitable than comparing their signatures, in order to
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classify them according to essentially different behaviours (see [21,22]). Some
attempts have been made to encode clones into algebras. A particularly im-
portant one led to the concept of abstract clones [4,22], which are many-sorted
algebras axiomatising composition of finitary functions and projections. Every
abstract clone has a concrete representation as an isomorphic clone of finitary
operations. Modulo a caveat about nullary operations, we remark that abstract
clones may be recasted as a reformulation of the concept of Lawvere’s alge-
braic theories [9]. The latter constitutes a common category theoretic mean
to capture equational theories independently of their presentation (i.e. of the
chosen similarity type). Another attempt to encode clones into algebras is due
to Neumann [15] and led to the concept of abstract ℵ0-clones, which are
infinitary algebras axiomatising all projections and one infinitary operation
of composition. Every abstract ℵ0-clone has a concrete representation as an
isomorphic ℵ0-clone of algebraic operations of rank ℵ0 of a variety defined by
infinitary operations.

Some work at the frontier of theoretical computer science and universal
algebra provides tools for giving an alternative algebraic account of clones. The
algebraic treatment of the if-then-else construct of computer science originated
with Dicker’s axiomatisation of Boolean algebras in the language with the
if-then-else as primitive [5]. Accordingly, this construct was treated in [11,
19] as a proper algebraic operation q2 of arity three on algebras whose type
contains, besides the ternary term q2, two constants 0 and 1. This approach
was generalised in [2,20] to algebras having n designated elements e1, . . . , en

and a (n + 1)-ary operation qn (a sort of “generalised if-then-else”) satisfying
the identities qn(ei, x1, . . . , xn) = xi. Such algebras, called Church algebras of
dimension n in [20], will be termed here n-Church algebras.

In the framework of n-Church algebras, the constants ei and the (n+ 1)-
ary operation qn represent the generalised truth-values and the generalised
conditional operation, respectively. More generally, these constants and op-
eration allow to express neatly other fundamental algebraic concepts as one-
sorted, purely algebraic theories. These include in particular: (i) variables and
term-for-variable substitution in free algebras on one side, and (ii) projections
and functional composition in clones on the other.

Building up on this observation, we introduce in this paper an algebraic
theory of clones. Indeed, the variety of clone algebras (CA) introduced here
constitutes a purely one-sorted algebraic theory of clones in the same spirit
as Boolean algebras constitute an algebraic theory of classical propositional
logic. Clone algebras of a given similarity type τ (CAτ s) are defined by univer-
sally quantified equations and thus form a variety in the universal algebraic
sense. The operators of type τ are taken as fundamental operations in CAτ s. A
crucial feature of our approach is connected with the role played by variables
in free algebras and by projections in clones. In clone algebras these are ab-
stracted out, and take the form of a system of fundamental elements (nullary
operations) e1, e2, . . . , en, . . . of the algebra. One important consequence of the
abstraction of variables and projections is the abstraction of term-for-variable
substitution and functional composition in CAτ s, obtained by introducing an
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(n + 1)-ary operator qn for every n ≥ 0. Roughly speaking, qn(a, b1, . . . , bn)
represents the substitution of bi for ei into a for 1 ≤ i ≤ n (or the composition
of a with b1, . . . , bn).

The most natural CAs, the ones the axioms are intended to characterise,
are algebras of functions, called functional clone algebras. The elements of a
functional clone algebra are infinitary operations from AN into A, for a given
set A. In this framework qn(f, g1, . . . , gn) represents the n-ary composition of
f with g1, . . . , gn, acting on the first n coordinates:

qn(f, g1, . . . , gn)(s) = f(g1(s), . . . , gn(s), sn+1, sn+2, . . . ), for every s ∈ AN

and the nullary operators are the projections pi defined by pi(s) = si for every
s ∈ AN. Hence, the universe of a functional clone algebra is a set of infinitary
operations containing the projection pi and closed under finitary compositions,
called hereafter ω-clone. We show that there exists a bijective correspondence
between clones (of finitary operations) and a suitable subclass of functional
clone algebras, called block algebras. Given a clone C, the corresponding block
algebra is obtained by extending the operations of the clone by countably many
dummy arguments. If f ∈ C has arity k, then the top expansion of f is an
infinitary operation f� : AN → A:

f�(s1, . . . , sk, sk+1, . . . ) = f(s1, . . . , sk),

for every (s1, . . . , sk, sk+1 . . . ) ∈ AN. By collecting all these top expansions in a
set C� = {f� : f ∈ C}, we get a functional clone algebra, called block algebra.
In the first representation theorem of the paper we show that the “concrete”
notion of block algebra coincides, up to isomorphism, with the abstract notion
of finite-dimensional clone algebra, where a clone algebra is finite-dimensional
if each of its elements can be assigned a finite dimension, abstracting the notion
of arity to infinitary functions.

The axiomatisation of functional clone algebras is a central issue in the
algebraic approach to clones. We say that a clone algebra is functionally rep-
resentable if it is isomorphic to a functional clone algebra. The main result of
this paper is the general representation theorem, where it is shown that every
CA is functionally representable. In another result of the paper we prove that
the variety of clone algebras is generated by the class of block algebras. This
implies that every ω-clone is algebraically generated by a suitable family of
clones by using direct products, subalgebras and homomorphic images.

We conclude the paper with two applications. The first one is to the lattice
of equational theories problem stated by Birkhoff [1] and Maltsev [10]: Find an
algebraic characterisation of those lattices which are isomorphic to a lattice of
equational theories. This problem is still open, but work on it has led to many
results described in [14, Section 4]. The problem of characterising the lattices of
equational theories as the congruence lattices of a class of algebras was tackled
by Newrly [16] and Nurakunov [17]. In this paper we propose an alternative
answer to the lattice of equational theories problem. We prove that a lattice is
isomorphic to a lattice of equational theories if and only if it is isomorphic to
the lattice of all congruences of a finite-dimensional clone algebra. Unlike in
Newrly’s and Nurakunov’s approaches, we are able to provide the equational
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axiomatisation of the variety whose congruence lattices are exactly the lattices
of equational theories, up to isomorphisms.

The second application is to the study of the category VAR of all vari-
eties. We show that a clone algebra C of type τ is minimal (i.e., it is generated
by the constants ei) if and only if the τ -reduct Cτ of C is the free algebra over
a countable set of generators in the variety generated by Cτ . We introduce the
category CA of all clone algebras (of arbitrary similarity type) with pure ho-
momorphisms (i.e., preserving only the nullary operators ei and the operators
qn) as arrows and show that CA is equivalent to the full subcategory MCA
of minimal clone algebras. After showing that MCA is isomorphic to VAR as
a category, we directly use MCA to show a generalisation of the theorem on
independent varieties presented by Grätzer et al. in [7].

2. Preliminaries

The notation and terminology in this paper are pretty standard. For concepts,
notations and results not covered hereafter, the reader is referred to [3,13] for
universal algebra and to [8,21,22] for the theory of clones.

In this paper N = {1, 2, . . . } denotes the set of positive natural numbers.
By an operation on a set A we will always mean a finitary operation (i.e.,

a function f : An → A for some n ≥ 0). By an infinitary operation on A we
mean a function from AN into A. As a matter of notation, operations will be
denoted by the letters f, g, h, . . . and infinitary operations by the greek letters
ϕ,ψ, χ, . . . .

We denote by OA the set of all operations on a set A, and by O(N)
A the set

of all infinitary operations on A. If F ⊆ OA, then F (n) = {f : An → A | f ∈
F}.

In the following we fix a countable infinite set I = {v1, v2, . . . , vn, . . . } of
variables that we assume totally ordered: v1 < v2 < · · · < vn < · · · .
2.1. Algebras

If τ is an algebraic type, then we denote by Tτ (I) the set of τ -terms over
the countable infinite set I of variables. If t is a τ -term, then we write t =
t(v1, . . . , vn) if t can be built up starting from variables v1, . . . , vn.

If V is a variety, then we denote by FV its free algebra over the countable
infinite set I of generators. Moreover, Eq(V) denotes the set of identities true
in every member of V.

Closure of a class of similar algebras under homomorphic images, direct
products, subalgebras and isomorphic images is denoted by H, P, S and I

respectively. We denote by PU the closure under ultraproducts. Var(K) denotes
the variety generated by a class K of τ -algebras.

We write θ(a, b) for the smallest congruence such that (a, b) ∈ θ.
L(V) will denote the lattice of all subvarieties of a variety V. We recall

that the join V1 ∨V2 of two subvarieties V1,V2 ⊆ V is axiomatised by Eq(V1)∩
Eq(V2), while the meet V1 ∩ V2 by the equational theory generated by the
union Eq(V1)∪Eq(V2). If V1, . . . ,Vn are subvarieties of V, then V1, . . . ,Vn are
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said to be independent if there exists a term t(v1, . . . , vn) of type τ such that
Vi |= t(v1, . . . , vn) = vi (i = 1, . . . , n). Moreover, the product of V1, . . . ,Vn is
defined as V1 × · · · × Vn = I {A1 × · · · × An : Ai ∈ Vi}.

The reader can consult [13] for the basic ingredients of factorisation,
namely tuples of complementary factor congruences and decomposition oper-
ators.

We recall from [2,19] the notion of an n-Church algebra. Algebras of
type τ , equipped with at least n nullary term operations e1, . . . , en and a
term operation qn of arity n + 1 satisfying qn(ei, x1, . . . , xn) = xi for each
i ∈ {1, . . . , n} are called n-Church algebras (nCH, for short).

In [23], Vaggione introduced the notion of central element to study al-
gebras whose complementary factor congruences can be replaced by certain
elements of their universes.

Proposition 2.1 [11,20] If A is an nCH of type τ and c ∈ A, then the following
conditions are equivalent:
(1) the sequence of principal congruences θ(c, e1), . . . , θ(c, en) is an n-tuple

of complementary factor congruences of A;
(2) The element c satisfies the following identities:
D1. qn(c, e1, . . . , en) = c
D2. qn(c, x, . . . , x) = x
D3. qn(c, qn(c, x11, . . . , x1n), . . . , qn(c, xn1, . . . , xnn)) = qn(c, x11, . . . , xnn)
D4. qn(c,−, . . . ,−) is an algebra homomorphism from An onto A.

An element c of an nCH is called n-central if it satisfies one of the equiv-
alent conditions of Proposition 2.1. Thus, c is n-central if and only if the
function fc, defined by fc(a1, . . . , an) = qn(c, a1, . . . , an) for all a1, . . . , an ∈ A,
is an n-ary decomposition operator on A such that fc(e1, . . . , en) = c. Every
n-central element c ∈ A induces a decomposition of A as a direct product of
the algebras A/θ(c, ei), for i ≤ n, and every decomposition of A is (up to
isomorphism) determined by a central element.

2.2. Clones of operations

In this section we recall notations and terminology on clones we will use in the
following.

The composition of f ∈ O(n)
A with g1, . . . , gn ∈ O(k)

A is the operation
f(g1, . . . , gn)k ∈ O(k)

A defined as follows, for all a ∈ Ak:

f(g1, . . . , gn)k(a) = f(g1(a), . . . , gn(a)).

If f ∈ O(0)
A then f()k ∈ O(k)

A and f()k(a) = f for all a ∈ Ak. When there
is no danger of confusion, we write f(g1, . . . , gn) for f(g1, . . . , gn)k.

A clone on a set A is a subset F of OA containing all projections p
(n)
i :

An → A (n ≥ i) and closed under composition. A clone on a τ -algebra A is a
clone on A containing the operations σA (σ ∈ τ) of A.

The classical approach to clones, as evidenced by the standard mono-
graph [21], considers clones only containing operations that are at least unary.
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However, the full generality of some results in this paper requires clones allow-
ing nullary operators.

2.2.1. Abstract clones. We recall from [22] and [6, p. 239] that an abstract
clone is a many-sorted algebra composed of disjoint sets Bn (n ≥ 0), elements
π
(n)
i ∈ Bn (n ≥ 1) for all i ≤ n, and a family of operations Cn

k : Bn × (Bk)n →
Bk for all k and n such that

(1) Cn
k (Cm

n (x, y1, . . . , ym), z) = Cm
n (x,Cn

k (y1, z), . . . , Cn
k (ym, z)), where x is

a variable of sort m, y1, . . . , ym of sort n and z of sort k;
(2) Cn

n (x, π
(n)
1 , . . . , π

(n)
n ) = x, where x is a variable of sort n;

(3) Cn
k (π(n)

i , y1, . . . , yn) = yi, where y1, . . . , yn are variables of sort k.

Any clone on a set determines an abstract clone, and every abstract clone has
a concrete representation as an isomorphic clone of finitary operations (see
[6, Section 3]). The connection between abstract clones and clone algebras is
explained in Theorem 3.20 below.

2.2.2. Neumann’s abstract ℵ0-clones [15,22]. The idea here is to regard an
n-ary operation f as an infinitary operation that only depends on the first
n arguments. The corresponding abstract definition is as follows. An abstract
ℵ0-clone is an infinitary algebra (A, ei, q∞), where the ei (1 ≤ i < ω) are
nullary operators and q∞ is an infinitary operation satisfying the following
axioms:

N1. q∞(ei, x1, . . . , xn, . . . ) = xi;
N2. q∞(x, e1, . . . , en, . . . ) = x;
N3. q∞(q∞(x,y), z) = q∞(x, q∞(y1, z), . . . , q∞(yn, z), . . . ), where y and z are

countable infinite sequences of variables.

A functional ℵ0-clone with value domain A is an algebra (F, eNi , qN∞),
where F ⊆ O(N)

A , eNi (s) = si, and for every ϕ,ψi ∈ F and every s ∈ AN,
qN∞(ϕ,ψ1, . . . , ψn, . . . )(s) = ϕ(ψ1(s), . . . , ψn(s), . . . ).

Neumann shows in [15] that every abstract ℵ0-clone is isomorphic to a
functional ℵ0-clone and that there is a faithful functor from the category of
clones to the category of abstract ℵ0-clones, but this functor is not onto.

The connection between Neumann’s abstract ℵ0-clones and clone algebras
is explained in Section 4.3.

3. Clone algebras

We have described in Section 2.2 two attempts to encode clones into algebras
using many-sorted algebras in the first approach, and infinitary algebras in
the second one. In this section we introduce the variety of clone algebras as a
more canonical algebraic account of clones using standard one-sorted algebras.
In our approach we replace Neumann’s infinitary operator of composition by
a countable infinite set of finitary operators of composition.
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The algebraic type of clone algebras contains a countable infinite family
of nullary operators ei and, for each n ≥ 0, an operator qn of arity n + 1. The
algebraic type of clone τ -algebras is τ ∪ {qn : n ≥ 0} ∪ {ei : i ≥ 1}.

In the remaining part of this paper when we write qn(x,y) it will be
implicitly stated that y = y1, . . . , yn is a sequence of length n.

Definition 3.1. A clone τ -algebra is an algebra C = (Cτ , qCn , eCi )n≥0,i≥1 satis-
fying the following conditions:
C1. Cτ = (C, σC)σ∈τ is a τ -algebra;
C2. qn(ei, x1, . . . , xn) = xi (1 ≤ i ≤ n);
C3. qn(ej , x1, . . . , xn) = ej (j > n);
C4. qn(x, e1, . . . , en) = x (n ≥ 0);
C5. qk(x, y1, . . . , yk) = qn(x, y1, . . . , yk, ek+1, . . . , en) (n > k);
C6. qn(qn(x, y1, . . . , yn), z) = qn(x, qn(y1, z), . . . , qn(yn, z));
C7. qn(σ(x1, . . . , xk),y) = σ(qn(x1,y), . . . , qn(xk,y)) for every σ ∈ τ of arity

k and every n ≥ 0.
If τ is empty, an algebra satisfying (C2)–(C6) is called a pure clone algebra.

In the following, when there is no danger of confusion, we will write
C = (Cτ , qCn , eCi ) for C = (Cτ , qCn , eCi )n≥0,i≥1.

If C is a clone τ -algebra, then C0 = (C, qCn , eCi ) is the pure reduct of C.
The class of clone τ -algebras is denoted by CAτ and the class of all clone

algebras of any type by CA. CA0 denotes the class of all pure clone algebras.
We also use CAτ as shorthand for the phrase “clone τ -algebra”, and similarly
for CA.

We start the study of clone algebras with some simple lemmas. Their
easy proofs are left to the reader.

Lemma 3.2. The following identities follow from (C2)–(C6):
(1) qk(qn(x,y), z) = qk(x, qk(y1, z), . . . , qk(yn, z), zn+1, . . . , zk) (n < k).
(2) qk(qn(x,y), z) = qn(x, qk(y1, z), . . . , qk(yn, z)) (n ≥ k).

Lemma 3.3. Let C be a clone τ -algebra and b = b1, . . . , bn ∈ C. Then the map
sb : C → C, defined by sb(a) = qn(a,b) for every a ∈ C, is an endomor-
phism of the τ -algebra Cτ , satisfying sb(ei) = bi for 1 ≤ i ≤ n, and sb(ei) = ei

for i > n.

In the remaining part of this section we define the notions of independence
and dimension in clone algebras.

Definition 3.4. An element a of a clone algebra C is independent of en if
qn(a, e1, . . . , en−1, en+1) = a. If a is not independent of en, then we say that a
is dependent on en.

Lemma 3.5. Let C be a clone algebra and b = b1, . . . , bn−1 ∈ C. If k ≥ n and
a ∈ C is independent of en, en+1 . . . , ek, then

qk(a,b, bn, . . . , bk) = qn−1(a,b), for all bn, . . . , bk ∈ C.
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Let a be an element of a clone algebra C. We define

Γ(a) = {i : a is dependent on ei}; γ(a) =

⎧
⎨

⎩

ω if Γ(a) is infinite
0 if Γ(a) is empty
max Γ(a) otherwise

An element a ∈ C is said to be: (i) k-dimensional if γ(a) = k; (ii) finite-
dimensional if it is k-dimensional for some k < ω; (iii) zero-dimensional if
γ(a) = 0. If a is zero-dimensional, then qCn (a, b1, . . . , bn) = a for all n and
b1, . . . , bn ∈ C.

We denote by FiC the set of all finite-dimensional elements of a clone
algebra C. The set FiC is a subalgebra of C, because σ(b) (σ ∈ τ) and qn(a,b)
have dimension ≤ k if a,b have dimension ≤ k.

We say that C is finite-dimensional if C = FiC.

3.1. Functional clone algebras

The most natural CAs, the ones the axioms are intended to characterise, are
algebras of functions, called functional clone algebras. The elements of a func-
tional clone algebra are infinitary functions from AN into A, for a given set
A. In this framework qn(ϕ,ψ1, . . . , ψn) represents the n-ary composition of ϕ
with ψ1, . . . , ψn, acting on the first n coordinates, and the nullary operators
are the projections.

Let A be a set and O(N)
A be the set of all infinitary operations from AN

into A. If r ∈ AN and a1, . . . , an ∈ A then r[a1, . . . , an] ∈ AN is defined by

r[a1, . . . , an](i) =

{
ai if i ≤ n

ri if i > n

Moreover, we write r[a/n] for r[r1, . . . , rn−1, a].

Definition 3.6. Let A be a τ -algebra. The algebra O(N)
A = (O(N)

A , σN, qNn , eNi ),
where, for every s ∈ AN and ϕ,ψ1, . . . , ψn ∈ O(N)

A ,
• eNi (s) = si;
• qNn(ϕ,ψ1, . . . , ψn)(s) = ϕ(s[ψ1(s), . . . , ψn(s)]);
• σN(ψ1, . . . , ψn)(s) = σA(ψ1(s), . . . , ψn(s)) for every σ ∈ τ of arity n;

is called the full functional clone τ -algebra with value domain A. A subalgebra
of O(N)

A is called a functional clone algebra with value domain A.

The universe of a functional clone algebra will be called ω-clone.
From the definition, we easily get:

Lemma 3.7. The algebra O(N)
A is a clone τ -algebra.

The class of functional clone algebras is denoted by FCA. FCAτ is the
class of FCAs whose value domain is a τ -algebra.

The algebraic and functional notions of independence are equivalent.

Lemma 3.8. An infinitary operation ϕ ∈ O(N)
A is independent of en iff, for all

s, u ∈ AN, ui = si for all i �= n implies ϕ(u) = ϕ(s).
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Proof. Let e = e1, . . . , en−1 and s, u ∈ AN such that ui = si for all i �= n.
(⇒) If ϕ = qNn(ϕ, e, en+1) then ϕ(u) = qNn(ϕ, e, en+1)(u) = ϕ(u[un+1/n]) =
ϕ(s[sn+1/n]) = qNn(ϕ, e, en+1)(s) = ϕ(s), because ui = si for all i �= n.
(⇐) qNn(ϕ, e, en+1)(s) = ϕ(s[sn+1/n]) = ϕ(s) for every s. �

From Lemma 3.8 it follows that there exist zero-dimensional infinitary
operations that are not constant. For example, if 2 = {0, 1}, then the function
ψ : 2N → 2, defined by ψ(s) = 0 if and only if |{i : si = 0}| is finite, is
zero-dimensional.

3.2. Clones of operations and block algebras

In this section we introduce an equivalence relation ≈OA
over the set OA of

operations of a given set A: two operations are equivalent if the one having
greater arity extends the other one by a bunch of dummy arguments. Each
block (equivalence class) of ≈OA

determines a unique infinitary operation that
we call the top extension of the block. The set of all these top extensions is
an ω-clone and it is exactly the functional clone algebra associated with OA,
called the full block algebra on A. We prove that the lattice of clones on a set
A is isomorphic to the lattice of subalgebras of the full block algebra on A.

Definition 3.9 [15, Section 2]. The top extension f� ∈ O(N)
A of an operation

f ∈ OA of arity n is defined as follows:

f�(s) = f(s1, . . . , sn), for all s ∈ AN.

We say that f, g ∈ OA are similar, and we write f ≈OA
g, if f� = g�.

We denote by BA the set of all blocks (i.e., equivalence classes) of the
relation ≈OA

. If f ∈ OA then 〈f〉 denotes the unique block containing f .
If B is a block, then B∩O(n)

A is either empty or a singleton. If B∩O(n)
A �= ∅,

then B ∩ O(k)
A �= ∅ for every k ≥ n.

Definition 3.10. We say that a block B has arity k and generator f if f ∈ B
has arity k and every other g ∈ B has arity greater than k.

Note that, if f : Ak → A is the generator of a block B, then there exist
a1, . . . , ak−1, b, c ∈ A such that f(a1, . . . , ak−1, b) �= f(a1, . . . , ak−1, c).

If B is a block of arity k, then we denote by B(n) (n ≥ k) the unique
function in B ∩O(n)

A . Therefore, B = {B(n) : n ≥ k} and B(k) is the generator
of the block B.

Example 3.11. Let CloA be the clone of the term operations of a τ -algebra A.
Then, B ⊆ CloA is a block if and only if there exists a τ -term t such that B
is equal to the set TA

t of all term operations defined by t on A.

The top extension B� of a block B is defined as B� = f� for some (and
then all) f ∈ B. Then the map B �→ B� embeds the set BA of blocks into
O(N)

A . Its image {B� : B ∈ BA} will be denoted by B�
A .

It is not difficult to show that a block B ∈ BA has arity k iff B� has
dimension k in the full FCA O(N)

A .
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Lemma 3.12. B�
A is a finite-dimensional subalgebra of the full FCA O(N)

A .

Proof. First eNi = P�
i , where Pi is the block generated by p

(i)
i . If B,G1, . . . , Gn

are blocks and k ≥ n is greater than the arities of B,G1, . . . , Gn, then
qNn(B�, G�

1 , . . . , G�
n ) = (B(k)(G(k)

1 , . . . , G
(k)
n , P

(k)
n+1, . . . , P

(k)
k )k)�. �

The FCA B�
A will be called the full block algebra on A. A subalgebra of

the full block algebra B�
A is called a block algebra on A. A block algebra on a

τ -algebra A is a block algebra on A containing (σA)� for every σ ∈ τ .

Lemma 3.13. Every clone is a union of blocks.

Proof. Let F be a clone on A, f ∈ F be an n-ary operation and g : Ak → A be
the generator of the block 〈f〉. Then g = f(p(k)1 , . . . , p

(k)
k , p

(k)
k , . . . , p

(k)
k )k ∈ F

and 〈f〉(m) = g(p(m)
1 , . . . , p

(m)
k )m ∈ F for all m ≥ k. �

If F ⊆ OA, then we define F� = {f� : f ∈ F}.

Proposition 3.14. Let F ⊆ OA. Then the following conditions are equivalent:
(1) F is a clone on A;
(2) F� is the universe of a block algebra on A.

The map F �→ F� determines an isomorphism from the lattice of all clones
on A onto the lattice of all subalgebras of the full block algebra B�

A .

Proof. (1) ⇒ (2) First we have (pn
i )� = eNi . Let f, g1, . . . , gn ∈ F . We now

check that qNn(f�, g�
1 , . . . , g�

n ) ∈ F�. Let k ≥ n be greater than the arities
of f, g1, . . . , gn. Then qNn(f�, g�

1 , . . . , g�
n ) is the top expansion of the operation

h = 〈f〉(k)(〈g1〉(k), . . . , 〈gn〉(k), P (k)
n+1, . . . , P

(k)
k )k. We have that h ∈ F , because

F contains the blocks 〈f〉, 〈gi〉 and Pi.
(2) ⇒ (1) If f ∈ F (n) and g1, . . . , gn ∈ F (k), then f(g1, . . . , gn)�

k =
qNn(f�, g�

1 , . . . , g�
n ) ∈ F�.

The remaining part of the proposition is an easy consequence of the
equivalence between (1) and (2). �

3.3. The representation of finite-dimensional clone algebras

In this section we show that every finite-dimensional clone algebra is isomor-
phic to a block algebra. This result is not trivial, because, for example, there
exist finite dimensional FCAs that contain zero-dimensional infinitary opera-
tions that are not top extensions of any finitary operation.

We start the section by defining the set of representable operations of a
clone algebra.

Definition 3.15. Let C be a clone algebra and f : Ck → C be a function. We
say that f is C-representable if f(eC1 , . . . , eCk ) has dimension ≤ k and

f(a) = qCk (f(eC1 , . . . , eCk ),a), for all a ∈ Ck.

We denote by RC the set of all C-representable functions and by R
(k)
C the set

of all C-representable functions of arity k.
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In the following lemma it is shown that a function is C-representable if
and only if it satisfies an analogue of identity (C7) in Definition 3.1.

Lemma 3.16. Let C be a clone τ -algebra and f : Ck → C be a function. Then
the following conditions are equivalent:

(1) f is C-representable;
(2) qn(f(a), c) = f(qn(a1, c), . . . , qn(ak, c)) for every n ≥ 0, a ∈ Ck and

c ∈ Cn.

In particular, by (C7) every basic operation σC (σ ∈ τ) is C-representable.

Proof. By Lemma 3.2 applied to qn(f(a), c) = qn(qk(f(e1, . . . , ek),a), c). �

Let C be a clone algebra. For every a ∈ C of finite dimension, we consider
the set R(a) =

⋃
n∈ω{f ∈ R

(n)
C : a = f(e1, . . . , en)} of the C-representable

functions determined by a.

Proposition 3.17. Let C be a clone algebra and a, b be finite-dimensional ele-
ments of C. Then the following conditions hold:

(1) For every f ∈ R
(n)
C and g ∈ R

(k)
C ,

f ≈OC
g iff f(e1, . . . , en) = g(e1, . . . , ek).

(2) R(a) is a block.
(3) R(a) ∩ R(b) �= ∅ ⇒ a = b.
(4) RC =

⋃
a∈FiC R(a) is a clone on C.

(5) The block R(a) has arity k iff a has dimension k in C.

Proof. (1) (⇒) If n ≤ k, then f(e1, . . . , en) = g(e1, . . . , en,b) for every b. In
particular for b = en+1, . . . , ek we get the conclusion. (⇐) It is trivial by the
hypothesis.

(2) By (1).
(3) If f ∈ R(a) ∩ R(b) has arity n, then a = f(e1, . . . , en) = b.
(4) p

(n)
i is C-representable: ai = p

(n)
i (a) = qn(p(n)i (e1, . . . , en),a). If

f of arity n and g1, . . . , gn of arity k are C-representable, then the func-
tion h = f(g1, . . . , gn)k is also C-representable. Let e = e1, . . . , ek and a =
a1, . . . , ak. Then we have: qk(h(e),a) = qk(f(g1(e), . . . , gn(e)),a) =Lem. 3.16

f(qk(g1(e),a), . . . , qk(gn(e),a)) = f(g1(a), . . . , gn(a)) = h(a).
(5) If the block R(a) has arity k, then by Definition 3.15 a has dimension

≤ k. We have to show that a has indeed dimension k. If f ∈ R(a) is the
generator of arity k, then a = f(e1, . . . , ek). Then, a is independent of ek iff,
for every c and b = b1, . . . , bk−1 ∈ C, f(b, c) = qk(a,b, c)=Lem. 3.5 qk−1(a,b)
iff, for every c, d and b = b1, . . . , bk−1 ∈ C, f(b, c) = f(b, d) iff f is not a
generator. Contradiction. �

Theorem 3.18. Let C be a finite-dimensional clone τ -algebra. The function F
mapping a ∈ C �→ R(a)� is an isomorphism from C onto the block algebra
(RC)� on C.
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Proof. F is trivially bijective and eCi �→ R(eCi )� = eNi . The map F preserves
the operators qn: R(qCn (a,b))� = qNn(R(a)�, R(b1)�, . . . , R(bn)�). Let k ≥ n
be greater than the dimensions of a, b1, . . . , bn and qCn (a,b). Let s ∈ CN,
s = s1, . . . , sk, A = R(a) and Bi = R(bi).

qNn(A�, B�
1 , . . . , B�

n )(s) = A�(s[B�
1 (s), . . . , B�

n (s)])

= A(k)(B�
1 (s), . . . , B�

n (s), sn+1, . . . , sk)

= A(k)(B(k)
1 (s), . . . , B(k)

n (s), sn+1, . . . , sk)

= qCk (a, qCk (b1, s), . . . , qCk (bn, s), sn+1, . . . , sk)

= qCk (qCn (a,b), s)

= R(qCn (a,b))�(s)

(RC)� is closed under σN (σ ∈ τ) because σC is C-representable. �

We denote by BLK the class of all block algebras and by FiCA the class
of all finite-dimensional clone algebras.

Theorem 3.19. FiCAτ = IBLKτ .

Proof. By Theorem 3.18 FiCAτ ⊆ IBLKτ . The inequality BLKτ ⊆ FiCAτ is
trivial, because every block algebra is finite-dimensional. �

Theorem 3.18 allows us to compare abstract clones (defined in
Section 2.2.1) and clone algebras.

Theorem 3.20. The category of abstract clones and many-sorted homomor-
phisms is equivalent to the category of finite-dimensional pure clone algebras
and (one-sorted) homomorphisms.

Proof. An abstract clone A has a concrete representation as an isomorphic
clone C(A) of finitary operations (see [6, Section 3]). The top expansion C(A)�

of this clone is a block algebra that is finite-dimensional by construction. For
the converse, by Theorem 3.18 a finite-dimensional pure clone algebra C is
isomorphic to a block algebra that is the top expansion of a suitable clone of
operations. Moreover, many-sorted homomorphisms of abstract clones easily
correspond to homomorphisms of clone algebras. �

4. The general representation theorem

This section is devoted to the proof of the main representation theorem. Firstly
we introduce the class RCA of point-relativized functional clone algebras, which
is instrumental in the proof of the representation theorem. The following dia-
gram provides the outline of the proof that CA = IFCA:
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CA = IRCA Lemma 4.5
⊆ I S PU FCA Lemma 4.8,Lemma 4.6
⊆ I S PFCA Lemma 4.10
⊆ IFCA Lemma 4.9
⊆ CA Lemma 3.7

In other words, the proof is structured as follows:
• Each clone algebra is isomorphic to a point relativized functional clone

algebra.
• Each point relativized functional clone algebra embeds into an ultrapower

of a functional clone algebra.
• Each ultrapower of a functional clone algebra is isomorphic to a subdirect

product of a family of functional clone algebras.
• Functional clone algebras are closed under subalgebras and direct prod-

ucts.
Moreover, we prove that the variety of clone algebras is generated by its finite-
dimensional members (or by the class of block algebras):

CA = HSP(FiCA) = HSP(BLK).

Then, the variety of clone algebras is the algebraic counterpart of ω-clones, the
class of block algebras is the algebraic counterpart of clones, and the ω-clones
are algebraically generated by clones through direct products, subalgebras and
homomorphic images.

4.1. Point-relativized functional clone algebras

Let A be a set. We define an equivalence relation on AN as follows: r ≡ s iff |{i :
ri �= si}| < ω. Let AN

r = {s ∈ AN : s ≡ r} be the equivalence class of r and
O(N)

A,r be the set of all functions from AN
r to A.

Definition 4.1. Let A be a τ -algebra and r ∈ AN. The algebra O(N)
A,r

= (O(N)
A,r, σ

r, qr
n, er

i ), where, for every s ∈ AN
r and ϕ,ψ1, . . . , ψn ∈ O(N)

A,r,

• er
i (s) = si;

• qr
n(ϕ,ψ1, . . . , ψn)(s) = ϕ(s[ψ1(s), . . . , ψn(s)]);

• σr(ψ1, . . . , ψn)(s) = σA(ψ1(s), . . . , ψn(s)) for every σ ∈ τ of arity n,
is called the full point-relativized functional clone algebra with value domain
A and thread r.

Notice that, if r ≡ s, then O(N)
A,r = O(N)

A,s.

Lemma 4.2. The algebra O(N)
A,r is a clone τ -algebra.

A subalgebra of O(N)
A,r is called a point-relativized functional clone algebra

with value domain A and thread r. The class of point-relativized functional
clone algebras is denoted by RCA. RCAτ is the class of RCAs whose value
domain is a τ -algebra.



14 Page 14 of 30 A. Bucciarelli and A. Salibra Algebra Univers.

An analogue of Lemma 3.8, relating the algebraic and functional notions
of independence, holds for RCAs.

If B ∈ BA is a block, then the r-relativized top extension B�
r : AN

r → A
of B is defined by B�

r (s) = B(n)(s1, . . . , sn), for every s ∈ AN
r and n greater

than the arity of B.
The following lemma, which is true in O(N)

A,r and false in O(N)
A , explains

the difference between RCAs and FCAs.

Lemma 4.3. Let ϕ ∈ O(N)
A,r. Then the following conditions are equivalent:

(1) ϕ = B�
r for some block B;

(2) ϕ is finite-dimensional in the clone algebra O(N)
A,r.

Proof. (1) ⇒ (2) If B has arity k then, for every s ∈ AN
r , we have ϕ(s) =

B�
r (s) = B(k)(s1, . . . , sk) = B�

r (r[s1, . . . , sk]) = ϕ(r[s1, . . . , sk]). Then ϕ is
independent of en for every n > k.

(2) ⇒ (1) If n is the dimension of ϕ, then, for every s ∈ AN
r , we have

that ϕ(s) = ϕ(r[s1, . . . , sn]). If f : An → A is defined by f(a1, . . . , an) =
ϕ(r[a1, . . . , an]), then ϕ = f�

r . �

The following counterexample shows that Lemma 4.3 is false in O(N)
A . Let

ψ : AN → A be a zero-dimensional element of O(N)
A such that ψ(s) �= ψ(u) for

some s, u ∈ AN. Then ψ �= f� for every operation f ∈ OA.

4.2. The main theorem

We recall that CA is the class of all clone algebras, RCA is the class of all
point-relativized functional clone algebras, FCA is the class of all functional
clone algebras, FiCA is the class of all finite-dimensional clone algebras, and
BLK is the class of all block algebras.

Theorem 4.4. CA = IRCA = IFCA = HSP(FiCA) = HSP(BLK).

The proof of the main theorem is divided into lemmas.

Lemma 4.5. CAτ = IRCAτ .

Proof. Let C = (Cτ , qCn , eCi ) be a clone τ -algebra. Let O(N)
Cτ ,ε be the full RCA

with value domain Cτ and thread ε, where εi = eCi for every i. We define a
map F : C → O(N)

C,ε as follows. Let s ∈ CN
ε such that s = ε[s1, . . . , sk] and

sk �= eCk . Then we define

F (c)(s) = qCk (c, s1, . . . , sk).

Notice that, for every n ≥ k,

F (c)(s) =(C5) qCn (c, s1, . . . , sk, eCk+1, . . . , e
C
n ). (4.1)
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F is injective because F (c)(ε) = qC0 (c) = c for every c ∈ C. We prove that F

embeds C into O(N)
Cτ ,ε. Let s = s1, . . . , sk. If n ≥ k then we have:

F (qCn (b, c))(s) = qCk (qCn (b, c), s) Def. F

= qCn (b, qCk (c1, s), . . . , qCk (cn, s)) by Lemma 3.2

= qCn (b, F (c1)(s), . . . , F (cn)(s)) Def. F

= F (b)(ε[F (c1)(s), . . . , F (cn)(s)]) Def. F and (4.1)

= F (b)(s[F (c1)(s), . . . , F (cn)(s)]) by n ≥ k

= qε
n(F (b), F (c1), . . . , F (cn))(s).

The proof in the case n < k is similar. It is easy to show that F preserves eCi
and the operators σC (σ ∈ τ). �

By the n-reduct of a clone τ -algebra C we mean the algebra

RdnC := (Cτ , qC0 , . . . , qCn , eC1 , . . . , eCn ).

Lemma 4.6. Let A be a τ -algebra and D be a RCAτ with value domain A and
thread r. For every n ≥ 0 the map Fr,n : D → B�

A , defined by

Fr,n(ϕ)(s) = ϕ(r[s1, . . . , sn]) for every ϕ ∈ D and s ∈ AN,

is a homomorphism of RdnD into the n-reduct RdnB�
A of the full block algebra

B�
A.

Proof. Let F = Fr,n in this proof. Let k ≤ n, s ∈ AN and u = r[s1, . . . , sn].

F (qr
k(ϕ,ψ1, . . . , ψk))(s) = qr

k(ϕ,ψ1, . . . , ψk)(u)

= ϕ(u[ψ1(u), . . . , ψk(u)])

= ϕ(r[ψ1(u), . . . , ψk(u), sk+1, . . . , sn])

= F (ϕ)(s[ψ1(u), . . . , ψk(u), sk+1, . . . , sn])

= F (ϕ)(s[F (ψ1)(s), . . . , F (ψk)(s), sk+1, . . . , sn])

= F (ϕ)(s[F (ψ1)(s), . . . , F (ψk)(s)])

= qNk (F (ϕ), F (ψ1), . . . , F (ψk))(s)

The proof in the case σ ∈ τ is similar. Notice that the image of the homo-
morphism F is within the full block algebra B�

A, because F (ϕ) = f�, where
f(a1, . . . , an) = ϕ(r[a1, . . . , an]) for every a1, . . . , an ∈ A. �

Lemma 4.7. CAτ = HSP(FiCAτ ).

Proof. Let t(v1, . . . , vk) = u(v1, . . . , vk) be an identity (in the language of clone
τ -algebras) satisfied by every finite-dimensional clone τ -algebra. We now show
that the identity t = u holds in every clone τ -algebra. Since CAτ = IRCAτ ,
it is sufficient to prove that the identity t = u holds in the full RCAτ O(N)

A,r

with value domain A and thread r. If tr and ur are the interpretations of t

and u in O(N)
A,r, we have to show that tr(ϕ1, . . . , ϕk)(s) = ur(ϕ1, . . . , ϕk)(s) for

all ϕ1, . . . , ϕk ∈ O(N)
A,r and all s ∈ AN

r . Let n > k be such that qm and em do
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not occur in t, u for every m > n. Since O(N)
A,r satisfies the equation t = u iff

the n-reduct Rdn O(N)
A,r satisfies it, then we can use the function Fs,n defined

in Lemma 4.6. Let tN and uN be the interpretations of t and u in the full block
algebra B�

A. Recall that B�
A is finite-dimensional.

tr(ϕ1, . . . , ϕk)(s) = tr(ϕ1, . . . , ϕk)(s[s1, . . . , sn])

= Fs,n(t
r(ϕ1, . . . , ϕk))(s) Def. Fs,n

= tN(Fs,n(ϕ1), . . . , Fs,n(ϕk))(s) Fs,n is a homomorphism

= uN(Fs,n(ϕ1), . . . , Fs,n(ϕk))(s) B�
Ais finite-dimensional

= Fs,n(u
r(ϕ1, . . . , ϕk))(s)

= ur(ϕ1, . . . , ϕk)(s).

By Theorem 3.19 we also derive CAτ = HSP(BLKτ ).

Lemma 4.8. Every RCAτ can be embedded into an ultrapower of a FCAτ .

Proof. Let U be a nonprincipal ultrafilter on ω that contains the set {j : j ≥ i}
for every i ∈ ω. U does not contain finite sets. Let O(N)

A,r be the full RCAτ with
value domain A and thread r. Let Fr,n be the function defined in Lemma 4.6.
We prove that the map h, defined by h(ϕ) = 〈Fr,n(ϕ) : n ∈ ω〉/U , where
ϕ ∈ O(N)

A,r, is an embedding of the full RCAO(N)
A,r into the ultrapower (O(N)

A )ω/U

of the full FCA O(N)
A with value domain A.

We prove that h is injective. If h(ϕ) = h(ψ) then {n : Fr,n(ϕ) =
Fr,n(ψ)} ∈ U . Then, for every i ∈ ω, by the hypothesis on U we have:

{j : j ≥ i} ∩ {n : Fr,n(ϕ) = Fr,n(ψ)} is an infinite set.

Then there exists an increasing sequence k1 < k2 < · · · < kj < . . . of natural
numbers such that kj ∈ {j : j ≥ i} ∩ {n : Fr,n(ϕ) = Fr,n(ψ)} and kj >
kj−1. Let s = r[s1, . . . , sm] ∈ AN

r . Let kn > m. Then s = r[s1, . . . , sm] =
r[s1, . . . , sm, rm+1, . . . , rkn

] and we have:

ϕ(s) = ϕ(r[s1, . . . , sm, rm+1, . . . , rkn
])

= Fr,kn
(ϕ)(s) Def. Fr,kn

= Fr,kn
(ψ)(s) kn ∈ {n : Fr,n(ϕ) = Fr,n(ψ)}

= ψ(r[s1, . . . , sm, rm+1, . . . , rkn
])

= ψ(s).

By the arbitrariness of s it follows that ϕ = ψ. We now prove that h is a
homomorphism. Let ψ̄ = ψ0, ψ1 . . . , ψk and Fr,n(ψ̄) = Fr,n(ψ0), . . . , Fr,n(ψk).
Then, h(qr

k(ψ̄)) = 〈Fr,n(qr
k(ψ̄)) : n ∈ ω〉/U = 〈qNk (Fr,n(ψ̄)) : n ∈ ω〉/U ,

because by Lemma 4.6 {n : Fr,n(qr
k(ψ̄)) = qNk (Fr,n(ψ̄))} ⊇ {n : n ≥ k} ∈ U .

Let B = O(N)
A and h(ψ̄) = h(ψ0), . . . , h(ψk). Then,

q
Bω/U
k (h(ψ̄)) = q

Bω/U
k (〈Fr,n(ψ0) : n ∈ ω〉/U, . . . , 〈Fr,n(ψk) : n ∈ ω〉/U)

= 〈qNk (Fr,n(ψ̄)) : n ∈ ω〉/U.
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Moreover, h(er
i ) = 〈Fr,n(er

i ) : n ∈ ω〉/U = 〈eNi : n ∈ ω〉/U because {n :
Fr,n(er

i ) = eNi } ⊇ {n : n ≥ i} ∈ U . A similar computation works for
σ ∈ τ . �

Lemma 4.9. The class IFCAτ is closed under subalgebras and products.

Proof. The class of FCAτ ’s is trivially closed under subalgebras. It is also closed
under products, because

∏
i∈H Bi, where Bi is a FCAτ with value domain Ai,

can be embedded into the full FCAτ with value domain
∏

i∈H Ai: the sequence
〈ϕi : AN

i → Ai ∈ Bi | i ∈ H〉 maps to ϕ : (
∏

i∈H Ai)N → ∏
i∈H Ai defined by

ϕ(r) = 〈ϕi(〈rj(i) : j ∈ N〉) | i ∈ H〉. �

Lemma 4.10. Ultrapowers of FCAτ s are isomorphic to FCAτ s.

Proof. Let B be a FCA with value domain A, K be a set and U be any
ultrafilter on K. By Lemma 4.9 we get the conclusion if the ultrapower BK/U
is isomorphic to a subdirect product of FCAs.

A choice function is a function ch : AK/U → AK such that ch(w/U) ∈
w/U for every w ∈ AK (see [18, Section 6]). Any choice function ch induces
a function ch+ : (AK/U)N → (AN)K , defined by ch+(r)k = 〈ch(ri)k : i ∈ N〉,
for every r ∈ (AK/U)N and k ∈ K. We use the choice function ch to define a
function hch : BK/U → O(N)

AK/U
as follows: hch(u/U)(r) = 〈uk(ch+(r)k) : k ∈

K〉/U , for every u ∈ BK , r ∈ (AK/U)N. The map hch is a homomorphism from
the ultrapower BK/U into the full FCA O(N)

AK/U
with value domain AK/U . Let

C := BK/U , D := O(N)

AK/U
, r ∈ (AK/U)N and sk := ch+(r)k ∈ AN (k ∈ K).

hch(eCi )(r) = hch(〈eBi : k ∈ K〉/U)(r)

= hch(〈eNi : k ∈ K〉/U)(r) B ∈ FCA

= 〈eNi (ch+(r)k) : k ∈ K〉/U Def. hch

= 〈ch(ri)k : k ∈ K〉/U Def. ch+ and eNi

= ch(ri)/U = ri ch(ri) ∈ ri

Without loss of generality, we prove that hch preserves qC2 .

hch(qC2 (u/U,w1/U,w2/U))(r)

= hch(〈qB2 (uk, w1
k, w2

k) : k ∈ K〉/U)(r) Def. qC2

= 〈qB2 (uk, w1
k, w2

k)(sk) : k ∈ K〉/U Def. hch

= 〈qN2 (uk, w1
k, w2

k)(sk) : k ∈ K〉/U Lemma 3.7

= 〈uk(sk[w1
k(sk), w2

k(sk)]) : k ∈ K〉/U Def. qN2

= 〈uk(ch+(r)k[w1
k(sk), w2

k(sk)]) : k ∈ K〉/U Def. sk

= 〈uk(〈ch(ri)k : i ∈ N〉[w1
k(sk), w2

k(sk)]) : k ∈ K〉/U Def. ch+

= 〈uk(w1
k(sk), w2

k(sk), ch(r3)k, ch(r4)k, . . . ) : k ∈ K〉/U
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Let t = r[〈w1
j (sj) : j ∈ K〉/U, 〈w2

j (sj) : j ∈ K〉/U ].

qD2 (hch(u/U), hch(w1/U), hch(w2/U))(r)

= qN2 (hch(u/U), hch(w1/U), hch(w2/U))(r) Lem. 3.7

= hch(u/U)(r[hch(w1/U)(r), hch(w2/U)(r)]) Def. qN2

= hch(u/U)(r[〈w1
j (sj) : j ∈ K〉/U, 〈w2

j (sj) : j ∈ K〉/U ]) Def. hch

= 〈uk(ch+(t)k) : k ∈ K〉/U Def. hch

= 〈uk(〈ch(ti)k : i ∈ N〉) : k ∈ K〉/U Def. ch+

= 〈uk(ch(t1)k, ch(t2)k, ch(t3)k, ch(t4)k, . . . ) : k ∈ K〉/U

= 〈uk(ch(t1)k, ch(t2)k, ch(r3)k, ch(r4)k, . . . ) : k ∈ K〉/U

because ti = ri for i ≥ 3

= 〈uk(ch(〈w1
j (sj) : j ∈ K〉/U)k, ch(〈w2

j (sj) : j ∈ K〉/U)k,

ch(r3)k, ch(r4)k, . . . ) : k ∈ K〉/U Def. t

= 〈uk(w1
k(sk), w2

k(sk), ch(r3)k, ch(r4)k, . . . ) : k ∈ K〉/U

because {k ∈ K : ch(〈wi
j(sj) : j ∈ K〉/U)k = wi

k(sk)} ∈ U (i = 1, 2). A similar
proof works for σ ∈ τ . Hence a homomorphic image of the ultrapower BK/U
is isomorphic to a FCA.

By [3, Lemma 8.2] we have that the ultrapower BK/U is isomorphic
to a subdirect product of FCAs if the family of maps hch (indexed by choice
functions) satisfies the following property: for all distinct w/U, u/U ∈ BK/U
there exists a choice function ch for which hch(w/U) �= hch(u/U). We are going
to prove this fact.

Let w = 〈wi : AN → A : i ∈ K〉 and u = 〈ui : AN → A : i ∈ K〉. For
every j ∈ K, let ρj ∈ AN such that wj(ρj) �= uj(ρj) whenever wj �= uj . For
every i ∈ N, let ri ∈ AK such that ri(j) = ρj(i) for all j ∈ K. Define s ∈
(AK/U)N as si = ri/U and consider any choice function ch such that ch(si) =
ri. Then we have hch(w/U)(s) = 〈wj(ρj) : j ∈ K)〉/U and hch(u/U)(s) =
〈uj(ρj) : j ∈ K)〉/U , but {j : wj(ρj) = uj(ρj)} = {j : wj = uj} /∈ U , because
w/U �= u/U . It follows that hch(w/U)(s) �= hch(u/U)(s) and then hch(w/U) �=
hch(u/U). �

Lemma 4.10 concludes the proof of the main representation theorem. We
now compare clone algebras and Neumann’s abstract ℵ0-clone.

4.3. Neumann’s abstract ℵ0-clone and clone algebras

We say that the clone algebra C is the clone algebra reduct of the abstract ℵ0-
clone D (defined in Section 2.2.2) if D = C, eDi = eCi and qCn (x, y1, . . . , yn) =
qD∞(x, y1, . . . , yn, eDn+1, e

D
n+2, . . . ). It is obvious that every abstract ℵ0-clone has

a clone algebra reduct.

Proposition 4.11. (1) Every clone algebra can be embedded into the clone al-
gebra reduct of a suitable abstract ℵ0-clone.
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(2) There exists a FCA with value domain 2 = {0, 1} that is not the clone
algebra reduct of any functional ℵ0-clone with value domain 2.

(3) Every finite-dimensional clone algebra is isomorphic to a clone algebra
reduct of a suitable abstract ℵ0-clone.

Proof. (1) Let C be a clone algebra. By Theorem 4.4 C is isomorphic to a
subalgebra of a full FCA. Every full FCA, being closed under qN∞, is the clone
algebra reduct of a functional ℵ0-clone.

(2) Fix a zero-dimensional infinitary operation ψ : 2N → 2 such that
ψ(0, 0, . . . , 0, . . . ) = 1 and ψ(1, 1, . . . , 1, . . . ) = 0. Then the set B = {ψ} ∪
{eNi | i ≥ 1} is a finite-dimensional subalgebra of the full FCA O(N)

2 , because ψ
is zero-dimensional and qNn(ψ,ϕ1, . . . , ϕn)(s) = ψ(s[ϕ1(s), . . . , ϕn(s)]) = ψ(s)
for every ϕi ∈ O(N)

2 and s ∈ 2N. B is not the clone algebra reduct of any
functional ℵ0-clone with value domain 2. Indeed,

qN∞(ψ, eN1 , . . . , eN1 , . . . )(s) =

{
1 if s1 = 0
0 if s1 = 1

is not zero-dimensional and it is distinct from any projection.
(3) Let C be a finite-dimensional clone algebra. Then we define

qC∞(a, b1, b2, . . . ) = qCn (a, b1, b2, . . . , bn), where n is the dimension of a. The
axioms of abstract ℵ0-clone for (C, qC∞, eCi ) are easily checked. �

Notice that by applying the construction of point (3) above to the finite
dimensional clone algebra of point (2) we get an abstract ℵ0-clone that is not
functional.

It is open whether every (not finite-dimensional) clone algebra is isomor-
phic to a clone algebra reduct of a suitable abstract ℵ0-clone.

5. A characterisation of the lattices of equational theories

In this section we propose an answer to the lattice of equational theories prob-
lem described in the introduction. We prove that a lattice is isomorphic to
a lattice of equational theories if and only if it is isomorphic to the lattice
of all congruences of a finite-dimensional clone algebra. Unlike Newrly’s and
Nurakunov’s approaches [16,17], we have an equational axiomatisation of the
variety generated by the class of finite-dimensional clone algebras (see Theo-
rem 4.4).

We say that an endomorphism f of the free algebra FV is n-finite if
f(vi) = vi for every i > n. An endomorphism is finite if it is n-finite for some
n.

Lemma 5.1 [3,13]. Let V be a variety and T = Eq(V). Then the lattice L(T )
of all equational theories extending T is isomorphic to the congruence lattice
of the algebra (FV , f)f∈End, which is an expansion of the free algebra FV by
the set End of all its finite endomorphisms.
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The set of all n-finite endomorphisms can be collectively expressed by an
(n + 1)-ary operation qFn on FV (see [12, Definition 3.2]):

qFn (a, b1, . . . , bn) = s(a), for every a, b1, . . . , bn ∈ FV , (5.1)

where s is the unique n-finite endomorphism of FV which sends the generator
vi to bi (1 ≤ i ≤ n).

Definition 5.2. Let V be a variety and FV be the free V-algebra over a count-
able set I of generators. Then the algebra Cl(V) = (FV , qFn , eFi ), where eFi =
vi ∈ I and qFn is defined in (5.1), is called the clone V-algebra.

CloFV denotes the clone of term operations of FV . By Proposition 3.14
(CloFV)� is a block algebra.

Proposition 5.3. Let V be a variety of τ -algebras axiomatised by the equational
theory T . Then we have:
(1) The clone V-algebra Cl(V) is a finite-dimensional clone τ -algebra, whose

congruence lattice ConCl(V) is isomorphic to the lattice L(T ) of equa-
tional theories extending T .

(2) If w ∈ FV has dimension n > 0 in Cl(V), then there exists a τ -term
t(v1, . . . , vn) belonging to w.

(3) If w ∈ FV has dimension 0 in Cl(V), then there exists a τ -term t(v1) ∈ w
such that V |= t(v1) = t(v2).

(4) The clone V-algebra Cl(V) is isomorphic to the block algebra (CloFV)�.

Proof. (1) By Lemma 5.1 and the definition of qFn .
(2) Let w ∈ FV of dimension n > 0 and let u ∈ w be an arbitrary term.

Let vk be the last variable occurring in u (i.e., vi does not occur in u for
every i > k). If k ≤ n, then u satisfies the required property. Let k > n.
Since qFk (w, eF1 , . . . , eFn , eF1 , . . . , eF1 ) = w is the equivalence class of the term
u[v1/vn+1, v1/vn+2 . . . , v1/vk], then this last term belongs to w and satisfies
the required property.

(3) Let w ∈ FV be zero-dimensional and u ∈ w be an arbitrary term. If u
is ground, then u = u(v1) and we are done. Otherwise, we follow the reasoning
in item (2).

(4) Let C = Cl(V) in this proof. From Theorem 3.18 it follows that
C is isomorphic to the block algebra R�

C generated by the clone RC of C-
representable functions. The conclusion follows because a function is repre-
sentable in the clone V-algebra C if and only if it is a term operation of FV .
In other words, CloFV = RC. �
Definition 5.4. Let C be a clone algebra and RC be the clone of all
C-representable functions described in Definition 3.15.
(1) The C-type is the algebraic type ρC = {f : f ∈ RC}, where the operation

symbol f has arity k if f ∈ RC is a k-ary function.
(2) The ρC-algebra RC = (C, f)f∈RC

is called algebra of C-representable
functions;

(3) The algebra RC = (RC, qCn , eCi ) is called the clone ρC-algebra of C-
representable functions.
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Theorem 5.5. Let C be a finite-dimensional clone algebra and V = Var(RC)
be the variety of type ρC generated by RC. Then we have:

(i) RC is isomorphic to the free ρC-algebra over a countable set of generators
in the variety V;

(ii) RC is isomorphic to the clone V-algebra.

Proof. We show that RC is the free algebra over the set {eC1 , . . . , eCn , . . . } of
generators in the variety V. Let A ∈ V and g : {eC1 , . . . , eCn , . . . } → A be
an arbitrary map. We extend g to a map g∗ : C → A as follows. Let b ∈ C

of dimension k. By Proposition 3.17 the set R(b) =
⋃

n∈ω{f ∈ R
(n)
C : b =

f(eC1 , . . . , eCn )} is a block of arity k. For every m ≥ k, we denote by fm
b :

Cm → C the unique function of arity m belonging to R(b). The function fm
b is

defined as follows: fm
b (c1, . . . , cm) = qCm(b, c1, . . . , cm) for every c1, . . . , cm ∈ C.

Since fm
b is C-representable, then fm

b ∈ ρC for every m ≥ k. Then we define

g∗(b) = fk
b

A
(g(eC1 ), . . . , g(eCk )).

Since RC |= fm
b (x1, . . . , xk, xk+1, . . . , xm) = fk

b (x1, . . . , xk) for every m ≥ k

and A ∈ V, then we have g∗(b) = fm
b

A
(g(eC1 ), . . . , g(eCm)) for every m ≥ k.

We now show that g∗ : C → A is a homomorphism of ρC-algebras,
that is, g∗(h(b)) = h

A
(g∗(b1), . . . , g∗(bn)), for every h ∈ ρC of arity n and

b = b1, . . . , bn ∈ Cn. As a matter of notation, we define eC,k = eC1 , . . . , eCk ;
h(eC,n) = h(eC1 , . . . , eCn ) and g(eC,k) = g(eC1 ), . . . , g(eCk ). Let m ≥ n be a
natural number greater than the maximal number among the dimensions of
the elements b1, . . . , bn, h(b). Then we have:

• h
A

(g∗(b1), . . . , g∗(bn)) = h
A

(fm
b1

A
(g(eC,m)), . . . , fm

bn

A
(g(eC,m)));

• g∗(h(b)) = fm
h(b)

A
(g(eC,m)).

We get that g∗ is a homomorphism if the algebra A satisfies the identity

h(fm
b1

(x1, . . . , xm), . . . , fm
bn

(x1, . . . , xm)) = fm
h(b)(x1, . . . , xm).

Since A ∈ V and V is generated by RC, then it is sufficient to prove that the al-
gebra RC satisfies the above identity. By putting x = x1, . . . , xm the conclusion
follows from Lemma 3.16: fm

h(b)(x) = qCm(h(b),x) =Lem. 3.16 h(qCm(b1,x), . . . ,
qCm(bn,x)) = h(fm

b1
(x), . . . , fm

bn
(x)). It remains to show that the operation

p(x) = qCn (x,b) is the unique n-finite endomorphism of the free algebra RC

which sends eCi to bi (1 ≤ i ≤ n). This again follows from Lemma 3.16 because
p(h(a)) = qCn (h(a),b) = h(qCn (a1,b), . . . , qCn (ak,b)) = h(p(a1), . . . , p(ak)) for
every h ∈ ρC of arity k. �

The following lemma is fundamental in the study of clone algebras and
its applications.

Lemma 5.6. Let C and D be clone algebras of type τ and ν, respectively.
(i) An equivalence relation θ on C is a congruence on C if and only if θ is

a congruence on the pure reduct C0; hence, ConC = ConC0.
(ii) If C and D have the same pure reduct, then ConC = ConD.
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Proof. (i) If aθb and θ preserves the operators qn, then by Lemma 3.16
σC(a) = qCk (σC(e),a) θ qCk (σC(e),b) = σC(b) for every σ ∈ τ . �

Recalling that every finite-dimensional CA is isomorphic to a block alge-
bra, the following theorem relates lattices of equational theories and clones.

Theorem 5.7. A lattice is isomorphic to a lattice of equational theories if and
only if it is isomorphic to the congruence lattice of a finite-dimensional CA.

Proof. (⇒) It follows from Proposition 5.3(1).
(⇐) Let C be a finite-dimensional clone algebra and RC be the clone

ρC-algebra of C-representable functions. Since C and RC have the same pure
reduct, then from Lemma 5.6 it follows that ConC = ConRC. The conclusion
of the theorem follows from Theorem 5.5(ii) and Proposition 5.3(1), because
RC is isomorphic to the clone Var(RC)-algebra. �

6. The category of varieties

Important properties of a variety V depend on the pure reduct of the clone
V-algebra Cl(V) associated with its free algebra. However, not every clone τ -
algebra is the clone V-algebra associated with the free algebra of a variety V
of type τ . In this section after characterising central elements in clone alge-
bras, we introduce minimal clone algebras and prove that a clone τ -algebra
C is minimal if and only if C ∼= Cl(V) for some variety V of type τ . We also
introduce the category CA of all clone algebras (of arbitrary similarity types)
with pure homomorphisms (i.e., preserving only the nullary operators ei and
the operators qn) as arrows and we show that the category CA is equivalent
both to the full subcategory MCA of minimal clone algebras and, more to
the point, to the variety CA0 of pure clone algebras. We prove that MCA is
categorically isomorphic to the category VAR of all varieties, so that we can
use the more manageable category MCA of minimal clone algebras and pure
homomorphisms to study the category VAR. We use MCA and central ele-
ments in clone algebras to show a generalisation of the theorem on independent
varieties presented by Grätzer et al. in [7].

6.1. Central elements in clone algebras

Every clone algebra is an nCH, for every n (see Section 2.1). Therefore, there
exists a bijection between the set of n-central elements of a clone algebra and
the set of its n-tuples of complementary factor congruences. In this section we
characterise central elements in clone algebras. They will be used in the proof
of Theorem 6.13.

Lemma 6.1. Let C be a clone algebra and c ∈ C be n-central, for some n. Then
c is finite-dimensional with γ(c) ≤ n, and it is m-central for every m ≥ n.

Proof. By the way of contradiction, let us suppose that either c is finite-
dimensional and γ(c) > n or γ(c) = ω. In both cases there exists m > n
such that c is dependent on em, meaning that c �= qm(c, e1, . . . , em−1, em+1).
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Since c is n-central, by (D4) in Proposition 2.1 the equation

qn(c, qm(g1, h1
1, . . . , h

1
m), . . . , qm(gn, hn

1 , . . . , hn
m))

= qm(qn(c, g1, . . . , gn), qn(c, h1
1, . . . , h

n
1 ), . . . , qn(c, h1

m, . . . , hn
m))

holds for all g1, . . . , gn, h1
1, . . . h

1
m, . . . , hn

1 , . . . , hn
m in C. By letting gi = ei for

1 ≤ i ≤ n , hj
i = ei for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n, and hj

m = em+1 for
1 ≤ j ≤ n in the equation above, and by exploiting again the fact that c is
n-central, we get qn(c, e1, . . . , en) = qm(c, e1, . . . , em−1, em+1). The left-hand
side of the equation above being equal to c, we get a contradiction using our
initial assumption.

Since γ(c) ≤ n then c is independent of en+1, . . . , em and the equations
of m-centrality follow from the corresponding of n-centrality. �
Proposition 6.2. Let C be a clone τ -algebra and c ∈ C. If there exists n such
that c is n-central, then, for all m, c is m-central if and only if m ≥ γ(c).

Proof. By Lemma 6.1 it is enough to show that c is γ(c)-central. �
Proposition 6.3. Let C be a clone τ -algebra and C0 be its pure reduct.

(i) An element is n-central in C iff it is n-central in C0.
(ii) Ce(C) = {c : c is n-central for some n} is a subalgebra of C0.

Proof. (i) For every σ ∈ τ of arity k, σC(a) = qCk (σC(eC1 , . . . , eCk ),a).
(ii) Let a and b = b1, . . . , bn be elements of Ce(C). We show that qn(a,b)

is central. By Lemma 6.1 a, b1, . . . , bn are finite-dimensional. Let m ≥ n
be greater than the dimensions of a, b1, . . . , bn. Since by (C5) qn(a,b) =
qm(a,b, en+1, . . . , em) and by Lemma 6.1 a, b1, . . . , bn, en+1, . . . , em are m-
central, then we claim that qm(a,b, en+1, . . . , em) is also m-central. This fol-
lows because C is an mCH and the m-central elements of an mCH are closed
under qm (see [2, Proposition 1]). �
6.2. Minimal clone algebras

In this section we introduce minimal clone algebras and prove that a clone
τ -algebra C is minimal if and only if C is isomorphic to the clone V-algebra
Cl(V) for some variety V of type τ .

If C is a clone τ -algebra, then M(C) denotes the minimal subalgebra of
C.

Consider the type τ(e) = τ ∪ {e1, . . . , en, . . . }. A ground τ(e)-term is a
term defined by the grammar: t, ti ::= ei | σ(t1, . . . , tk), where σ ∈ τ .

Lemma 6.4. Let C be a clone τ -algebra. Then, b ∈ M(C) if and only if b = tC

for some ground τ(e)-term t.

Proof. The set of elements tC, where t is a ground τ(e)-term, is closed under
qn. The proof is by induction over the complexity of the ground τ(e)-term in
the first argument of qn. �

From Lemma 6.4 it follows that M(C) is finite-dimensional.

Definition 6.5. We say that a clone τ -algebra C is minimal if C = M(C).
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We remark that, if h : C → D is an onto homomorphism of clone τ -
algebras and C is minimal, then D is minimal.

The translation of the ground τ(e)-terms into τ -terms in the variables
v1, v2, . . . , vn, . . . is defined by e∗

i = vi; σ(t1, . . . , tn)∗ = σ(t∗1, . . . , t
∗
n).

Theorem 6.6. Let C = (Cτ , qCn , eCi ) be a minimal clone τ -algebra, Var(Cτ ) be
the variety of τ -algebras generated by Cτ , and Var(C) be the variety of clone
τ -algebras generated by C. Then,

(i) Cτ is the free algebra over a countable set of generators in Var(Cτ );
(ii) C is isomorphic to the clone Var(Cτ )-algebra;
(iii) C is the free algebra over an empty set of generators in Var(C).

Proof. (i) Let A ∈ Var(Cτ ) and g : {eC1 , . . . , eCn , . . . } → A be an arbitrary
map. We extend g to a map g∗ : C → A as follows. Let b ∈ C of dimension
k and let r ≥ k. Since C is minimal, there exists a ground τ(e)-term t =
t(e1, . . . , ek) such that tC = b. We define

g∗(b) = (t∗)A,r(g(eC1 ), . . . , g(eCr )),

where t∗ = t∗(v1, . . . , vk) is a τ -term and (t∗)A,r : Ar → A (r ≥ k) is the term
operation of arity r defined by t∗. The definition of g∗(b) is independent of
r ≥ k. We show that g∗ is a homomorphism of τ -algebras, that is, g∗(σC(b)) =
σA(g∗(b1), . . . , g∗(bn)), for every σ ∈ τ of arity n and b = b1, . . . , bn ∈ Cn.
Let m ≥ n be a natural number greater than the maximal number among
the dimensions of the elements b1, . . . , bn, σC(b). If bi = tCi for some ground
τ(e)-term ti (i = 1, . . . , n), then we have:

σA(g∗(b1), . . . , g∗(bn)) = σA((t∗1)
A,m(g(eC1 ), . . . ), . . . , (t∗n)A,m(g(eC1 ), . . . ))

= (σ(t1, . . . , tn)∗)A,m(g(eC1 ), . . . , g(eCm))

= g∗(σC(b)).

(ii) By Lemma 3.3 the map x �→ qCn (x,b) is the unique endomorphism of
the free algebra Cτ which sends ei to bi (1 ≤ i ≤ n).

(iii) Let A ∈ Var(C). Then Aτ ∈ Var(Cτ ). By (i) there exists a unique
homomorphism f from Cτ into Aτ such that f(eCi ) = eAi . Since C is minimal,
then f is onto M(A) and, for every ground τ(e)-term t, we have f(tC) = tA.
The proof that f preserves qn is by induction over the complexity of the first
argument of qn. �

Corollary 6.7. A clone τ -algebra C is minimal if and only if C is isomorphic
to the clone V-algebra Cl(V) for some variety V of type τ .

Let V be a variety of τ -algebras axiomatised by the equational theory
T = Eq(V) and Vcl be the variety of clone τ -algebras satisfying T . Since Cl(V)
satisfies T , then Var(Cl(V)) ⊆ Vcl. In the following proposition we show that
the inclusion is sometimes strict.

Proposition 6.8. (i) The clone V-algebra Cl(V) is the free algebra over an
empty set of generators in the variety Vcl;

(ii) Vcl is not in general generated by Cl(V).
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Proof. (i) Let A ∈ Vcl. Since Aτ ∈ V, then there exists a unique homomor-
phism f of τ -algebras from FV into Aτ such that f(eFi ) = f(vi) = eAi . The
proof that f preserves the operators qFn is similar to that of Theorem 6.6(ii).

(ii) If S is the class of all sets (i.e., the variety of all algebras in the empty
type), then Scl is the variety of all pure clone algebras. We show that Cl(S)
does not genetate Scl. Cl(S) = (I, qIn, eIi) has the set
I = {v1, v2, . . . , vn, . . . } as universe and eIi = vi. The algebra I satisfies the
identity

qn(y, qn(y, x11, . . . , x1n), . . . , qn(y, xn1, . . . , xnn)) = qn(y, x11, . . . , xnn)
(6.1)

but Scl does not satisfy it. Here is a counterexample. Let 2 = {0, 1} and
f : 22 → 2 be a function such that f(0, 0) = 0 and f(0, 1) = f(1, 0) =
f(1, 1) = 1. Then 1 = f(f(0, 1), f(1, 0)) �= f(0, 0). Then the pure functional
clone algebra of universe O(N)

2 does not satisfies the above identity (6.1): 1 =
qN2 (f�, qN2 (f�, eN1 , eN2 ), qN2 (f�, eN2 , eN1 ))(r) �= qN2 (f�, eN1 , eN1 )(r) = 0, where r ∈ 2N

satisfies r1 = 0 and r2 = 1. �

In Proposition 6.10 below we compare a clone τ -algebra C with the clone
ρC-algebra of its C-representable functions.

Lemma 6.9. Let C = (Cτ , qCn , eCi ) be a finite-dimensional clone τ -algebra.
Then a ∈ M(C) if and only if, for some τ -term t, the block R(a) of C-
representable functions determined by a is equal to the block TCτ

t of term
operations determined by t.

Proof. (⇒) If a ∈ M(C) has dimension n, then by Lemma 6.4 we have a =
tC(eC1 , . . . , eCn ) for some τ(e)-term t = t(e1, . . . , en). Let t∗ = t(v1, . . . , vn) be
the corresponding τ -term. Since

qCk (a,b) = qCk (tC(eC1 , . . . , eCn ),b) =(C7) · · · =(C7,C2) (t∗)Cτ ,k(b)

for every k ≥ n and b ∈ Ck, then R(a) = TCτ
t∗ .

(⇐) If R(a) = TCτ
u for some τ -term u = u(v1, . . . , vn), then

a = qCn (a, eC1 , . . . , eCn ) = uCτ ,n(eC1 , . . . , eCn ) = u(e1, . . . , en)C. By Lemma 6.4
a ∈ M(C). �

Proposition 6.10. Let C = (Cτ , qCn , eCi ) be a finite-dimensional clone τ -algebra
and RC be the clone ρC-algebra of C-representable functions. Then the fol-
lowing conditions hold:

(i) RC is minimal.
(ii) C is minimal if and only if RC = CloCτ .

Proof. (i) By Theorem 5.5(ii) and Corollary 6.7.
(ii) First of all, we have CloCτ ⊆ RC, because by Lemma 3.16 every

basic operation of type τ is C-representable. For the opposite inclusion it is
sufficient to apply Lemma 6.9. �
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6.3. The category of clone algebras and pure homomorphisms

A map f : C → D is called a pure homomorphism from a clone τ -algebra C
into a clone ν-algebra D if f is a homomorphism from the pure reduct C0 of
C into the pure reduct D0 of D.

Let Type be the class of all algebraic types. The category CA has the
class

⋃
τ∈Type CAτ as objects and pure homomorphisms as arrows. We denote

by MCA the full subcategory of CA whose objects are the minimal clone
algebras. The variety CA0 of pure clone algebras is a full subcategory of CA.
The categories CA, MCA and CA0 are equivalent, because they have the same
skeleton.

We denote by VAR the category whose objects are varieties of algebras
and whose arrows are interpretations of varieties. We recall from [13, Page 245]
that an interpretation of a variety V of type τ into a variety W of type ν is a
mapping f with domain τ satisfying:

• If σ ∈ τ has arity n > 0, then f(σ) is an n-ary ν-term;
• If σ ∈ τ has arity 0, then f(σ) = t is a unary ν-term such that the

equation t(v1) = t(v2) is valid in W;
• For every algebra A ∈ W, the algebra Af = (A, f(σ)A,k)σ∈τ belongs to

V, where f(σ)A,k (σ of arity k) is the k-ary term operation determined
by f(σ).

Theorem 6.11. The categories VAR and MCA are categorically isomorphic.
There is a bijection between the class of all varieties of algebras and the class
of all minimal clone algebras:

Variety V of τ -algebras �→ Clone V–algebra Cl(V)

Minimal CAτ C �→ Variety Var(Cτ ) generated by Cτ .

We have V = Var(Cl(V)τ ) and C ∼= Cl(Var(Cτ )). Moreover, there is a bi-
jective correspondence between the sets HomVAR(V,W) of interpretations and
the set HomCA(Cl(V),Cl(W)) of pure homomorphisms.

Proof. The first part follows from Theorem 6.6. We prove the second part. Let
V be a variety of type τ , W be a variety of type ν, C = Cl(V) and D = Cl(W).
We recall that Cτ is the free V-algebra over a countable set of generators.
Similarly for Dν . If f is an interpretation of V into W in category VAR,
then (Dν)f belongs to V and Df = ((Dν)f , qDn , eDi ) is a clone τ -algebra. The
unique homomorphism F : Cτ → (Dν)f of τ -algebras extending F (eCi ) = eDi
is a homomorphism of clone τ -algebras from C into Df . F is also a pure
homomorphism from C into D.

For the converse, let C be a minimal clone τ -algebra, D be a minimal
clone ν-algebra and F be a pure homomorphism from C into D. Then, for
every n-ary operator σ ∈ τ (n > 0), we define f(σ) to be any ν-term t =
t(v1, . . . , vn) belonging to F (σC(eC1 , . . . , eCn )) (see Proposition 5.3(2)). If c ∈ τ
is a nullary operator, then we define f(c) to be any ν-term t = t(v1) belonging
to F (cC) (see Proposition 5.3(3)). f is an interpretation from Var(Cτ ) into
Var(Dν). �
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We have shown that VAR and MCA are categorically isomorphic, but we
claim that MCA is more manageable than VAR, because methods of universal
algebra can be directly applied to MCA. For example, the factorisation of
clone algebras through central elements guided the authors to a generalisation
of the theorem on independent varieties presented by Grätzer et al. in [7] (see
Theorems 6.13 and 6.17).

Given a clone algebra C, recall from Definition 5.4 the definition of the
type ρC and of the clone ρC-algebra RC.

Definition 6.12. The categorical product C � D of C,D ∈ MCA is defined as
the clone ρC0×D0-algebra RC0×D0 of all C0 × D0-representable functions.

C�D is minimal by Proposition 6.10(i). Moreover, C�D is the product
of C and D in MCA, because the categories MCA and CA0 are equivalent
and (C � D)0 = C0 × D0 is the product of C0 and D0 in the variety CA0

of pure clone algebras. Notice that every minimal clone algebra E such that
E0 = C0 × D0 is purely isomorphic to the categorical product C � D.

Theorems 6.13 and 6.17 below provide necessary and sufficient conditions
for the independence of varieties, improving a theorem on independent varieties
by Grätzer et al. [7].

Theorem 6.13. Let C and D be minimal CAτ s and let E = C×D be the clone
τ -algebra that is the product of C and D in the variety CAτ . Then the following
conditions are equivalent:

(1) E is minimal.
(2) The varieties Var(Cτ ) and Var(Dτ ) are independent.
(3) CloEτ = RE, where RE is the clone of the E-representable functions and

CloEτ is the clone of term operations of the τ -algebra Eτ .

If one of the above equivalent conditions holds, then Var(Eτ ) = Var(Cτ ) ×
Var(Dτ ) = Var(Cτ ) ∨ Var(Dτ ), where the join ∨ is taken in the lattice of
subvarieties of Var(Eτ ).

Proof. (1 ⇒ 2) Since E is a 2-CH and E = C × D, then by Proposition 2.1
and by Proposition 6.2 there exists a 2-central element c = (eC1 , eD2 ) ∈ E of
dimension 2 such that C ∼= E/θ(c, eE1 ) and D ∼= E/θ(c, eE2 ). By Lemma 6.4 and
the minimality of E there exists a ground τ(e)-term t = t(e1, e2) such that c =
tE. Let t∗ = t∗(v1, v2) be the τ -term translation of t (defined in Section 6.2).
By C ∼= E/θ(c, eE1 ) and D ∼= E/θ(c, eE2 ) we get Var(Cτ ) |= t∗(v1, v2) = v1
and Var(Dτ ) |= t∗(v1, v2) = v2. Hence, the varieties Var(Cτ ) and Var(Dτ ) are
independent.

(2 ⇒ 1) Let t(v1, v2) be a τ -term such that Var(Cτ ) |= t(v1, v2) = v1
and Var(Dτ ) |= t(v1, v2) = v2. Let (a, b) ∈ E with a ∈ C and b ∈ D. Since C
and D are minimal, then by Lemma 6.4 there exist two τ(e)-terms u1 and u2

such that a = uC
1 and b = uD

2 . Then E is minimal, because the pair (a, b) ∈ E
coincides with the interpretation of the τ(e)-term t(u1, u2).

(1 ⇔ 3) By Proposition 6.10(ii).
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We now prove the last condition. If E is minimal, then by Theorem 6.6
Eτ = Cτ × Dτ is the free algebra of the variety Var(Eτ ). Then the decompo-
sition operator t∗(v1, v2)E giving the decomposition E = C × D provides the
decomposition Var(Eτ ) = Var(Cτ ) × Var(Dτ ). �

Remark 6.14. If τ is a type of unary operators, it is well known that there are
no independent varieties of type τ . By Theorem 6.13 the algebra E = C × D
is never minimal, because every unary term operation cannot be a nontrivial
decomposition operator on E.

Definition 6.15. Let C be a clone τ -algebra, D be a clone ν-algebra and f :
C → D be a pure homomorphism. The f -expansion of D is the clone τ -algebra
Df = ((Dν)f , qDn , eDi ), where (Dν)f = (D,σDf

)σ∈τ and σDf

(σ ∈ τ of arity n)
is the n-ary operation such that σDf

(a1, . . . , an)
= qDn (f(σC(eC1 , . . . , eCn )), a1, . . . , an) for every a1, . . . , an ∈ D.

Lemma 6.16. In the hypotheses of Definition 6.15 we have:
(1) The map f : C → D is a homomorphism of τ -algebras from C

into Df ;
(2) If C is minimal and f is onto, then Df is also minimal.

Theorem 6.17. Let Cj = (Cτj
, q

Cj
n , e

Cj

i ) be a minimal clone τj-algebra (j =
1, 2), E = C1 �C2 be the categorical product in MCA and ν be the type of E.
Then the following conditions hold:

(1) If πj is the projection from E onto Cj (j = 1, 2), then the πj-
expansion Cπj

j of Cj is a minimal clone ν-algebra;
(2) Cπj

j is purely isomorphic to Cj (j = 1, 2);
(3) E = Cπ1

1 ×Cπ2
2 , where the product Cπ1

1 ×Cπ2
2 is taken in the variety

CAν ;
(4) The varieties Var((Cτ1)

π1) and Var((Cτ2)
π2) of type ν are indepen-

dent;
(5) Var(Eν) = Var((Cτ1)

π1) × Var((Cτ2)
π2) = Var(Cτ1) � Var(Cτ2).

Proof. (1) By Lemma 6.16(2), because πj is an onto pure homomorphism.
(2) Cπj

j and Cj have the same pure reduct.
(3) By Definition 6.12 the pure reduct of C1 �C2 is (C1)0 × (C2)0. The

conclusion follows from the definition of Cπj

j .
(4) By (3) and Theorem 6.13, because Cπj

j is a minimal clone ν-algebra.
(5) By Theorem 6.13 because MCA and VAR are isomorphic. �
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8 Place Aurélie Nemours
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DAIS, Università Ca’Foscari Venezia
Via Torino 155
30173 Venezia
Italy
e-mail: salibra@unive.it

Received: 29 January 2021.

Accepted: 10 February 2022.

https://doi.org/10.1007/s10699-020-09697-7
https://doi.org/10.1007/s10699-020-09697-7

	An algebraic theory of clones
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Algebras
	2.2. Clones of operations
	2.2.1. Abstract clones
	2.2.2. Neumann's abstract 0-clones neu70,T93


	3. Clone algebras
	3.1. Functional clone algebras
	3.2. Clones of operations and block algebras
	3.3. The representation of finite-dimensional clone algebras

	4. The general representation theorem
	4.1. Point-relativized functional clone algebras
	4.2. The main theorem
	4.3. Neumann's abstract 0-clone and clone algebras

	5. A characterisation of the lattices of equational theories
	6. The category of varieties
	6.1. Central elements in clone algebras
	6.2. Minimal clone algebras
	6.3. The category of clone algebras and pure homomorphisms

	References




