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Saturated free algebras and almost indiscernible
theories
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Abstract. We extend the concept of “almost indiscernible theory” intro-
duced by Pillay and Sklinos in 2015 (which was itself a modernization and
expansion of Baldwin and Shelah from 1983), to uncountable languages
and uncountable parameter sequences. Roughly speaking a theory T is
almost indiscernible if some saturated model is in the algebraic closure
of an indiscernible set of sequences. We show that such a theory T is
nonmultidimensional, superstable, and stable in all cardinals ≥ |T |. We
prove a structure theorem for sufficiently large a-models M , which states
that over a suitable base, M is in the algebraic closure of an independent
set of realizations of weight one types (in possibly infinitely many vari-
ables). We also explore further the saturated free algebras of Baldwin and
Shelah in both the countable and uncountable context. We study in par-
ticular theories and varieties of R-modules, characterizing those rings R
for which the free R-module on |R|+ generators is saturated, and pointing
out a counterexample to a conjecture by Pillay and Sklinos.
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1. Preliminaries

This paper continues and builds on the investigations of Baldwin and Shelah
[2] and Pillay and Sklinos [11]. The original context of Baldwin and Shelah
was the study of Th(F ) where F is the free algebra in ℵ1-many generators in a
variety (in the sense of universal algebra) in a countable signature or language.
Their work was clarified (with some corrections) by Pillay and Sklinos, and
also extended to the more general notion of almost indiscernible theories, still
in a countable language.
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As stated in the abstract, roughly speaking a theory T is almost indis-
cernible if some saturated model is in the algebraic closure of an indiscernible
set of sequences. In the same casual manner, one might say that a free algebra
is one that is freely generated by a basis. “Algebraic closure of . . . ” is a gen-
eral model-theoretic analogue of “generated by . . . ”; “indiscernible sequence”
is an analogue of “free (basis)”. These analogies led Pillay and Sklinos to the
generalizations of Baldwin-Shelah presented in [11].

Similarly, the present abstract generalization of those results was in part
motivated by our understanding of the structure of nicely behaved theories of
modules: we knew that something like Theorem 2.17 should be true, given the
correct definitions and proper development of the theory.

Although some difficult technical results in classical stability theory in
Section 2 provide the foundation for the entire paper, the ultimate goal is to
pursue the applications to algebraic structures of various kinds.

Thus we have several aims in the current paper. First we consider the case
of almost indiscernible theories but generalized to uncountable languages as
well as indiscernible sets of infinite (rather than finite) tuples. Among interest-
ing differences with the countable case is that the theories will be superstable
but not necessarily totally transcendental. The main structural result is Theo-
rem 2.10. We point out that the almost indiscernible (complete) theories T of
modules (over some ring R in the usual language) are precisely the superstable
theories of modules which are |T |-stable. We also revisit the special case of sat-
urated free algebras, with respect to a given variety in the sense of universal
algebra. Results from Pillay–Sklinos in the context of countable languages go
through smoothly for uncountable languages. On the other hand in the even
more special case of the variety of R-modules, if the free algebra is saturated
then its theory is totally transcendental (not just superstable). We classify
the rings R such that the free R-modules are saturated, and give an example
where the corresponding theory does not have finite Morley rank, yielding a
counterexample to a question from Pillay–Sklinos.

We only use very standard facts from Shelah’s stability theory. Rather
than tracing back to original sources, we rely primarily on the outline in Chap-
ter 1 of Pillay [8], with occasional reference to Baldwin [1] where required.

In our work, we follow the proofs of [11] as closely as possible, but give
some further clarifications to the structure of the proofs of Propositions 2.9
and 2.10 therein, as necessitated by the move to the uncountable context.

1.1. The definition

We begin by extending Definition 2.1 of Pillay and Sklinos [11].

Definition 1.1. Let T be a complete theory of cardinality τ , μ ≤ τ a finite or
infinite cardinal, and κ > τ a cardinal.

T is called (μ, κ)-almost indiscernible if it has a saturated model M of
cardinality κ which is in the algebraic closure of an indiscernible set I of μ-
sequences.

T is almost indiscernible if it is (μ, κ)-almost indiscernible for some such
μ, κ.
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So “almost indiscernible” as defined in [11] for countable theories is
(n,ℵ1)-almost indiscernible for some finite n > 0.

Trivially if T is (μ, κ)-almost indiscernible then it is (μ′, κ)-almost indis-
cernible for any μ′, μ ≤ μ′ ≤ τ , for given an indiscernible set of μ-sequences,
just extend each to a μ′-sequence by repeating the first entry. As well, in the
definition, we can replace sequences indexed by μ by sequences of cardinality μ.

Example 1.2. Later (Corollary 2.3) we will see that if T is almost indiscernible,
it even has a saturated model of cardinality τ which is the algebraic closure of
an indiscernible set of μ-tuples.

But we should not include the possibility of κ = τ in the definition. Let
〈Q;≤〉 be the disjoint union of countably many copies of the rational linear
order, let e be some fixed enumeration of the rationals Q in order type ω,
and let ei be the copy of this tuple on the i-th copy of Q in Q. Then clearly
〈ei : i < ω〉 is an indiscernible set of ω-tuples in Q whose algebraic closure (in
fact union) is all of Q.

Of course the theory of this structure cannot have any of the other prop-
erties of an almost indiscernible theory, expounded later.

Example 1.3. The definition does not require “best possible choices”. Let F be
an infinite field of cardinality τ , L the usual language for vector spaces over F,
and T the theory of non-zero vector spaces over F. Let (eα)α<τ+ enumerate a
basis of the F-vector space V of dimension τ+. Then clearly { eα : α < τ+ } is
an indiscernible set generating V and so T is (1, τ+)-almost indiscernible.

But for any cardinal 1 < μ ≤ τ , we could just as well take e0 to be a
μ-tuple enumerating a basis of the F-vector space of dimension μ, and extend
it to a sequence (eα)α<τ+ whose range is again a basis of V, exhibiting T as a
(μ, τ+)-almost indiscernible theory.

Alternatively, we could take e0 to be an enumeration of F, that is, of
the one-dimensional vector space, and then let (eα)α<τ+ be an enumeration
of τ+ direct-sum independent subspaces of V, exhibiting T as a (τ, τ+)-almost
indiscernible theory, with a lot more information than is really required.

One of the goals of the structure theory we develop is to recover some
of the fine detail that might be lost by redundancy in the indiscernible set of
I-sequences.

Example 1.4. We point out briefly that both the condition of almost indis-
cerniblity, as well as the consequences in Theorem 2.10 below, concern excep-
tional behaviour, even for uncountably categorical theories T . Of course when
T is almost strongly minimal, that is, any model is in the algebraic closure
of a fixed strongly minimal set D (without parameters say), then we do have
almost indiscernibility: any model M is in the algebraic closure of the indis-
cernible set consisting of a maximal independent set of realizations in M of
the generic type of D. Even when T is not almost strongly minimal, such as
Th(Z/4Z)(ω), the conditions of almost indiscernibility may still hold. Let 1 be
the generator of a copy of Z/4Z: then tp(1) has Morley rank 2 but weight 1,
and of course any model is generated as a Z/4Z-module by an independent set
of realizations of this type.
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However consider the theory T of the structure consisting of two sorts X
and V with surjective π : X → V , and where V has the structure of an infinite-
dimensional vector space over F2 say, and each fibre Xa is (uniformly definably)
a principal homogeneous space for (V,+). Clearly T can be axiomatized in a
two-sorted language with symbols π of sort X → V , + of sort V × V → V ,
and 〈 , 〉 of sort V × X → X. Then T is ℵ1-categorical, but is not almost
indiscernible. V is strongly minimal and X has Morley rank 2, degree 1. Let
a be a generic point of V and b ∈ X be such that π(b) = a. Then tp(b) has
weight 1. If { bi : i ∈ I } is a maximal independent set of realizations of tp(b)
in a model M , then necessarily { π(bi) : i ∈ I } is a linearly independent set
in V . Furthermore, acl(V ) = V , so for distinct non-zero u, v ∈ V , no part of
the fibre over u + v is algebraic over the (union of the) fibres over u and v.
So on the one hand any maximal indiscernible set I (of tuples) in a model M
cannot intersect all the fibres of π, and on the other hand any fibre that does
not intersect I is not in the algebraic closure of I.

1.2. Basic facts

We need some translations of the basic facts about stability theory enunciated
in Section 1 of [11]. Our theories will be superstable, not necessarily totally
transcendental, and so may not have prime models. As is usual, we will abbre-
viate “superstable” as “ss” and “totally transcendental” as “tt”. We remind
the reader that for uncountable languages we have to characterize tt theories
as those where every formula (every type) has ordinal-valued Morley rank. For
countable theories only, this is equivalent to ω-stability. But each theory T
that we consider will nonetheless be stable in τ = |T |, and will have a model
Mω which is ω-saturated, is an a-model, and such that every stationary type is
non-orthogonal to a type over Mω. Furthermore, every model we care about is
an elementary extension of Mω, so there are still very strong parallels to [11].
The principal difficulty lies not so much in the movement to merely superstable
theories, but in allowing infinite sequences as the elements of the indiscernible
sets.

For the remainder of this section and in Section 2 (unless explicitly
stated otherwise), T is a complete superstable theory in a language of car-
dinality τ and M is a sufficiently large saturated model of T (a universe),
with Meq being the associated “imaginary” universe. We work in Meq: every
element, set, sequence, model that we consider is a “small” thing in Meq,
that is, of cardinality strictly less than the cardinality of M. By “algebraic (or
definable) closure” we always mean “in the sense of Meq”. However, in reading
the algebraic examples, it is always helpful to think of things taking place in
the “home” sort.

Fact 1.5 [8, Chapter 1, Lemmas 4.1.1, 4.1.2, 4.2.1]. There is a cardinal λ(T ) ≤
2τ such that T is stable in κ iff κ ≥ λ(T ). T has a saturated model in every
cardinal κ ≥ λ(T ). Since T is superstable, κ(T ) = ℵ0, that is, every type (in
finitely many variables) does not fork over some finite set.
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Recall that if A,B,C are sets of parameters (or tuples), then B dominates
C over A if whenever D is independent from B over A then D is independent
from C over A.

Definition 1.6. (a) The strong type of a over A, stp(a/A), is the type of a
over acl(A) (for emphasis, in Meq).

(b) By an a-model of T we mean a model M of T such that any strong type
over any finite subset of M is realized in M .

(c) A type p(x) ∈ S(A) is said to be a-isolated if there is a finite subset B
of A and a strong type q(x) over B which implies p(x).

Fact 1.7 [8, Chapter 1, Lemmas 4.2.4, 4.3.4].

(a) For any set of parameters A there is an a-prime model over A, that is, an
a-model M containing A such that for any a-model N containing A there
is an elementary embedding over A of M into N . M has the property
that for all tuples b from M , tp(b/A) is a-isolated.

(b) Suppose M0 is an a-model, and A is any set of parameters and b any
tuple. Then tp(b/M0A) is a-isolated iff A dominates Ab over M0.

Clearly an a-model is ℵ0-saturated.

Definition 1.8. T is nonmultidimensional [“nmd”] if every stationary type p
is nonorthogonal to ∅, that is, nonorthogonal to some stationary type which
does not fork over ∅.

Remark 1.9. Definition 1.8 is equivalent to the following:

For any A and any stationary type q(x) over A, if stp(A′/∅) =
stp(A/∅), A′ is independent from A over ∅, and q′ is the copy of q
over A′, then q is nonorthogonal to q′.

In fact, at least for superstable theories, in 1.8 it suffices to demand that
every stationary type p be non-orthogonal to a type over a fixed a-model (as
mentioned in the first paragraph of this Section), cf. Baldwin [1, XV: Theorem
1.7].

We need the following basic result:

Proposition 1.10. Let T be a superstable nonmultidimensional theory (of any
cardinality). Then any elementary extension of an a-model is an a-model.

This proposition is folklore and there are various routes to it. For example
it follows directly from Shelah’s ‘three model lemma’, and also follows from
Propositions 3.2 and 3.6 of Chapter 7 of [8]. We will give a quick independent
proof, starting with a suitable 3-model lemma.

Lemma 1.11. Assume that T is superstable nonmultidimensional, and that
M0 
 M ≺ N where M0 is an a-model. Then there is c ∈ N\M such that
tp(c/M) is regular and does not fork over M0.
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Proof. Choose b ∈ N\M such that R∞(tp(b/M)) = α is minimized. Let ϕ(x, a)
with a ∈ M be a formula in tp(b/M) of ∞-rank α. In particular tp(b/M)
does not fork over a. As M0 is an a-model we can choose a′ ∈ M0 such that
stp(a′) = stp(a) and a′ is independent from a over ∅. By Remark 1.9, there is
a type q(x) over M0 which contains the formula ϕ(x, a′) and is nonorthogonal
to tp(b/M). So there is M ′ ⊇ M with b independent from M ′ over M and c′

realizing q|M ′ such that b forks with c′ over M ′.
A standard argument yields c ∈ N\M such that |= ϕ(c, a′): There is

a formula χ(x, y, z) over M and d ∈ M ′ such that |= χ(b, c′, d) witnesses
the forking of b with c′ over M ′, that is, χ(x, c′′, d′′) ∪ tp(b/M) forks over
M for any c′′, d′′. Now ∃y(χ(x, y, d) ∧ ϕ(x, a′)) is in tp(b/M ′) so for some
d′ ∈ M , ∃y(χ(x, y, d′) ∧ ϕ(x, a′)) is in tp(b/M). Let c ∈ N be such that
|= χ(b, c, d′) ∧ ϕ(c, a′). As b forks with c over M , c ∈ N\M .

So as R∞(ϕ(x, a′)) = α, by the minimal choice of α, R∞(tp(c/M) = α.
Then as a′ ∈ M0, tp(c/M) does not fork over M0, as required. Furthermore,
tp(c/M) is regular by the choice of α minimal, as in the argument of [8, Lemma
4.5.6]. �
Proof (of Proposition 1.10). T is assumed to be superstable nonmultidimen-
sional. Let M be an a-model, and assume M ≺ N . We want to prove that N
is an a-model. Let N ′ be the a-prime model over N given by Fact 1.7(a). It
will be enough to show that N = N ′.

Suppose not. Then by Lemma 1.11, there is c ∈ N ′\N which is indepen-
dent from N over M . But tp(c/N) is a-isolated, so by Fact 1.7(b), N dominates
c over M which is a contradiction. �
Corollary 1.12 (T superstable nonmultidimensional) If M is an a-model and
N is a-prime over M ∪ A, then N is prime and minimal over M ∪ A.

Proof. It is immediate by 1.10 that N is prime; and by the proof just given,
it is minimal over M ∪ A. �

Now let A0 be the a-prime model of T over ∅.
Let (pi)i∈I be a list, up to non-orthogonality, of all the regular types over

A0 (and hence, up to non-orthogonality, all the regular types of T ). Since T
is superstable, for each i ∈ I there is finite ai ∈ A0 such that pi is definable
over ai. [Since T is superstable, we can choose finite b ∈ A0 so that pi does
not fork over b; then since A0 is an a-model, we can find c ∈ A0 realizing the
restriction of pi to b and in the correct strong type. Then pi is definable over
ai = bc.] We let p̂i be the restriction of pi to acl(ai).

Comment. Note that in general |I| ≤ 2|T |, but we will see that in the context
we develop, as T has an a-prime model of cardinality τ = |T | and T is τ -stable,
in fact |I| ≤ τ .

We need a slight reformulation of [11, Fact 1.3].

Lemma 1.13. Let A0 ≺ M ≺ M. For each i ∈ I let Ji be a maximal indepen-
dent set of realizations of pi in M . Then M is a-prime, prime, and minimal
over A0 ∪ ⋃

i∈I Ji.
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2. Almost indiscernible theories

Context 2.1. Unless explicitly stated otherwise, for Section 2:
(a) T is a (μ, κ)-almost indiscernible theory, |T | = τ , μ ≤ τ < κ, with

universe M of some regular cardinality κ � κ.
(b) M is a saturated model as in the definition: |M | = κ, I is an indiscernible

set of μ-sequences in M , and M is in the algebraic closure of the (union
of) I.
Since μ ≤ τ < κ, necessarily |I| = κ, so we can write I as a κ-sequence
〈eα : α < κ〉, and when necessary the μ-sequence eα is indexed as〈
eα,i : i < μ

〉
.

(c) Extend I to an indiscernible ‘set’ I = 〈eα : α < κ〉 in M.
For each infinite ordinal λ ≤ κ, let Iλ = 〈eα : α < λ〉 and set Mλ = acl(Iλ)
in M. Note the extension of this sequence to the size of the universe.

In particular, Mκ = M is an elementary substructure of M, but the
status of all the other Mλ remains to be resolved.

2.1. Basic facts

Recall that for an infinite cardinal ν, M is F a
ν -saturated if every strong type

over any subset of M of cardinality less than ν is realized in M .

Theorem 2.2. λ denotes an infinite ordinal.
(a) λ ≥ τ implies |Mλ| = |λ| and λ < τ implies μ |λ| ≤ |Mλ| ≤ τ .
(b) For all λ ≤ κ, Mλ 
 M .

(And so 〈Mλ〉ω≤λ≤κ is an elementary chain.)
(c) For all λ ≤ κ, Mλ is |λ|-saturated.
(d) In particular Mκ is saturated of cardinality κ, so is without loss of gen-

erality equal to M.
(e) For all λ ≤ κ, Mλ is F a

|λ|-saturated.
(f) In particular all Mλ have the property that all strong types over finite

sets are realized.
Then it will follow from Theorem 2.4 to come, that since T is superstable,
all the Mλ are a-models.

Proof. (a) follows by simple counting.

(b) By definition M = Mκ is an elementary substructure of M. First
assume λ < κ. Then an easy Tarski-Vaught argument which we now describe
yields that Mλ 
 Mκ: Let ϕ(x) be a formula with parameters from Mλ with a
solution d ∈ Mκ. Let J be a finite subset of λ and α1, . . . , αn distinct elements
of κ\λ, and such that the parameters in ϕ(x) are from E = acl(

{
eβ : β ∈ J

}
)

and d ∈ acl(E ∪ {
eαi

: i = 1, . . . , n
}
). Let γ1, . . . , γn be distinct elements of

λ\J . Then by indiscernibility, tp(eγ1
, . . . , eγn

/E) = tp(eα1
, . . . , eαn

/E) (where
these types are computed in Mκ). Thus we can find d′ ∈ acl(E, eγ1

, . . . , eγn
) ⊆

Mλ such that Mκ |= ϕ(d′).
On the other hand, assume that λ > κ. We will also use Tarski-Vaught: Let
ϕ(x) be a formula over Mλ such that M |= ∃xϕ(x). Let J be a finite subset
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of λ such that the parameters of ϕ are in E = acl(
{

eβ : β ∈ J
}
). Choose a

subset J ′ of κ of the same cardinality as J , so by indiscernibility J and J ′ have
the same type (under any enumeration) in M. Let E′ = acl(J ′), and let ϕ′(x)
be the image of ϕ(x) under a partial elementary map f taking J to J ′ and E
to E′. As Mκ ≺ M, Mκ |= ∃xϕ′(x). So let d′ ∈ Mκ be such that Mκ |= ϕ(d′).
Again d′ will be in acl(J ′,K ′) where K ′ is a finite subset of κ disjoint from J ′.
Let K be a finite subset of λ of the same cardinality as K ′ and disjoint from
J . Then again indiscernibility implies that the partial elementary map f (in
the sense of M) extends to a partial elementary map g taking K to K ′ and
acl(E,K) to acl(E′,K ′). Let g(d) = d′, so M |= ϕ(d) and d ∈ Mλ.

(c) Note that this part is an analogue of Morley’s theorem (that for a
countable complete theory T , if for some uncountable cardinal κ all models of T
of cardinality κ are saturated, then all uncountable models of T are saturated),
and our proof of the harder case (where λ > κ) will be closely related to the
proof of Morley’s theorem as given in [7, Theorem 5.33].

The first (and easy) case is when λ < κ. Then the proof of part (b) (in
the case λ < κ) adapts. Namely in this case we have a type p(x) over a set of
parameters E ⊂ Mλ of cardinality < |λ|, and now choose J ⊂ λ of cardinality
< |λ| with E ⊆ acl(J) (without loss E = acl(J)). p is realized in Mκ by some
d in the algebraic closure of E together with finitely many eα with α ∈ κ\J .
Then as |J | < |λ|, we can again replace these eα by some eγ in Mλ and realize
p in Mλ.

The harder case occurs when λ > κ.
There is no harm (for notational simplicity) in assuming that λ is a

cardinal. We suppose that Mλ is not saturated, and aim for a contradiction.
Then there is a subset A of Mλ with |A| < λ and a complete type p(x) over A
which is not realized in Mλ. We may assume that A has cardinality at least τ .
Let J ⊆ Iλ be of cardinality |A| such that A ⊆ acl(J), and let I be a countable
subset of Iλ disjoint from J . Extending p to a complete type over acl(J) we
may assume that A = acl(J). Note that I is indiscernible over A. Note also
that, by part (b) acl(A, I) is an elementary substructure N of M (and of Mλ),
and p(x) is not realized in N . In particular for any consistent formula ϕ(x)
over A∪I, we can pick a formula ψϕ(x) ∈ p(x) such that |= ∃x(ϕ(x)∧¬ψϕ(x)).
(Here “|=” means, equivalently, in M or in Mλ or in N .)

We now construct a subset J ′ of J of cardinality τ , and A′ = acl(J ′) ⊆ A
such that for p′(x) = p|A′ we have:
(*) For each consistent formula ϕ(x) over A′ ∪ I, there is a formula

ψ(x) ∈ p′(x) such that |= ∃x(ϕ(x) ∧ ¬ψ(x)).
We do this by a routine union of chain argument. We define a sequence

of pairs 〈Ji, Ai〉, Ji ⊆ J , |Ji| = τ , and Ai = acl(Ji) ⊆ A by recursion on n < ω.
Let J0 be any subset of J of cardinality τ , and A0 = acl(J0) ⊆ A.
Given 〈Ji, Ai〉, for each consistent formula ϕ(x) over Ai ∪ I, we have

ψϕ(x) ∈ p(x) such that |= ∃x(ϕ(x) ∧ ¬ψϕ(x)). Note that there are at most τ
such formulas ψϕ(x). Add the parameters (from A) of the formulas ψϕ(x) to Ai

to obtain A′
i (which still has cardinality τ). Extend Ji to Ji+1 ⊆ J of cardinality

τ such that A′
i ⊆ acl(Ji+1), and set Ai+1 = acl(Ji+1). Set A′ =

⋃
n An and
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J ′ =
⋃

n Jn. Then set p′(x) to be the restriction of p to A′. So we have obtained
(*).

Now let I ′ be a subset of Iλ of cardinality κ which is disjoint from J ′.
Then acl(J ′, I ′) is an elementary substructure M ′ of M which is isomorphic to
Mκ (as |J ′ ∪ I ′| = κ). By hypothesis M ′ is κ-saturated, and A′ has cardinality
τ < κ, so the type p′(x) is realized in M ′, by some d′. But d′ ∈ acl(A′, I ′) so its
type over A′ ∪I ′ is isolated by a consistent algebraic formula ϕ(x) over A′ ∪I ′.
We will exhibit the parameters from I ′ by writing ϕ as ϕ(x, b1, . . . , bn) where
bi is a finite tuple from some ei ∈ I ′. Now M |= ∀x(ϕ(x, b1, .., bn) → ψ(x)) for
all ψ(x) ∈ p′(x), as ϕ(x, b1, . . . , bn) isolates tp(d/A′ ∪ I ′) and d′ realizes p.

But tp(b1, . . . , bn/A′) = tp(c1, . . . , cn/A′) for some finite tuples ci from
ei ∈ I. But then ϕ(x, c1, . . . , cn) is consistent, and we have:

|= ∀x(ϕ(x, c1, . . . , cn) → ψ(x))

for all ψ(x) ∈ p′(x), which contradicts (*). This completes the proof of part (c).
(d) Immediate. Mκ is now known to be a κ-saturated model, of cardinality

κ, so can be assumed to be the monster model M.
(e) Note that a strong type over a set A is precisely a type over acleq(A).

We can repeat the proof of (c) working now with types over algebraically
closed sets in Meq. Alternatively, at least for A the (real) algebraic closure
of an infinite subset of I, A is already an elementary substructure of M, so
complete types over A and strong types over A amount to the same thing.

(f) is just a specialization of (e). �

In particular, for cardinals ν ≥ τ , 〈Mλ : ν ≤ λ < ν+〉 is an elementary
chain of copies of the saturated model of T of cardinality ν.

Corollary 2.3. Let T be a complete theory of cardinality τ .
(a) Then T is (μ, κ)-almost indiscernible for some κ > τ iff T is (μ, τ+)-

almost indiscernible iff T is (μ, κ′)-almost indiscernible for all κ′ > τ .
(b) In particular, under the conditions of a, Mτ is a saturated model which is

the algebraic closure of an indiscernible sequence 〈eα : α < τ〉 of μ-tuples.

Comment. We can now assume without loss of generality that T is a complete
theory of cardinality τ which is (μ, τ+)-almost indiscernible for some μ ≤ τ .

Theorem 2.4. Let T be (μ, τ+)-almost indiscernible. Then T is stable in every
cardinal λ ≥ τ , hence T is superstable, and in particular if T is countable and
(ℵ0,ℵ1)-almost indiscernible, then T is tt.

Proof. Once again, we show that T is stable in all cardinals λ ≥ τ , by the
method of the proof of [11, Proposition 2.5].

So let λ ≥ τ be a cardinal. Since Mλ is saturated of cardinality λ, it
suffices to count the complete types over Mλ. Let p(v) be a complete type over
Mλ. Then p is realized in Mλ+ by some element d, which is then algebraic
over Mλ ∪ {

eα1
, . . . eαn

}
with λ ≤ α1 < · · · < αn < λ+. So the type of

d over Mλ ∪ {
eα1

, . . . eαn

}
is isolated by some formula θ(v, c1, . . . ck), where

θ(v, x1, . . . xk) is a formula with parameters from Mλ and c1, . . . ck are entries
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from the sequences eα1
, . . . eαn

. There are at most λ many such formulas θ. By
indiscernibility, the type of

〈
eα1

, . . . eαn

〉
over Mλ depends only on n. There are

only μ < λ choices for finite sequences c1, . . . ck from
〈
eα1

, . . . eαn

〉
. Hence there

are for fixed such θ, no more than μ possibilities for the type of d over Mλ ∪{
eα1

, . . . eαn

}
, so certainly no more than μ types over Mλ whose realizations

are determined by θ. Therefore there are no more than μλ = λ 1-types over
Mλ. �

Comment. For uncountable T , all that follows in general for superstable theo-
ries is that T is stable in every cardinal ≥ 2|T |. So almost indiscernible theories
are “strongly” superstable. Any complete theory T in a (possibly uncountable
language) which is categorical in |T |+ is “strongly” superstable, cf. the revised
edition of Shelah’s “Classification Theory”, the first paragraph of the proof of
[14, Theorem IX.1.15].

We need to make the use of infinitely many variables precise. Let �v =
〈vβ : β < μ〉 be a sequence of distinct variables. A formula ϕ(�v) “in the vari-
ables �v” is some finitary formula ϕ in some (definite) finite list of variables
from �v. This establishes a correspondence between formulas and their vari-
ables, and μ-sequences of elements, for the purposes of definitions such as the
following:

Definition 2.5. Set p = p(�v) = tp(eω/Mω) = { ϕ(�v) : |= ϕ[eω] }.

Note that since { eα : α < κ } is setwise indiscernible, 〈 eα : ω ≤ α < κ 〉
is a Morley sequence over Mω in p, the so-called average type of Iω.

Proposition 2.6. T is non-multidimensional.

Proof. We know that for every ordinal λ ≥ ω, tp(eλ/Mλ) is the nonforking
extension of p, and moreover Mλ is saturated (for λ ≥ τ+). Let q be over some
Mλ, λ ≥ τ+. Set ν = |λ|+. As Mν is ν-saturated, q is realized in Mν which
is in the algebraic closure of Mλ and an independent sequence of realizations
of p|Mλ (nonforking extension of p to Mλ). So q is nonorthogonal to p. This
shows that every type is nonorthogonal to Mω, so T is non-multidimensional.

�

So the number of non-orthogonality classes of regular types is bounded
by τ , as T is τ -stable and |Mω| ≤ τ .

2.2. Structure

We want to prove a version of [11, Proposition 2.10], and explore further con-
sequences of that result. The proposition 2.8 generalizing [11, Proposition 2.8]
is essential. In generalizing the proofs of [11, Propositions 2.8, 2.9, 2.10] to
our more general setting, we clarify and improve on many steps of the proofs.
For background on the “forking calculus” arguments, we refer the reader to
[8, Chapter 1, §2], in particular to 2.20–2.29.

Notation. Let μ be ℵ0 if μ is finite and μ+ if μ is infinite.
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Note that μ ≤ τ+.
Recall (cf. [8, Lemma 4.4.1]) that weight one types are the ones for which

there is a well-defined dimension theory; that non-orthogonality is an equiv-
alence relation on the weight one types, and that in particular every regular
type has weight one ([8, Lemma 4.5.3]).

Although the equivalence classes themselves are large (cardinality of the
universe), since T is non-multidimensional (Proposition 2.6), we can find a set
of representatives of these classes as types over any a-model.

Therefore we can make the following definition:

Definition 2.7. We let R be the set of non-orthogonality equivalence classes of
weight one types of T .

If p is some weight one type, then [p] is its class.

Proposition 2.8. Let λ ≥ ω be an ordinal.
[There are really only two cases of interest, λ = ω and λ = μ.]
Consider Mλ ≺ Mλ+1 = acl(Mλ ∪ eλ).
There is a set of elements C = { cj : j ∈ J } ⊂ Mλ+1\Mλ, with J finite

if μ is finite and |J | ≤ μ otherwise, such that:
(a) C is independent over Mλ,
(b) each tp(cj/Mλ) is regular,
(c) all regular types occur up to non-orthogonality amongst the various types

tp(cj/Mλ),
and such that Mλ+1 is a-prime and minimal over Mλ ∪ C.

Without loss of generality, we can fix some set Q of regular types over
Mλ representing the classes of R over Mλ, and assume that for each c ∈ C,
tp(c/Mλ) ∈ Q, [so that for each c, c′ ∈ C, either tp(c/Mλ) = tp(c′/Mλ) or
these types are orthogonal ].

Proof. Choose C = { cj : j ∈ J } ⊂ Mλ+1\Mλ a maximal independent over
Mλ set of elements realizing regular types over Mλ. Note that by Theorem
2.2(f), Mλ is an a-model. Clearly we can make this choice respecting the final
statement of the Proposition. �

Claim 1. J is finite if μ is finite and of cardinality ≤ μ otherwise.

Proof. This is a weight argument. In a superstable theory any type of a finite
tuple b (over some given base set A) has finite weight in the sense that there is
no infinite independent over A set of tuples such that b forks with each of them
over A. For if not, forking calculus gives an infinite forking sequence of exten-
sions of tp(b/A), contradicting superstability. A straightforward extension of
this argument shows that if b is a μ-tuple then there is no independent over A
set of size μ+ of tuples each of which forks with b over A. In particular, each
cj , being algebraic over Mλ ∪ eλ forks with eλ over Mλ, and so the cardinality
of J is at most μ when μ is infinite. �

Claim 2. Mλ+1 is a-prime (and therefore prime) and minimal over Mλ ∪
{ cj : j ∈ J }.
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Proof. Let N 
 Mλ+1 be the a-prime model over Mλ ∪ { cj : j ∈ J }. If
N �= Mλ+1 then by Lemma 1.11, there is some d ∈ Mλ+1\N whose type
over N is regular and does not fork over Mλ, contradicting the maximality of
{ cj : j ∈ J }.

If Mλ+1 is not minimal, then Mλ ∪ { cj : j ∈ J } ⊆ N ≺ Mλ+1, for
some N . But by Proposition 1.10 every elementary extension of Mλ is also an
a-model, so we can repeat the argument just given to get a contradiction.

For the same reason it follows immediately that Mλ+1 is in fact prime
over Mλ ∪ C. �

For the rest, we have already seen (in the proof of Proposition 2.6) that
any regular type q is nonorthogonal to tp(eλ/Mλ) and so nonorthogonal to
a regular type q′ over Mλ which is nonorthogonal to p, and so realized in
the a-prime model over Mλ ∪ eλ. But the latter is precisely Mλ+1. So q′ is
realized in Mλ+1, so forks with { cj : j ∈ J } over Mλ. It easily follows that q′

is nonorthogonal to some tp(ci/Mλ). �
When we say that an infinite tuple d is algebraic over a set A, we mean

that each finite sub-tuple of d is algebraic over A, equivalently that (the range
of) d is in the algebraic closure of A.

Proposition 2.9. Continuing the notation of Proposition 2.8 (with λ = μ),
there are μ-tuples D = { dj : j ∈ J } such that:
(a) tp(dj/Mμ) has weight one and cj ∈ acl(Mμ ∪ { dj }) for each j ∈ J ;
(b) D is Mμ-independent; and
(c) eμ is interalgebraic with D over Mμ.

[Hence also the types of the tuples dj represent all the classes of R over Mμ.]

Proof. eμ =
〈
eμ,i : i < μ

〉
. Noting that tp(eμ/Mμ) is the non-forking exten-

sion of p to Mμ, for the remainder of this proof we will let p denote this type.
Set C = { cj : j ∈ J } as given by Proposition 2.8. �

We construct the family D by a sequence of approximations.
Initially choose D so that D is independent over Mμ and for each j, dj

realizes tp(eμ/Mμ, cj).
But then D is an independent set of realizations of p and so M ′ =

acl(Mμ ∪ D) is a model: an elementary extension of Mμ. In particular, as cj is
algebraic over Mμ ∪ {

eμ

}
, cj is algebraic over Mμ ∪ { dj }. So C is contained

in M ′, and hence Mμ+1 embeds in M ′ over Mμ ∪ C. Thus (by taking an
automorphism of the universe fixing Mμ ∪ C) we can assume without loss of
generality that Mμ+1 is contained in M ′. Hence:

Claim 1. eμ ∈ acl(Mμ ∪ D).

We now carry out a construction of parameter sequences fj which, very
informally speaking, encode the domination relation between the pairs cj and
dj . This will eventually allow us to replace each dj by a d′

j of weight 1 while
preserving all the facts proved so far.

Fix j.
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Claim 2. There is a tuple fj of length at most μ such that fj is independent
from cj over Mμ and cj dominates dj over Mμ, fj . (That is, if a is independent
from cj over Mμ, fj then a is independent from dj over Mμ, fj).

Proof. This is completely standard. We try to construct a sequence aα of
finite tuples, such that such that for each α, aα is independent from cj over
Mμ ∪{ aβ : β < α } but aα forks with dj over Mμ ∪{ aβ : β < α }. Notice that
then for each α, { aβ : β ≤ α } is independent from cj over Mμ, but dj forks
with aα over Mκ ∪{ aβ : β < α }. If μ is finite then there is (by superstability)
a finite bound on forking sequences of extensions of tp(dj/Mκ), and in general,
one cannot find such a forking sequence of length μ+. Hence, for some α < μ+

one cannot continue the construction to get aα. So take fj = 〈aβ : β < α〉.
�

So for each j ∈ J we can choose fj as described. But by the choice
of D (independent over Mμ) and the forking calculus we can in fact choose
the family of the fj to be independent from C over Mμ. Let c denote the
concatenation of C as a J-tuple, and similarly for d and f . Thus we have:

Claim 3. c dominates d, eμ over Mμ, f , and moreover for each j ∈ J , cj domi-
nates dj over Mμ,f .

We can now find (by superstability and considering the cardinality of the
relevant set of tuples) a subset A of Mμ of cardinality ≤ τ (and therefore < μ)
such that (c, d, eμ, f) is independent from Mμ over A. Let A′ = acleq(A), so
all types over A′ are stationary.

It follows from the basic facts about forking and domination (see [8,
Chapter 1, Lemma 4.3.4]) that:

Claim 4. eμ ∈ acl(A′, d), tp(cj/A
′) is regular, cj dominates dj over A′f , c

dominates deμ over A′f , and c dominates ceμ over A′ (the latter because c
dominates ceμ over Mμ).

Now using the strong μ-saturation of Mμ, let f
′ ∈ Mμ realize tp(f/A′).

Note that ceμ was independent from f over A′, whereby tp(f
′
ceμ/A′) =

tp(fceμ/A′). Now let d
′

= (d′
j : j ∈ J) be such that tp(f

′
ceμ, d

′
/A′) =

tp(fceμd/A′). Hence all of Claim 4 holds with f replaced by f
′
, and d re-

placed by d
′
:

Claim 4 ′: eμ ∈ acl(A′, d
′
), tp(ci/A

′) is regular, cj dominates d′
j over A′f

′
, c

dominates deμ over A′f
′
, and c dominates ceμ over A′.

Note that as cj dominates d′
j over A′, f

′
we have that

Claim 5. tp(d′
j/A

′f
′
) has weight 1.

Now, as c is independent from Mμ over A′f
′

we have (by domination)
that d

′
is independent from Mμ over A′f

′
, and in particular
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Claim 6. tp(d′
j/Mμ) has weight 1 for all i (and of course the d′

j are independent
over Mμ).

Finally, by strong μ-saturation of Mμ+1 let d
′′

realize tp(d
′
/A′f

′
c̄eμ) in

Mμ+1. Then the domination statement in Claim 4′ implies that d
′′

is indepen-
dent from Mμ over A′f

′
and as in Claim 5, each tp(d′′

i /Mμ) has weight 1 and
the d′′

i are independent over Mμ. Moreover eμ ∈ acl(d̄,Mμ) (again by Claim
4′), and as Mμ+1 = acl(Mμ, eμ) we conclude that d

′′
is interalgebraic with eμ

over Mμ.
So we replace the family D by

{
d′′

j : j ∈ J
}

to conclude the proof of the
proposition.

�
Theorem 2.10. Any model M which contains Mμ is the algebraic closure of
Mμ together with an Mμ-independent set D of tuples of realizations of weight
one types over Mμ.

Proof. Fix some model M containing Mμ. Let C and Q be chosen over Mμ as
in Proposition 2.8, for μ.

For each q ∈ Q, let Iq be an enumeration of those c ∈ C which realize q.
So each Iq is nonempty and Mμ+1 is a-prime and minimal over Mμ ∪ ⋃

q Iq.
Let λq ≤ μ be the cardinality of Iq.

For some sufficiently large λ, let M ′ be a saturated model of cardinality
λ extending M .

Since M extends Mμ, M is an a-model. For each q ∈ Q let I ′
q be a

maximal Mμ-independent set of realizations of q in M . Note that it may be
empty. Let C ′ =

⋃
q∈Q I ′

q. As in the proof of Proposition 2.8, M is a-prime
and minimal over Mμ ∪ C ′. Now we can extend each I ′

q to I ′′
q , a maximal

Mμ-independent set of realizations of q in M ′. Then I ′′
q has cardinality λ. Let

C ′′ =
⋃

q∈Q I ′′
q .

For each c ∈ ⋃
q I ′′

q we can (by Proposition 2.9) choose suitable dc whose
type over Mμ is of weight 1 and with c dominating dc over Mμ and c ∈
acl(Mμ, dc), such that
(a) if c ∈ M (i.e. c ∈ I ′

q for some q ∈ Q) then dc ∈ M , and
(b) M ′ = acl(Mμ ∪ ⋃

c∈C′′ dc).
Let B = acl(Mμ ∪ { dc : c ∈ C ′ }. So:

(c) Mμ ∪ C ′ ⊆ B ⊆ M .
As { dc : c ∈ C ′′ } is independent over Mμ, it follows that for any choice

of c1, . . . , cr ∈ C ′′\C ′, tp(dc1 , . . . , dcr/B) is finitely satisfiable in Mμ. It follows
that B is the universe of an elementary substructure of M ′, so by (3) and the
minimality of M over Mμ ∪ C ′ we have that M = B, proving the proposition.

�
Corollary 2.11. Continuing the notation of the preceding results, we can find
(in Mμ+1) sets { N(r) : r ∈ R}, each uniquely determined up to isomorphism
over Mμ by r, with tp(Nr/Mμ) ∈ r and such that each N(r) is a maximal
(with respect to ⊆) weight one set over Mμ.
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We call N(r) the hull of r (over Mμ).
Furthermore, if M is any model containing Mμ (as in 2.10), then M is

the algebraic closure of a family (independent over Mμ) of copies of the various
N(r), r ∈ R.

Proof. For each r ∈ R, let c realize a type in R over Mμ, and let N(r) be the
a-prime model over Mμ ∪ { c }. The type q = tp(N(r)/Mμ) is dominated by
tp(c/Mμ), so q is weight one and in the class r. If X is any set whose type
over Mμ is of weight one and in r then the a-prime model over Mμ ∪ X is
isomorphic to N(r), and so N(r) is maximal with the stated properties, and
unique up to isomorphism.

Note that N(r) ⊃ Mμ.
Furthermore, if M is any model containing Mμ (as in 2.10), then as

in the proof of that theorem we find M = acl(Mμ ∪ { dc : c ∈ C ′ }) where
{ dc : c ∈ C ′ } is an Mμ-independent set of tuples realizing weight one types
over Mμ. Let rc = [tp(dc/Mμ)]. Then for each c ∈ C ′, dc is contained in
a copy Nc of N(rc), which by definition is domination-equivalent to dc, and
so we can choose { Nc : c ∈ C ′ } to be independent over Mμ. Then of course
M = acl

(⋃
c∈C′ Nc

)
. �

In particular cases, the structure theory can be refined quite a bit.

Example 2.12. The primordial motivating example for stability theory already
exhibits this structure, and more. Let T be the theory of algebraically closed
fields of some fixed characteristic. Then a transcendence basis is an indis-
cernible set, and any model is the algebraic closure of its transcendence basis.
So T is (1,ℵ1)-almost indiscernible.

The results of this section describe a structure theory for the extensions
of the model with countably many independent transcendental elements (μ =
ℵ0), but of course here we actually have a structure theory for extensions of
the prime model.

R consists of a unique class, and the hull of that class is the field of
transcendence degree one. So Corollary 2.11 sees every algebraically closed field
as the algebraic closure of an algebraically independent family of algebraically
closed fields of trancendance degree one.

In the next subsection, we will see similar kinds of examples in theories
of modules.

2.3. The case of theories of modules

We take Prest’s book [12] as our main reference, to ensure a uniform approach
to the subject, with occasional attributions to primary sources.

Throughout, T is a complete superstable theory of R-modules with
|T | = τ .

λ(T ) is the least cardinal in which T is stable (so τ ≤ λ(T ) ≤ 2τ ).

Proposition 2.13 ([12, Corollary 3.8], due to Ziegler). If M ≺ N |= T then the
factor module N/M is totally transcendental.
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We learn the following facts from Prest [12, §6.5] (originally Pillay–Prest
[10]):

Proposition 2.14. (a) M |= T is an a-model iff M is pure-injective and weakly
saturated. [12, Proposition 6.37 ]

(b) Pure-injective models of T are ℵ0-homogeneous. [12, Proposition 6.35 ]
(c) Elementary extensions of pure-injective models are pure-injective. [12,

Lemma 6.34 ]
(d) Elementary extensions of a-models are a-models. [12, Corollary 6.41 ]

Proposition 2.15. In general, for any complete theory of modules T ′, if every
a-model is pure-injective, then T ′ is superstable. [12, Proposition 6.40 ]

Example 2.16. Consider the p-adics Z(p) in two ways, as a Z-module and as
Z(p)-module. In both cases the theory is superstable not totally transcendental,
with λ(T ) = 2ℵ0 . But the latter has λ(T ) = |T |. (These are used as illustrative
examples of many aspects of the model theory of modules throughout [12] and
the facts stated here are “common knowledge”.)

Models of the theory as a Z-module have the form M ⊕ Q(κ), where
M 
 Z(p) and κ ≥ 0 is a cardinal. Models of the theory as a Z(p)-module have
the form Z(p) ⊕ Qp

(κ), where Qp is the quotient field.
In either case, there are no algebraic or definable elements other than 0.

Note however that the type of, for instance, 1 ∈ Z(p), while not algebraic, is
limited in the sense that the pure-injective hull of a realization of it occurs
exactly once as a direct summand of any model of T . As a Z-module, the
theory is not (μ, κ)-almost indiscernible for any countable μ. But as a Z(p)-

module, the 2ℵ0-saturated model Z(p) ⊕ Qp
(2ℵ0 ) is the definable closure of an

indiscernible set of tuples of cardinality 2ℵ0 , where for convenience we take
the order type of the tuples to be 2ℵ0 + 2ℵ0 , the first 2ℵ0 components of the
tuple being some fixed enumeration of Z(p), and the second sequence of 2ℵ0

components ranging over an enumeration of the standard basis for Qp
(2ℵ0 ).

(The details of this construction are made explicit in the proof of Theorem
2.17 following.)

In fact, the situation described in this example is typical:

Theorem 2.17. Let T be a superstable theory of modules with λ(T ) = |T | = τ ,
(in particular, if T is totally transcendental). Then T is an almost indiscernible
theory of modules.

Proof. We extract the required properties of a-models in superstable theories
of arbitrary cardinality from Baldwin’s book [1] on stability theory, Chapter
XI, §1, §2.

In particular, there is an a-prime model A0 (of cardinality τ). There is
a saturated proper elementary extension N of A0 of cardinality τ+, since T
is stable in all cardinals greater than τ . Any type that is realized in N\A0 is
realized by an independent set of cardinality τ+. The factor module N/A0 is
a tt module by 2.13, which decomposes as a direct sum of indecomposables.
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In particular, since N and A0 are themselves pure-injective, each summand is
a direct summand of N . These summands are necessarily of cardinality (less
than or equal to) τ , the cardinality of the language, as the theory of N/A0 is tt,
and there are, up to isomorphism, no more than τ distinct summands. There
are no “limited” summands (summands which appear a fixed finite number
of times in any model) as these all necessarily appear as summands of A0.
Therefore (since N has a large independent set over A0) every summand of
N/A0 occurs τ+ times. Let A be the direct sum of one copy, up to isomorphism,
of each summand of N/A0. By the arguments just given, |A| ≤ τ . Then N ∼=
A0 ⊕ A(τ+). Just as we did in Example 2.16, fix an enumeration m of A0 in
order type τ and an enumeration a of A of order type ≤ τ ; for i < τ+ let ai be
the copy of a on the i-th component of A(τ+). Let ei be the concatenation of
m and ai. Clearly { ei : i < τ+ } is a set of sequences all of the same type and
independent, since direct-sum independent, and so is a set of indiscernibles.

Thus T is seen to be (τ, τ+) almost indiscernible. �

Comment. In the case where T is tt, we can carry out the construction just
described, taking A0 to be the sum of the limited summands of T , if there
are any, or 0 otherwise. So the choice of A0 as described in the proof of the
Theorem does not necessarily give the sharpest possible structure theorem.
Nor will this crude construction reveal whether or not T is (μ, τ+) almost
indiscernible for some μ < τ .

Corollary 2.18. A complete theory T of modules is almost indiscernible iff it
is superstable with λ(T ) = |T |.
Proof. By Theorems 2.4 and 2.17. �

Example 2.19. Consider the following example, used at several places in Prest
[12], in particular at Example 2.1/6(vii) (with k a countable field). This was
an important example of Zimmermann-Huisgen and Zimmermann [16].

Let k be an infinite field (of cardinality τ) and set R = k[(xi)i∈ω :
xixj = 0 for all i, j]. (We can of course, with some small adjustments to the
cardinalities in what follows, make the same construction with an uncountable
family of indeterminates.) Then RR is an indecomposable tt module. Its lattice
of pp definable subgroups consists of all the finite dimensional vector subspaces
of J =

⊕
i∈ω kxi, together with J itself and R. Morley rank equals Lascar

rank. Each subspace of dimension n has rank n; J has rank ω and R has
rank ω + 1. There are thus two indecomposable pure-injective summands of
models of T : RR corresponding to the types of finite rank/rank ω + 1, and Rk
corresponding to the type of rank ω. In the latter case, the action of R on k
is given by xik = 0 for all i.

The models of the theory of RR are precisely the modules RR(κ) ⊕ k(λ),
with κ ≥ 1 and λ ≥ 0. For κ ≥ τ , the saturated model of power κ is RR(κ) ⊕
k(κ).

So in particular although each free module RR(κ), κ a (non-zero) finite or
infinite cardinal, is in the algebraic closure of an indiscernible set of cardinality
κ (just take the standard basis vectors), these models are not saturated.
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However of course this theory is (2, τ+)-almost indiscernible, since each
indecomposable is 1-generated.

3. Free algebras

3.1. The general theory

We provide generalizations and extensions of the results in Pillay and Sklinos
[11, Section 3] to the uncountable context. None of the proofs depended in
any significant way on the assumption that the language is countable, and go
through with ℵ1 replaced by τ+. But we verify all the details in any case. As
in [11], we refer the reader to the text [4,3] of Burris and Sankappanavar for
the elementary facts of Universal Algebra.

If N is an algebra and X ⊆ N , then 〈〈X〉〉 is the subalgebra of N generated
by X.

We start off with a couple of simple facts about free algebras in a variety.
Note that the cardinality of a free basis is not in general an invariant of a free
algebra unless that cardinality is greater than the cardinality of the language,
c.f. Example 3.13.

Lemma 3.1 [11, Remark 3.1]. Suppose the algebra A is free on X1 ∪ X2, X1 ∩
X2 = ∅. Let A1 = 〈〈X1〉〉, so A1 is free on X1. Let Y1 be any other free basis
for A1. Then A is free on Y1 ∪ X2.

We give here a more general version of [11, Lemma 3.7], which is a fact
of universal algebra, not a consequence of the context in which we work.

Lemma 3.2. Let M be a free algebra on τ+ generators in a variety V over a
language of cardinality τ . Suppose that Y is a free basis of M ; a is a finite
tuple in some other free basis X of M ; and for some finite tuple y ∈ Y and
finite tuple of terms t, a = t(y).

Then for any C ⊂ Y \y such that |Y \C| = τ+, C ∪ { a } may be extended
to a basis of M .

Proof. Let Y0 = Y \C. So |Y0| = τ+, y ∈ Y0, and a ∈ 〈〈Y0〉〉. Then 〈〈Y0〉〉 ∼= M
as they are both free on τ+ generators; 〈〈Y0〉〉 ⊂ M (and is a proper subset if
C is nonempty); and C ∩ 〈〈Y0〉〉 = ∅ as Y is a free basis. So by Lemma 3.1,
C ∪ { a } may be extended to a basis of M . �

So in particular if a belongs to a basis X of M , and Y is a basis of M ,
then there is b ∈ Y such that { a, b } can be extended to a basis of M .

Context 3.3. Take as a replacement for [11, Assumption 3.2] the following:
Let V be a variety over an algebraic language L of cardinality τ ≥ ℵ0.

Let the algebra M be a free algebra for V on a set I = { eα : α < τ+ } (of
individual elements), such that M is τ+ saturated.

Adopt the same notational conventions as in Context 2.1. So in particular
the underlying theory T is the theory of M .

Lemma 3.4. (a) I is a set of indiscernibles in M .
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(b) If I ′ ⊂ I, or if I ′ ⊃ I and I ′ is a set of indiscernibles in M extending I,
then 〈〈I ′〉〉 is free on I ′ in V.

Proof. (a) holds in general by freeness; the first case of (b) always holds for a
free algebra, and the second case of (b) then follows by indiscernibilty and the
homogeneity of the universe. For clearly then any subset I0 ⊂ I ′ of cardinality
τ+ is a free basis for 〈〈I0〉〉; the set of all such subsets of I ′ is an updirected
family; if f : I ′ → A for some algebra A ∈ V then each f � I0 has a unique
lifting to a homorphism fI0 → A, and these liftings are pairwise compatible
(else we would have a contradiction to indiscernibility). So the union of the
maps fI0 lifts f to A. �

Corollary 3.5. (a) T is superstable.
(b) If T is a theory of modules, then T is tt, and T = Th(F (ℵ0)), where F is

the free module in V on one generator.

Proof. (a) By Theorem 2.4.
(b) The free module on a set I in V is isomorphic to F (I), where F

is the free module in V on one generator. So T is a superstable theory of
modules closed under products, hence is tt. All infinite weak direct powers of
any module are elementarily equivalent, so F (I) ≡ F (ℵ0). �

Definition 3.6. Following [11, Definition 3.3], we call B ⊂ M basic if it is a
subset of some free basis of M . We call b ∈ M basic if { b } is basic.

Lemma 3.7 [11, Lemma 3.4]. There is a type p0 over ∅ such that for any a ∈ M ,
a is basic iff a realizes p0.

Proof. Since I is an indiscernible set, all the elements of I have the same
type p0. If X is any other basis of M , since |M | > τ , X also has cardinality τ+,
and any bijection between X and I extends, by freeness, to an automorphism
of M . So the elements of X also have type p0.

Conversely, if the type of a is p0 and e ∈ I then by saturation there is an
automorphism f of M taking e to a; then f [I] is a free basis containing a.

�

Fix (for the remainder of this section) p0 as in Lemma 3.7.

Comment. We would like to see that the rank of p0 is maximal. All that is
needed is that if M , N are models of a superstable theory, and f : M → N
is a homomorphism, then the U -rank (Morley rank, as the case may be) of
a ∈ M is greater or equal the U -rank (Morley rank) of f(a). At present, we
only have the result for theories of modules.

Lemma 3.8 [11, Lemma 3.8]. The type p0 is stationary. Hence so is p0
(n) for

any n.

Proof. We have to show that p0 determines a unique strong type over ∅.
Suppose that a and b are realizations of p0. So a is an element of some

basis X of M and b is an element of some basis Y of M . By Lemma 3.2, there
is b′ ∈ Y such that { a, b′ } is basic, so extends to a basis Z of M . But Z is
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indiscernible in M , so a and b′ have the same strong type. But b and b′ have
the same strong type (as elements of Y ), so a and b have the same strong type.

�

Corollary 3.9. All n-types over ∅ are stationary.

Proof [From the proof of [11, Corollary 3.10, 3.11]]. If a ∈ M then a ∈ dcl(e) for
some finite sequence e ∈ I. But tp(e/∅) is stationary by Lemma 3.8. Therefore
tp(a/∅) is stationary. �

Corollary 3.10 [11, Corollary 3.10]. acleq(∅) = dcleq(∅).

Proof. Immediate. �

Proposition 3.11 [11, Proposition 3.9]. The sequence I is a Morley sequence
in p0.

Proof. We have to show that I is independent over ∅.
Let I0 = { en : n < ω }. By homogeneity it is enough to show that eω and

I0 are independent over ∅. Let a realize a non-forking extension of p0 to I0.
By Lemma 3.2 there is an infinite I ′

0 ⊆ I0 such that I ′
0 ∪ a is basic. But then

by freeness there is an automorphism carrying I ′
0 ∪ a to I ′

0 ∪ eω, so eω and I0
are independent. �

Proposition 3.12 [11, Proposition 3.12]. Let a, b ∈ M .
Then a is independent from b over ∅ iff there is a basis A ∪ B, A,B

disjoint, of M such that a ∈ 〈〈A〉〉 and b ∈ 〈〈B〉〉.
Proof. The reverse direction is clear by Proposition 3.11, as any basis is an
independent set.

For the forward direction, suppose a is independent from b over ∅. With-
out loss of generality, for some n < ω, a, b ∈ 〈〈ei : i < n〉〉. In particular, a
is expressed as a sequence of terms in { ei : i < n }, a = �t(ei : i < n). Let
a′ = �t(ei : n ≤ i < 2n). Then a′ is independent from b (by the reverse direc-
tion already proved!) and tp(a) = tp(a′). Thus there is an automorphism of
the universe fixing b and taking a′ to a. The image of the basis I under this
automorphism gives us the required decomposition. �

The proof extends in the obvious way to infinite tuples, and to indepen-
dence over an arbitrary basic set.

3.2. The particular case of modules

Let V be a variety of (left) R-modules. The free module F1 on one generator
in V is clearly an image of the (absolutely) free module on one generator, that
is, of RR. We take 1 ∈ R as the free generator. So F1

∼= R/I for some left ideal
I of R. The free module in V on a set X is then (up to isomorphism) F (X)

1 . In
particular, by “the free module in V on κ-many generators”, we mean F (κ)

1 .

Example 3.13. Note however that free modules on different cardinalities need
not be distinct: take K a field, κ an infinite cardinal, and set R to be the ring
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of all column-finite κ × κ “matrices” over K. It is an easy exercise to verify
that the usual matrix multiplication is well-defined. By considering partitions
of κ into 2, 3, . . . , n, . . . pairwise disjoint subsets, each of cardinality κ, we see
that

RR ∼= RR(2) ∼= RR(3) ∼= · · · ∼= RR(n) ∼= · · ·
However the cardinality of a free basis is uniquely defined whenever it is infi-
nite.

Let κ ≥ |R|+. Suppose that M = F (κ)
1 , the free module on κ generators

in V, is saturated and let T = Th(M)(= Th(F (ℵ0)
1 )). Since T is a superstable

theory of modules and closed under products, it is tt.
Recall the ordering of pp-types of a theory T of modules: if p and q are

pp-types of T , then p ≤ q if for all M |= T , p[M ] ⊆ q[M ]. Equivalently, p ≤ q
iff p ⊇ q. When we say “maximal”, we mean “maximal with respect to the
ordering ≤ on pp-types”.

Proposition 3.14. The pp-type p0
+ of a basic element is maximal, hence p0 has

maximal Morley rank.

Proof. Fix a basis X of M and e ∈ X. So the pp-type of e is p0
+. N ≡

M certainly implies N ∈ V. Let q be a pp-type of T and let a ∈ N |= T
realize q. Define f : X → N by setting f(e) = a and letting f be arbitrary
otherwise. Then by freeness f extends to a homomorphism f : M → N , and
homomorphisms increase pp types setwise, so p0

+ ⊆ q, that is, p0
+ ≥ q. �

Pillay and Sklinos ask ([11, Question 3.14]) whether the theory of a sat-
urated free algebra must have finite Morley rank, and suggest that the answer
should be easy in a variety of R-modules. Under suitable restrictions, the an-
swer is indeed “yes”. For instance, if V is a variety of R-modules such that the
free module RN1 on one generator has a unique indecomposable direct sum-
mand, and the free module RN on |R|+ generators is saturated, then Th(N)
is unidimensional and so has finite Morley rank. However the answer is “no”
in general; see Example 3.16 following.

On the other hand it is natural to ask if there is classification of those
rings R such that free R-modules on |R|+ generators are saturated. (In fact
this was explicitly asked by Piotr Kowalski during a talk on the subject by
the second author in Wroclaw, Poland, in July 2019.) This is answered in the
theorem below. See Chapter 14 of [12] for definitions of the notions of coherence
and perfectness of a ring R. The theorem and proof are thematically close to
the material in this Chapter; a partial result in that direction is Exercise 2(a)
on page 292.

Recall that the projective modules are precisely the direct summands of
free modules.

By the classic theorem of Sabbagh-Eklof [13], cf. Prest [12, Theorem
14.25] (which is stated there for the case of right modules), R is left perfect
and right coherent iff the class of projective left R-modules is elementary. The
underlying algebraic result is due to Chase [5].
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Theorem 3.15. Given a ring R of cardinality τ , R(τ+) (regarded as a left R-
module) is τ+-saturated if and only if R is left perfect and right coherent.

Proof. [⇒] Assume that RR(τ+) is saturated (i.e. τ+-saturated). By Theorem
2.2 every R(λ) for λ ≥ τ+ is saturated (and elementarily equivalent to R(τ+)).
Let T = Th(R(τ+)). As observed after Example 3.13 above T is tt.

We claim that the projective (left) R-modules are precisely the direct
summands of models of T . This will suffice, as by [12, Lemma 2.23(a)] this
class coincides with the class of pure submodules of models of T , and since T
is closed under products, by [12, Lemma 2.31] this latter class is elementary.

If RM is projective then it is a direct summand of R(λ) for some λ ≥ τ+,
and the latter is a model of T .

On the other hand suppose that M is a direct summand of a model N
of T . Take λ ≥ τ+ sufficiently large so that N is isomorphic to an elementary
substructure of R(λ). As T is tt, N is a direct summand of R(λ) whereby M is
also a direct summand of R(λ). So M is projective.
[⇐] Assume that R is left perfect and right coherent (and so the projective left
modules form an elementary class). By [12, Corollary 14.22], T = Th(RR(τ+))
is tt. As T is tt it has a saturated model M in power τ+. By freeness, there is
a surjection R(τ+) � M . By the assumption M is projective as it is elemen-
tarily equivalent to a free module; so it is isomorphic to a summand, hence to
an elementary submodel, of R(τ+). As T is tt and nonmultidimensional any
elementary extension of a κ-saturated model (κ ≥ |T |+) is κ-saturated. Hence
in particular, R(τ+) is saturated. �

Comment. Hence in particular if R is commutative and for some κ > |R|+ℵ0,
R(κ) is saturated, then it has finite Morley rank.

Example 3.16. By contrast, a well-known source of counter-examples (cf. Small
[15]) provides us with a saturated free module with infinite Morley rank, and
so a counter-example to the question of Pillay and Sklinos [11, Question 3.14].
These examples are almost always presented for right modules and we follow
that custom here.

Consider the upper triangular matrix ring

R =
(
Q Q(x)
0 Q(x)

)

R is well-known to be right artinian and right perfect, but only left coher-
ent, not left noetherian. So by Theorem 3.15, the free (right) module on ℵ1

generators is saturated.
It is a standard exercise to determine all the left and right ideals of a

ring of this sort.
Furthermore, the pp-definable subgroups of RR are exactly the finitely

generated left ideals of R, cf. Prest [12, Theorem 14.16]: if I is generated by
{ r1, . . . , rn }, then it is defined in RR by

ϕ(v) = ∃w1, . . . wn (v = w1r1 + · · · + wnrn).
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The Jacobson radical is the “upper right corner” of the ring; it is gen-
erated as a right ideal by any non-zero element, but as a left ideal it has the
structure of Q(x) as a vector space over Q. In particular every finite dimen-

sional Q-subspace V of Q(x) yields a pp-definable subgroup
(

0 V
0 0

)

of the

Jacobson radical, and hence we obtain infinite increasing chains of pp-definable
subgroups.

Morley rank equals U -rank, cf. Prest [12, Theorem 5.18], and the U -rank
of a definable subgroup is just its rank in the lattice of pp-definable subgroups,
cf. Prest [12, Theorem 5.12], so the Morley rank of RR is infinite. [In fact, a
more careful analysis shows that the Morley rank is ω + 1.]

4. Questions and open problems

Question 4.1. Is there a fundamental difference between theories that are (τ, τ+)
almost indiscernible and those that are (μ, τ+) almost indiscernible for some
μ < τ?

In Section 3.1 we get a couple of results giving characterizations of al-
gebraic closure (Corollary 3.10) and independence in a saturated free algebra
(Proposition 3.12). The next two questions relate to these results.

Question 4.2. Are there similar results for arbitrary almost indiscernible the-
ories?

Question 4.3. Is there a more general description of independence in the theory
of a saturated free algebra?

We are thinking of something that might fit into a general abstract frame-
work similar to that developed for theories of modules in Prest [12, §5.4]
(largely based on [9, Pillay–Prest]).

The closest direct analogue of Prest [12, Theorem 5.35] would be the
following:

a and b are independent over c iff there is a basis X, the disjoint union
of A, B, and C, such that c ∈ 〈〈C〉〉 and a ∈ 〈〈A ∪ C〉〉, b ∈ 〈〈B ∪ C〉〉.
Question 4.4. Is there any kind of classification of those varieties V for which
the free algebra on τ+ generators is τ+-saturated?

One should be cautious, as there are examples in Baldwin-Shelah of such
V which have unstable algebras in the variety.

Question 4.5. What about Question 4.4, assuming the stability of V, that is,
that every completion of Th(V) is stable?

Question 4.6. In Proposition 3.14 we showed that the rank of the type of a
basic element of a large saturated free module is maximal. Is this true for large
saturated free algebras in general?

For the rest, let us assume that the free algebra M on τ+-generators is
τ+ saturated, and let T = Th(M).
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Question 4.7. Is T totally transcendental?

Question 4.8. Is there a structure theorem for the algebra M , for example as
some kind of a product of a module and of a combinatorial part, along the
lines of Hart and Valeriote [6]?

Question 4.9. Implicit in the last few questions is the following:
Is there some kind of relative quantifier elimination theorem for such

theories?
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