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Abstract. The main purpose of this paper is a wide generalization of one
of the results abstract algebraic geometry begins with, namely of the fact
that the prime spectrum Spec(R) of a unital commutative ring R is al-
ways a spectral (= coherent) topological space. In this generalization,
which includes several other known ones, the role of ideals of R is played
by elements of an abstract complete lattice L equipped with a binary
multiplication with xy � x ∧ y for all x, y ∈ L. In fact when no further
conditions on L are required, the resulting space can be and is only shown
to be sober, and we discuss further conditions sufficient to make it spec-
tral. This discussion involves establishing various comparison theorems on
so-called prime, radical, solvable, and locally solvable elements of L; we
also make short additional remarks on semiprime elements. We consider
categorical and universal-algebraic applications involving general theory
of commutators, and an application to ideals in what we call the com-
mutative world. The cases of groups and of non-commutative rings are
briefly considered separately.

Mathematics Subject Classification. 06F99, 13A15, 16Y60, 20M12, 16D25,
18E13, 08B99.

Keywords. Multiplicative lattice, Complete lattice, Lattice of ideals,
Lattice of congruences, Sober space, Spectral space, Prime spectrum,
Commutator.

Presented by H.-P. Gumm.
A. Facchini and C. Finocchiaro are supported by the research project “Reducing complexity
in algebra, logic, combinatorics” (Fondazione Cariverona). A. Facchini is also partially sup-
ported by Progetto di Ricerca di Rilevante Interesse Nazionale “CARTHA”, and C. Antonio
by GNSAGA and the projects PIACERI “PLGAVA-Proprietà locali e globali di anelli e di
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1. Introduction

What is a spectral space, also called a coherent topological space? There is
a purely topological definition, recalled in the next section, but, even more
importantly in a sense, it has two well-known algebraic origins, which can be
used as algebraic definitions:

Fact 1.1. The prime spectrum Spec(R) of a unital commutative ring R,
defined as the set of prime ideals of R equipped with Zariski topology, is a
spectral space. Moreover, as shown by M. Hochster [40], every spectral space
occurs this way.

Fact 1.2. The opposite category of distributive lattices is equivalent to
the category of spectral spaces (with so-called spectral maps as morphisms).
This is clearly explained e.g. by P. T. Johnstone in [47]; like in that book, we
assume all lattices to be bounded.

Obtaining the same kind of spaces from unital commutative rings and
from distributive lattices could look surprising before having the following far
more recent result of A. Peña, L. M. Ruza, and J. Vielma [64]:

Fact 1.3. Fact 1.1 extends to unital commutative semirings as Theorem 3.1
of [64]. In particular, this theorem applies to unital commutative rings and to
distributive lattices at the same time.

However, this result begs for a further generalization, as the following
facts suggest:

Fact 1.4. Once commutative rings are replaced with commutative semir-
ings, why not removing the additive structure completely? And indeed, the
commutative monoid counterpart of Fact 1.3 (and more) can be found in [73].

Fact 1.5. Let R be a non-commutative unital ring. A prime ideal of R
can still be defined as a proper ideal P with XY ⊆ P ⇒ (X ⊆ P or Y ⊆ P )
for all ideals X and Y of R, and we can still consider Spec(R) defined as the
set of prime ideals of R equipped with the Zariski topology. This space is not
spectral in general, but:

• As shown by I. Kaplansky [48] it is spectral if the product of any two
finitely generated ideals of R is finitely generated itself; he called such R
a neo-commutative ring.

• L. P. Belluce [11] proved the same assuming that the radical of the prod-
uct of any two principal ideals of R is the radical of a finitely generated
ideal; he called such R quasi-commutative.

• However, it was I. Kaplansky again who gave an example of a quasi-
commutative ring that is not neo-commutative [49]. For some further
remarks see I. Klep and M. Tressl [51].

Fact 1.6. Discussing analogies between groups and commutative rings,
where commutators of normal subgroups play the role of products of ideals, E.
Schenkman [66] (see also K. K. Shchukin [67]) calls a normal subgroup P of a
group G prime, if [X,Y ] ⊆ P ⇒ (X ⊆ P or Y ⊆ P ) for all normal subgroups
X and Y of G. However, general commutator theory tells us that this is more
than just an analogy (discussing which we don’t require rings to be unital
and identify ring congruences with ideals). In fact there are more than three



Vol. 83 (2022) Abstractly constructed prime spectra Page 3 of 38 8

general notions of commutator that give the product of ideals in the case of
(ideals of) commutative rings and the commutator of normal subgroups in the
case of (normal subgroups of) groups. The main three such commutators are P.
Higgins’ commutator [39], S. A. Huq’s commutator [41], and J. D. H. Smith’s
commutator [68]. It is interesting that in the case of ideals of non-commutative
rings each of three above-mentioned commutators of X and Y is equal to
XY + Y X, not necessarily to XY . Therefore commutator theory suggests to
define a prime ideal via the implication XY + Y X ⊆ P ⇒ (X ⊆ P or Y ⊆
P ). Fortunately, this definition, seemingly strange from the viewpoint of ring
theory, is equivalent to the usual one.

Fact 1.7. The so-called “abstract theory of ideals” has almost hundred
years of development. It replaces ideals of a ring, commutative or not, with
elements of an abstract complete lattice L with a binary multiplication re-
placing multiplication of ideals. The multiplication sometimes satisfies certain
conditions; for example:

• W. Krull [52], speaking of “axiomatic theory of ideals”, in fact implic-
itly introduces certain structures involving order, multiplication and di-
vision, where the axioms involving multiplication and lattice operations
are: associativity and commutativity of multiplication, distributivity of
multiplication with respect to arbitrary non-empty joins, and an inequal-
ity, which in the present day language would be written as ab � a ∧ b
(for all a and b), while Krull writes a · b ≥ [a, b]. Of course � versus ≥
is nothing but imitation of ideal inclusion versus imitation of inequali-
ties between natural numbers that generate ideals of the ring of integers.
Next, in [53] (where he writes the inequality above as a · b ≥ a ∩ b), he
does not require the commutativity of multiplication anymore, thinking
of ideals of non-commutative rings. In both papers ‘abstract’ prime ideals
are involved.

• The book [23], dedicated to R. P. Dilworth’s and related work, has a
chapter called “Multiplicative lattices” with several old reprinted and
new papers, where lattices equipped with a multiplication and/or resid-
uation (=‘division’) are explicitly introduced and studied; the earlier pa-
pers [75] and [76] of M. Ward should also be mentioned here. Note also
that Dilworth’s introduction (called “Background”) to “Multiplicative
lattices” begins with “In the middle 1930’s Morgan Ward, largely from
reading the work of E. Noether, became convinced that much of the ba-
sic structure theory of commutative rings could be formulated in lattice
theoretic terms provided an appropriate multiplication was defined over
the lattice.” The axioms involving multiplication and lattice operations
have only minor differences from those of Krull. Note: we omit mention-
ing more recent related literature that does not follow the direction we
are interested in this paper. References to that literature (of twentieth
century) can be found in an important survey [9] of D. D. Anderson and
E. W. Johnson, which mentions many of their papers among others.

• S. A. Amitsur [6] goes much further and develops a general theory of radi-
cals in an (abstract) lattice equipped with what he calls an H-relation. For
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him a lattice equipped with a multiplication is only a very special case,
and, moreover, his multiplication is neither associative nor commutative
in general; he does require, however, the distributivity of multiplication
with respect to binary joins and the inequality ab � a ∧ b. The reason
for abandoning associativity and commutativity is the desire to consider
ideals of non-associative (non-commutative) rings, which he does in [7]
and in [8], although the case of associative rings remains the most impor-
tant one there. He also indicates, in [7], that many properties of radicals
extend from ideals of rings to ideals in categories satisfying suitable con-
ditions, saying: “We do not intend to give here the list of axioms such a
category has to satisfy, but only a list of conditions, some of which may
be considered as axioms, others as lemmas, to be valid in such a category
in order that the whole theory can be developed in it”.

• The expression “abstract ideal theory” used by various authors, appears,
in particular, in the book [12] of Garrett Birkhoff, where he begins Sec-
tion 10 of Chapter XIV with “The general theory of ideals in Noetherian
rings centers around the concepts of primary and irreducible ideal, and
of the radical of an ideal. As was first shown by Ward and Dilworth [77],
Part IV (here and below we are using our numeration of references; note
also that [77] is reprinted in [23]), much of this theory is true in general
Noetherian l-monoids. The present section develops this idea”, and adds
in the footnote “This idea was implicit in W. Krull [52], and developed
by him in many later papers”. A few lines below, taking about radicals,
he adds another footnote saying: “For other lattice-theoretic approaches
to the radical, see [6,7,8] and [10]”. What Birkhoff calls “l-monoid” is
the same as a lattice equipped with a multiplication that is associative,
distributive with respect to binary joins, and has an identity element.
But Birkhoff considers several other structures including m-lattices (=l-
groupoids), where associativity and the existence of identity element is
not required. He also considers “prime elements” and compares them
with “maximal elements” in rather general contexts.

• K. Keimel [50] seems to be the first to generalize Zariski topology (which
he, as well as some other authors, calls hull kernel topology), defining
it on the set of minimal prime elements of a lattice equipped with a
multiplication. He points out that his “setting is close to that of Steinfeld
[69]”, although Steinfeld’s multiplication is not necessarily binary, but it
is n-ary, for an arbitrary n � 2 (and no topology is involved).

Fact 1.8. A systematic study of prime ideals in categories satisfying care-
fully chosen axioms (in fact due to S. A. Huq [41]) and in varieties of groups
with multiple operators in the sense of P. J. Higgins [39] was initiated by A.
Buys and her collaborators and students, especially S. G. Botha and G. K.
Gerber: see [20,30,21,15,14,31], and related papers. Independently of that, A.
Ursini [72] introduced and studied prime ideals in ideal determined varieties of
universal algebras. The term “ideal determined” was first used by him and H.-
P. Gumm in [36]; originally [71] he used the term “BIT” (as an abbreviation
of “buona teoria degli ideali”). The precise relationship between categories
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satisfying Huq’s axioms and ideal determined varieties of universal algebras
was clarified much later, via semi-abelian categories in the sense of [43] and
ideal determined categories in the sense of [44]. At the same time, varieties
of groups with multiple operators were the first motivating special case for
ideal determined varieties of universal algebras. What seems to be most im-
portant to mention, in connection with what are doing here, are two papers of
P. Aglianò, where the prime spectra of universal algebras were considered for
the first time, for ideal determined varieties [4] and then, much more generally,
for congruence modular varieties [5].

Fact 1.9. An extensive literature is devoted to quantales (see K. Rosen-
thal’s book [65] and its references), introduced by C. J. Mulvey [60], not to
mention locales (see [47] and its references). We will recall the definitions, and
results on locales we use, in Section 3. Now let us only point out that many
kinds of spectra of a quantale are considered in [65]; see also [26] and [27] for
a ‘non-quantale’ approach to (different) spectra.

The main purpose of this paper is to prove that Spec(L), the space of
prime elements of a complete lattice L equipped with a multiplication (we say
“complete multiplicative lattice”), is spectral in a clearly motivated general
situation, and to show that this applies to categorical and universal-algebraic
contexts really far more generally, than it was known before. Briefly, the paper
is organized as follows:

In Section 2 we introduce our notion of complete multiplicative lattice
(Definition 2.1), and denote, there and afterwards, a fixed such structure by
L. The only requirement on the multiplication of L is the inequality xy � x∧y
for all x, y ∈ L (we use the letters x and y instead of a and b). This so mild
requirement is exactly what we need to prove that the space Spec(L) of prime
elements of L, defined in the standard way, is a sober space. In particular,
prime and radical elements are defined, and this is done in a standard way.

In Section 3 we introduce ‘minimum’ of relevant categories and functors
and recall some ‘pointfree topology’, essentially from [47], to present an equiv-
alent condition for Spec(L) to be spectral in terms of the frame

√
L of its

radical elements (Theorem 3.6).
The purpose of Section 4 is to deepen Theorem 3.6 by using the radical

closure operator on L instead of using
√

L. The result is Theorem 4.4, which,
unfortunately, gives only sufficient (not necessary) conditions for the spectral-
ity of Spec(L). It is interesting that while its condition (d) seems to suggest
that it covers Belluce’s result mentioned in Fact 1.5, our further analysis (in
Section 12.7) of its condition (c) shows that it only covers Kaplansky’s result
(see Fact 1.5 again).

Section 5 makes a straightforward generalization of known observations
in order to show that Spec(L) is often ‘large enough to be interesting’ unlike
e.g. the special case where xy = 0 for all x, y ∈ L, making Spec(L) empty.

The notion of solvability introduced in Section 6, contrary to nilpotency
used in ring theory for the same purpose, is in fact suggested by commutator
theory and confirmed by what Amitsur says in Section 1 of [8]. We compare
it (Theorem 6.13) with local solvability, which we also introduce, inspired by
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a more ring-theoretic story, where again, the word “solvability” is never used.
The aim here is to gain a better understanding of the radical closure operator,
trying, in particular, to avoid what we call the weak Kaplansky condition
(since, e.g. it does not hold in the lattice of ideals of a non-commutative ring;
see Section 12.7 again), and what we get is:

• Theorem 6.13 says that solvability and local solvability agree well, but
this requires the weak Kaplansky condition.

• Theorem 6.17 describes the radical closure operator in terms of local
solvability without requiring the weak Kaplansky condition. The idea
here goes back to J. Levitzki (see [54], where, however, only the ring-
theoretic context is considered).

Section 7 introduces another ‘solvability’, related to those previously in-
troduced (Theorem 7.4), which allows us to reformulate condition 4.4(c), and
obtain our main result (Theorem 7.7), which can be seen as an improved ver-
sion of Theorem 4.4. Unfortunately it does use the weak Kaplansky condition,
but the reader is supposed to agree, especially with the examples given in
Sections 10 and 11, that it is the only condition there that is possibly hard to
check. The new solvability of Section 7 is inspired by Amitsur’s upper radical
construction [6], which generalizes the ring-theoretic one.

Section 8 only recalls the definition of an internal pseudogroupoid intro-
duced in [46].

Section 9 begins with a categorical context involving an abstract notion
of commutator, far more general than the contexts considered in, say, [7,15],
and [14], and explains how complete multiplicative lattices of internal equiv-
alence relations with sober spectra occur there (Theorem 9.2). After that it
considers special commutators defined via internal pseudogroupoids as in [46];
this context is still far more general than those where prime ideals in categories
were considered by other authors.

Section 10 describes the passage from categories to varieties of univer-
sal algebras, and shows that Theorem 7.7 is widely applicable to congruence
lattices of congruence modular universal algebras.

Section 11 presents another application to a wide class of special cases,
as its title shows, to what we think should be called ideal lattices in the com-
mutative world. This includes results mentioned in Facts 1.3 and 1.4 as very
special cases.

Our story suggested many natural further questions, and, in order to
avoid making the paper too long, we answered only a few of them, in the form
of additional remarks collected in Section 12.

Ending this Introduction, we should apologize to those authors whose
work related to our story is either not mentioned properly, or not mentioned
at all: since we use so many references with the oldest one from 1924, it was
just too hard to draw the line between ‘closely related’ and ‘less related’. In
particular, we don’t compare our presentation with the ones of O. Steinfeld
[69] (and [70]) and of K. Keimel [50] (except a remark in 12.4(d)), we don’t
compare our constructions with those of M. Erné [24], and we don’t discuss
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any links with the general theory of radicals (see e.g. B. J. Gardner and R.
Wiegandt [29] and references therein).

2. Abstract prime spectra

Definition 2.1. A complete multiplicative lattice is a complete lattice L equip-
ped with a multiplication satisfying xy � x ∧ y for all x, y ∈ L.

Throughout this paper L will denote a complete multiplicative lattice,
whose smallest and largest elements will be denoted by 0 and 1, respectively.

Definition 2.2. An element p 	= 1 in L is said to be prime if it satisfies the
implication

xy � p ⇒ (x � p or y � p);

the set Spec(L) of all such elements in L will be called the Zariski spectrum
of L.

Remark 2.3. As follows from our definitions, an element p 	= 1 in L is prime
if and only if

xy � p ⇔ (x � p or y � p).

For any x ∈ L we put

V(x) = {p ∈ Spec(L) | x � p},

and, for all x, y ∈ L and S ⊆ L, we have:
• V(1) = ∅.
• V(xy) = V(x) ∪ V(y). Indeed, we have

p ∈ V(xy) ⇔ xy � p ⇔ (x � p or y � p) ⇔ p ∈ V(x) ∪ V(y).

• V(
∨

S) =
⋂

s∈S V(s).
This allows us to define a topology on Spec(L) by choosing closed sets

to be all sets of the form V(x) (x ∈ L). This topology is to be called Zariski
topology, and from now on we assume that Spec(L) is equipped with this
topology, and call this space the prime spectrum of L.

Definition 2.4. An element in L is said to be a radical element if it can be
presented as a meet of prime elements. For an arbitrary element x in L, we
will write

√
x for the smallest radical element r in L with x � r, and call this

element the radical of x.

It is obvious that
√− : L → L is a closure operator, that is:

• x � y ⇒ √
x � √

y,
• x � √

x,
•

√√
x =

√
x,

for all x, y ∈ L. Furthermore,
√

x = x if and only if x is a radical element, and
from Definition 2.4, we immediately obtain:
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Proposition 2.5. V(
√

x) = V(x) and
√

x � √
y ⇔ V(y) ⊆ V(x) for all x, y ∈

L. Furthermore, if p is prime, then V(p) is the closure of {p}.
Lemma 2.6. Spec(L) is a sober space. That is:
(a) Spec(L) is a T0-space;
(b) every irreducible closed subset of Spec(L) is the closure of a one-element

set.

Proof. (a): Just note that if p � q in Spec(L), we have q ∈ V(q)\V(p).
(b): Let M be an irreducible closed subset of Spec(L). Without loss of

generality we can assume that M = V(p), where p 	= 1 and p is a radical
element of L. Suppose xy � p. Then V(p) ⊆ V(xy) = V(x) ∪ V(y), and, since
V(p) is irreducible, we have V(p) ⊆ V(x) or V(p) ⊆ V(y). If the first of these
inclusions holds, then, for every prime q, we have p � q ⇒ x � q; and, since
p is a radical element, this gives x � p. Similarly, the second inclusion implies
y � p. That is, p is prime. Since p is prime, V(p) is the closure of {p}. �

3. Some relevant categories and functors

Let X and Y be complete lattices. Considering X and Y as categories we can
speak of an adjunction (f, u) : X → Y , that is, order preserving maps

X
f �� Y with f(x) � y ⇔ x � u(y)
u

��

for all x ∈ X and y ∈ Y . Such adjunctions between lattices are known under
various names, “covariant Galois connections”, and others. It is also well known
(independently of the multiplicative structure) that:

• f and u completely determine each other;
• f preserves arbitrary joins, and, conversely, any join preserving map f :

X → Y is the first component of such an adjunction;
• u preserves arbitrary meets, and, conversely, any meet preserving map

u : Y → X is the second component of such an adjunction.

Definition 3.1. An adjunction (f, u) : X → Y between complete multiplicative
lattices is said to be compatible if f(1) = 1 and f(x)f(x′) � f(xx′) for all
x, x′ ∈ X. The category CML of complete multiplicative lattices is defined as
the category whose morphisms are compatible adjunctions. Furthermore, we
will say that the adjunction above is strictly compatible if f(x)f(x′) = f(xx′)
for all x, x′ ∈ X, and the corresponding wide subcategory of CML will be
denoted by CMLs.

Theorem 3.2. Let (f, u) : X → Y be a morphism in CML. Then:
(a) if p is a prime in Y, then u(p) is prime in X;
(b) the map Spec(f, u) : Spec(Y ) → Spec(X) defined by Spec(f, u)(p) = u(p)

is continuous, moreover, Spec(f, u)−1(V(x)) = V(f(x)) for each x ∈ X;
(c) the assignment above determines a functor Spec : CMLop → STop, where

STop is the category of sober topological spaces.
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Proof. (a): For x, x′ ∈ X, we have:

xx′ � u(p) ⇔ f(xx′) � p ⇒ f(x)f(x′) � p

⇒ (f(x) � p or f(x′) � p) ⇔ (x � u(p) or x′ � u(p)),

and u(p) 	= 1 since

u(p) = 1 ⇔ 1 � u(p) ⇔ f(1) � p ⇔ 1 � p ⇔ p = 1.

(b): For x ∈ X, we have:

Spec(f, u)−1(V(x)) = {p ∈ Spec(Y ) | u(p) ∈ V(x)}
= {p ∈ Spec(Y ) | x � u(p)} = {p ∈ Spec(Y ) | f(x) � p} = V(f(x)).

(c) follows from Lemma 2.6 and (b). �

Example 3.3. L is a quantale (see [65], which refers to [60]) if and only if its
multiplication is:
(a) associative, that is, x(yz) = (xy)z for all x, y, z ∈ L;
(b) infinitary-distributive, that is x(

∨
S) =

∨
s∈S xs and (

∨
S)x =

∨
s∈S sx

for all x ∈ L and S ⊆ L.
Note, however, that the inequality xy � x ∧ y we required is not required
for quantales in general; it holds if and only if all elements of the quantale
are two-sided (in the terminology of quantale theory, where it means that
1x = x = x1 for all x ∈ L). When L and M are quantales, to say that
(f, u) : L → M is a compatible adjunction is the same as to say that f :
L → M is a closed sup-map of quantales with f(1) = 1; and then to say that
(f, u) : L → M is strictly compatible is the same as to say that f : L → M
is a homomorphism of quantales (see [65]) with f(1) = 1. In particular, when
L and M are frames (=locales), that is, when their multiplication coincides
with the meet operation, all the compatible adjunctions between them become
strictly compatible, and they become the same as frame homomorphisms.

Lemma 3.4.
√

x ∧ √
y =

√
xy for all x, y ∈ L.

Proof. xy � x∧y gives xy � x and xy � y and then
√

xy � √
x and

√
xy � √

y.
Therefore

√
xy � √

x∧√
y. To prove the opposite inequality it suffices to prove

that
√

x ∧ √
y � p for every prime p with xy � p. But the last inequality gives

x � p or y � p, and then
√

x � p or
√

y � p. �

Remark 3.5. Let
√

L be the ordered set of all radical elements of L. Then:
(a) As follows from Proposition 2.5, the assignment x �→ −V(x) determines

an isomorphism between
√

L and the complete lattice Ω(Spec(L)) of open
subsets of Spec(L). In particular,

√
L is a frame, and we will consider

it as a complete multiplicative lattice whose multiplication is the meet
operation.

(b) For x ∈ L and y ∈ √
L, we have

√
x � y ⇔ x � y, which determines

the adjunction (ρ, ι) : L → √
L, defined by ρ(x) =

√
x and (accord-

ingly) ι(y) = y. This adjunction is strictly compatible, which follows
from Lemma 3.4.
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(c) Let us compare the sets Spec(L) and Spec(
√

L). If p is a prime element
in L, then p =

√
p, and it is a prime element in Spec(

√
L). Indeed, if

x, y ∈ Spec(
√

L) have x ∧ y � p in Spec(
√

L), then xy � x ∧ y � p in
L, and so x � p or x � p. Conversely, if p is a prime element in

√
L,

then it is a prime element in L, as follows from Theorem 3.2(a) applied
to (ρ, ι) : L → √

L. That is, Spec(L) and Spec(
√

L) are the same sets.
Moreover, the first equality of Proposition 2.5 tells us that they are the
same topological spaces. Furthermore, the identity map Spec(

√
L) →

Spec(L) is exactly the image of the morphism (ρ, ι) : L → √
L under the

functor Spec : CMLop → STop, as follows from the fact that ι :
√

L → L
is the inclusion map.

(d) However,
√

L is not necessarily closed under the multiplication in L. For
example, let L be a three-element monoid of the form {1, x, x2} with
x3 = x2 and ordered by x2 < x < 1. Then

√
L = {1, x} and

Spec(L) = {x} = Spec(
√

L),

but x2 is missing in
√

L.

The standard way to associate a sober topological space to a frame is
a restriction of our functor Spec : CMLop → STop, and, in particular, our
Lemma 2.6 is an immediate consequence of Lemma 1.7 of Chapter II in [47],
the isomorphism

√
L ≈ Ω(Spec(L)), and the equality Spec(L) = Spec(

√
L).

Furthermore, what we learn from Chapter II in [47] includes the diagram

Loc

���
��

��
��

��
pt �� Top

�����
��
��
��Ω

��

SLoc

��

�� STop

��

��

CLoc

��

�� CTop

��

��

in which:
• Loc is the category of locales, which is the same as the opposite category

of frames, and which is a full subcategory of CMLop and of CMLop
s .

• Top is the category of topological spaces.
• All the vertical arrows are full subcategory inclusion functors.
• The functor Loc → STop is essentially surjective on objects and it can

be identified with the restriction of the functor Spec : CMLop → STop on
Loc; and pt, the ‘functor of points’, is its composite with the inclusion
functor STop → Top.

• Ω : Top → Loc carries topological spaces to their locales of open sets.
The locales that occur this way (up to isomorphism) are called spatial,
and their category is denoted by SLoc. Therefore Ω is the composite of
the essentially-surjective-on-objects functor Top → SLoc it induces with
the inclusion functor SLoc → Loc.
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• (Ω,pt) forms an adjunction, and the second row of our diagram is the
largest category equivalence it induces. That is, the classes of objects of
SLoc and STop can also be defined using suitable canonical morphism as

{L ∈ Loc | Ω(pt(L)) → L is a local isomorphism}, and
{X ∈ Top | X → pt(Ω(L)) is a homeomorphism},

respectively.
• Let us recall several definitions:

An element x of a complete lattice is said to be compact if every subset S
of that lattice with x �

∨
S has a finite subset F with x �

∨
F . According

to [12], this notion was first introduced in [61], while the closely related
notion of join-inaccessible (which we will use in the next section) was
introduced in [13]; [47] and some other papers say “finite” instead of
“compact”. The lattice itself is said to be compact if its largest element
1 is compact. A complete lattice is said to be algebraic if every element
in it is a join of compact elements. A spatial locale is said to be coherent
if it is algebraic and the set of its compact elements forms a sublattice
(with 0 and 1), or, equivalently, a ∧-subsemilattice (with 1) in it. A
sober topological space is said to be coherent if so is the frame Ω(X); for
topological spaces, we will usually say “spectral” instead of “coherent”.
Note that in purely topological terms a spectral space is a compact sober
topological space in which compact open subsets form a basis of topology
that is closed under finite intersections.

• CLoc and CTop denote the categories of coherent locales and coherent
(= spectral) topological spaces, respectively. The third row of our dia-
gram is the category equivalence induced by the equivalence displayed as
the second row. Note, however, that there are good reasons to restrict
morphisms in CLoc and in CTop to so-called coherent ones (see e.g. [47]).
The following theorem is a consequence of the equivalence between CLoc

and CTop, the isomorphism
√

L ≈ Ω(Spec(L)), and the equality Spec(L) =
Spec(

√
L):

Theorem 3.6. Spec(L) is a spectral space if and only if the following conditions
hold:
(a)

√
L is compact;

(b)
√

L is algebraic;
(c) if x and y are compact elements in

√
L, then so is x ∧ y.

Example 3.7. Let Com(L) be the complete multiplicative lattice obtained from
L by taking the same complete lattice and replacing the multiplication of L
with the multiplication ∗ defined by x ∗ y = xy ∨ yx. Since xy � x ∗ y, this
gives a compatible adjunction (f, u) : Com(L) → L, in which f and u are the
identity maps; informally f = 1L = u. Furthermore, the following conditions
are obviously equivalent:
(a) the adjunction above is strictly compatible;
(b) the adjunction above is an isomorphism in CML (or, equivalently, in

CMLs);
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(c) Com(L) = L.
(d) the multiplication of L is commutative.

Note also that if L satisfies the monotonicity condition

(x � y & x′ � y′) ⇒ xx′ � yy′

(for all x, y ∈ L), then for p ∈ L, we have:

p is prime in L ⇔ p is prime in Com(L).

The implication “⇒” is obvious, while the implication “ ⇐” can be proved as
follows:

Suppose p is prime in Com(L) and xy � p. Then we have:

yx ∗ yx = (yx)(yx) ∨ (yx)(yx) � xy ∨ xy = xy � p,

and so yx � p, after which we can write x∗ y = xy ∨ yx � p and conclude that
x � p or y � p.

Furthermore, the equality Spec(L) = Spec(Com(L)) in fact tells us that
Spec(f, u) (where (f, u) : Com(L) → L) is as above) is the identity homeo-
morphism.

4. Involving algebraic radicals

Definition 4.1. We will say that L has algebraic radicals if
√− : L → L is an

algebraic closure operator, that is, if it preserves directed joins.

Proposition 4.2. Suppose L has algebraic radicals. If x is a compact element
of L, then

√
x is a compact element of

√
L. In particular, if L is compact, then

so is
√

L.

Proof. Since
√− is a closure operator, the join in

√
L of a subset S of

√
L is

the same as
√∨

S, where
∨

S is the join of S in L. Therefore what we need
to prove (for a compact x in L) is that for every S ⊆ √

L with
√

x �
√∨

S

there exists a finite subset F of S with
√

x �
√∨

F . For, we take T to be the
set of all finite joins of elements of S, which makes T a directed set whose join
is the same as the join of S. This gives

√
x �

√∨
S =

√∨
T =

∨

t∈T

√
t.

Since x � √
x, x is compact, and T is closed under finite joins, we easily

conclude that x �
√

t and then that
√

x �
√

t for some t ∈ T . This gives the
desired inequality for F being any finite set of elements of S whose join is t.

�

From this proposition and the isomorphism
√

L ≈ Ω(Spec(L)), we obtain:

Corollary 4.3. Suppose L has algebraic radicals. If x is a compact element of
L, then −V(x) is a compact open subset of Spec(L). In particular, if L is
compact, then so is Spec(L).
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Theorem 4.4. Spec(L) is a spectral space whenever the following conditions
hold:
(a) L is compact;
(b) L is algebraic;
(c) L has algebraic radicals;
(d) if x and y are compact elements in L, then there exists a compact c ∈ L

with
√

c =
√

xy.

Proof. Indeed:
• Spec(L) is sober by Lemma 2.6.
• The fact that Spec(L) is compact follows from (a), (c), and Corollary 4.3.
• For every compact x, −V(x) is a compact open subset of Spec(L) by (c)

and Corollary 4.3.
After that it remains to prove that:

• If x and y are compact, then −V(x) ∩ −V(y) is a compact open subset
of Spec(L).

• Every open subset of Spec(L) is a union of subsets of the form −V(x)
with compact x.

The first of these assertions follows from

−V(x) ∩ −V(y) = −(V(x) ∪ V(y)) = −V(xy) = −V(
√

xy) = −V(
√

c) = −V(c)

(where c is as in (d)) and Corollary 4.3. The second one follows from the fact
that x =

∨
S implies

−V(x) = −V(
∨

S) = −
⋂

s∈S

V(s) =
⋃

s∈S

(−V(s)),

(b), and Corollary 4.3 again. �

Remark 4.5. Applying Theorem 4.4 to
√

L and having in mind that Spec(
√

L)
= Spec(L) and

√
x = x for all x ∈ √

L, we obtain exactly the “if” part of
Theorem 3.6. However, unlike Theorem 3.6, Theorem 4.4 gives only sufficient
conditions for the space Spec(L) to be spectral. Indeed, take L to be any
complete lattice with xy = 0 for all x, y ∈ L. Then Spec(L) being empty is
trivially spectral. In this case conditions (a) and (b) of Theorem 4.4 do not
hold in general of course.

5. How to get enough primes?

The results of this section are very simple and might be called known, at least
in special cases; nevertheless we state and prove them not having a convenient
reference. “Known” especially applies to Definition 5.1, Proposition 5.2, and
the text between them, since the multiplication of L plays no role there.

Definition 5.1. An element m 	= 1 in L is said to be
(a) maximal, if m 	= 1 and m satisfies the implication

m < x ⇒ x = 1;
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(b) join-inaccessible, if, for any directed subset S of L, it satisfies the impli-
cation

m =
∨

S ⇒ ∃s∈S m = s.

Every compact element in L is obviously join-inaccessible. On the other
hand, if x < y and y is join-inaccessible, then there exists x′ ∈ L maximal
with the property x � x′ < y; this immediately follows from Zorn’s Lemma
applied to the set of all elements with that property. In particular, applying
this to y = 1, we obtain:

Proposition 5.2. If L is compact, then, for every x 	= 1, there exists a maximal
element m in L with x � m.

Next, we introduce:

Definition 5.3. We will say that L has enough primes if, for every x 	= 1 ∈ L,
there exists a prime p ∈ L with x � p.

Definition 5.4. We will say that L is distributive if x(y ∨ z) = xy ∨ xz and
(x ∨ y)z = xz ∨ yz for all x, y, and z in L.

Note: obviously, this distributivity is not the same as distributivity of L
as merely a lattice.

For x ∈ L, although the multiplication of L is not required to be asso-
ciative, x2 = xx is well defined of course, and, in particular, we have 12 not
necessarily equal to 1.

Proposition 5.5. If L has enough primes, then 12 = 1 in L.

Proof. For a prime p, 12 � p would give 1 � p, which is a contradiction. �

Proposition 5.6. Suppose L is compact. Then:
(a) L has enough primes if and only if all its maximal elements are prime;
(b) if L is distributive and 12 = 1 in it, then every maximal element in L is

prime.

Proof. (a): The “if” part follows from Proposition 5.2, while the “only if” is
obvious.

(b): Suppose m is not prime, and so xy � m, x � m, and y � m for some
x and y in L. If m is maximal, then m ∨ x = 1 = m ∨ y, and so

1 = 12 = (m ∨ x)(m ∨ y) = mm ∨ xm ∨ my ∨ xy � m ∨ m ∨ m ∨ m = m,

which is a contradiction. �

From Propositions 5.5 and 5.6, we immediately obtain:

Theorem 5.7. If L is compact and distributive, then the following conditions
are equivalent:
(a) L has enough primes;
(b) 12 = 1 in L.

Remark 5.8. Consider the following conditions of L (cf. Example 3.3):
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(i) xy = 0 for all x, y ∈ L;
(ii) 12 = 0 in L;
(iii) 12 = 1 in L;
(iv) 1x = x = x1 for all x ∈ L;
(v) xy = x ∧ y for all x, y ∈ L.

Note that:
(a) We obviously have (i) ⇒ (ii) and (v) ⇒ (iv) ⇒ (iii). Also (ii) ⇒ (i) under

the monotonicity condition.
(b) We already know what happens under condition (i) (see the example at

the end of Remark 4.5), and the same would happen under condition (ii).
(c) Suppose L is compact and distributive. Then, according to Theorem 5.7,

condition (iii) is exactly what is needed to make all V(x) non-empty,
except V(1), which must be empty in any case.

(d) The stronger conditions (iv) and (v) will appear (again) later and we
will see examples where (iii) holds but (iv) does not, and other examples
where (iv) holds but (v) does not. We have already mentioned, in the
case of quantales, that (iv) has a name (“two-sided”) and that (v) is
what makes a quantale a locale (=frame) (see Example 3.3).

6. Solvable and locally solvable elements

Definition 6.1. For x ∈ L, the derived series x(0), x(1), x(2), . . . is defined by
induction as

x(0) = x, x(n+1) = (x(n))2 (= (x2)(n)),

and, for y ∈ L, we will say that x is y-solvable if x(n) � y for some natural n.
The join of all y-solvable elements of L will be denoted by solv(y).

Proposition 6.2. For elements x and y in L, if x is y-solvable, then x � √
y;

hence solv(y) � √
y for all y ∈ L.

Definition 6.3. We will say that L satisfies the weak monotonicity condition if

x � y ⇒ x2 � y2

for all x, y ∈ L.

Proposition 6.4. Suppose L satisfies the weak monotonicity condition. Then,
for x, y, z ∈ L, we have:
(a) if x � y and y is z-solvable, then x is z-solvable;
(b) if x is y-solvable and y is z-solvable, then x is z-solvable.

From Proposition 6.4(a), we obtain:

Corollary 6.5. If L satisfies the weak monotonicity condition and is algebraic,
then solv(y) is the join of all compact y-solvable elements of L.

Proposition 6.6. If L is distributive, then (x ∨ y)(2n) � x(n) ∨ y(n) for all
x, y ∈ L.
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Proof. This inequality is trivial for n = 0; assuming that it holds for n, we
have:

(x ∨ y)(2(n+1)) = (x ∨ y)(2n+1+1) = (((x ∨ y)(2n))2)2 � ((x(n) ∨ y(n))2)2

= ((x(n))2 ∨ (x(n))(y(n)) ∨ (y(n))(x(n)) ∨ (y(n))2)2

= (x(n+1) ∨ (x(n))(y(n)) ∨ (y(n))(x(n)) ∨ y(n+1))2.

Then, opening parentheses we obtain a join of 16 elements, and we have to
show that each of them is less or equal to x(n+1) ∨ y(n+1). This is certainly
true for all those elements that are multiples of either x(n+1) or y(n+1), and so
we only need to check the remaining four members, which are:

((x(n))(y(n)))2, ((x(n))(y(n)))((y(n))(x(n))), ((y(n))(x(n)))((x(n))(y(n))),

and ((y(n))(x(n)))2. However, each of them is less or equal to, say, ((x(n)))2 =
x(n+1). �

Corollary 6.7. If L is distributive, and x and y are z-solvable in L, then x ∨ y
is solvable.

Corollary 6.8. If L is distributive, x ∈ L, and solv(x) is compact in L, or, more
generally, in the lattice {y ∈ L | x � y}, then solv(x) is the largest x-solvable
element of L.

Definition 6.9. For x, y ∈ L, we will say that x is locally y-solvable if, for every
infinite sequence c0, c1, c2, . . . of compact elements in L with

c0 � x and cn+1 � c2
n (n = 0, 1, 2, . . .),

there exists n with cn � y. The join of all locally y-solvable elements of L will
be denoted by loc.solv(y).

Note that every finite sequence with properties above can be made infinite
by adding zero’s.

Lemma 6.10. If x is locally y-solvable and x′ � x, then x′ is locally y-solvable.

Corollary 6.11. If L is algebraic, then loc.solv(y) is the join of all compact
locally y-solvable elements of L.

Definition 6.12. We will say that L satisfies the weak (form of) Kaplansky
condition if, whenever x ∈ L is compact, so is x2.

Theorem 6.13. For x, y ∈ L, we have:

(a) if L satisfies the weak monotonicity condition and x is y-solvable, then x
is locally y-solvable;

(b) if L satisfies the weak Kaplansky condition and x is compact and locally
y-solvable, then x is y-solvable.

(c) if L is algebraic and satisfies the weak monotonicity condition and the
weak Kaplansky condition, then loc.solv(y) = solv(y) for all y ∈ L.
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Proof. (a): For a sequence c0, c1, c2, . . . of compact elements in L with c0 � x
and cn+1 � c2

n (n = 0, 1, 2, . . .), we can prove by induction that cn � x(n) for
all n. Indeed, this is trivial for n = 0, and, once cn � x(n), we have:

cn+1 � c2
n � x2

(n) = x(n+1).

Therefore x(n) � y implies cn � y, as desired.
(b): If x is compact, then, applying Definition 6.9 to the sequence x =

x(0), x(1), x(2), . . ., we conclude that there exists n with x(n) � y.
(c): The inequality loc.solv(y) � solv(y) follows from Corollary 6.11 and

(b), while the opposite inequality follows from (a). �

Proposition 6.14. Suppose L is algebraic. If x is compact and locally y-solvable
in L, then x � √

y; hence loc.solv(y) � √
y for all y ∈ L.

Proof. Suppose x is compact and locally y-solvable, and has x �
√

y. Then,
excluding the trivial case y = 1, we have x � p for some prime p with y � p.
Using p, let us choose an infinite sequence c0, c1, c2, . . . of compact elements,
with cn+1 � c2

n and cn � p for all n, inductively as follows:

• c0 = x.
• Once cn is chosen, cn � p gives c2

n � p, since p is prime. Since L algebraic,
this tells us that we can indeed choose a compact cn+1 with cn+1 � c2

n

and cn+1 � p.

Then we obtain cn � y by Definition 6.9, which is a contradiction since we
also have y � p and cn � p. �

Remark 6.15. Requiring L to satisfy the weak Kaplansky condition instead
of being algebraic, we would obtain the first inequality of Proposition 6.14
as an immediate consequence of Proposition 6.2 (which itself is obvious) and
Theorem 6.13(b). However, to automatically deduce the second inequality of
Proposition 6.14 from that, we would still need algebraicity.

Lemma 6.16. Suppose L satisfies the monotonicity condition (introduced in the
discussion of Example 3.7) and is algebraic. Then an element p 	= 1 in L is
prime if and only if p is locally prime, by which we mean that

ab � p ⇒ (a � p or b � p)

for all compact a and b in L.

Proof. The “only if” part is trivial. To prove the “if” part, suppose p ∈ L is
not prime and so xy � p, x � p, and y � p for some x, y ∈ L. Then, since L is
algebraic, there exist compact a, b ∈ L with a � x, a � p, b � y, and b � p,
which also gives ab � xy � p by the monotonicity condition. This tells us that
p is not locally prime. �

Theorem 6.17. Suppose L is distributive and x, y ∈ L. If x is compact and
x � √

y, then x is locally y-solvable. Hence, if L is distributive and algebraic,
then

√
y = loc.solv(y) for all y ∈ L.
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Proof. Under the assumptions above, suppose x is not locally y-solvable. Then
there is a sequence c0, c1, c2, . . . of compact elements in L with c0 � x, and
cn+1 � c2

n and cn � y for all n. Consider the set

Y = {z ∈ L | y � z & ∀n cn � z}.

We claim that Y satisfies the assumptions of Zorn’s Lemma. Moreover, it is
(non-empty and) closed under joins of non-empty chains. Indeed:

• Y is non-empty since it (obviously) contains y.
• Let S be a non-empty chain in Y . If

∨
S 	∈ Y , then cn �

∨
S for some n.

Since cn is compact and S is a chain, this gives cn � s for some s ∈ S.
Since S ⊆ Y , this is a contradiction. Therefore

∨
S ∈ Y .

By Zorn’s Lemma Y has a maximal element (obviously not equal to 1), and
we claim that any such maximal element p is prime. Indeed, if p is not prime,
then:

• By Lemma 6.16, there exist compact a, b ∈ L with a � p, b � p, and
ab � p.

• Since a � p and b � p, p is strictly smaller than p ∨ a and than p ∨ b.
• Since p is a maximal element of Y , it follows that p ∨ a and than p ∨ b

are not in Y .
• Since y � p � p ∨ a and y � p � p ∨ b, while p ∨ a and p ∨ b are not in

Y , we have cm � p ∨ a and cn � p ∨ b for some m and n. Moreover, since
the sequence c0, c1, c2, . . . is decreasing, we can assume m = n.

• This gives

cn+1 � cncn � (p ∨ a)(p ∨ b) = pp ∨ ap ∨ pb ∨ ab � p ∨ p ∨ p ∨ p = p,

which contradicts to p ∈ Y .
That is, assuming that x is not locally y-solvable, we found that Y has an
element p, which is prime in L. We conclude:

• On the one hand, since x � √
y (by the original assumption), y � p (since

p ∈ Y ), and p is prime, we have x � p.
• On the other hand, since c0 � x and c0 � p (since p ∈ Y ), we have x � p.

This contradiction completes our proof. �

7. Another approach to solvability, to make radicals algebraic

Given x ∈ L, we define a transfinite sequence x(0), x(1), x(2), . . . ∈ L by induc-
tion as

x(0) = x, x(α+1) =
∨

y2�x(α)

y, x(λ) =
∨

α<λ

x(α), if λ is a limit ordinal,

and define Solv(x) as the join of this sequence. We immediately obtain

Proposition 7.1. Solv : L → L is a closure operator with Solv(x) � √
x for

every x ∈ L.

Proof. The properties
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• x � y ⇒ Solv(x) � Solv(x),
• x � Solv(x),
• Solv(Solv(x)) = Solv(x)

obviously hold. To prove the inequality Solv(x) � √
x, it suffices to note that

every prime p ∈ L satisfies the implication x(α) � p ⇒ x(α+1) � p. �

Lemma 7.2. Suppose L is algebraic and satisfies the weak monotonicity con-
dition. Then, for x ∈ L, x(1) is the join of all compact elements c ∈ L with
c2 � x.

Proof. Since L is algebraic, it suffices to prove that, for every y ∈ L with
y2 � x and every compact c ∈ L with c � y, we have c2 � x. But this follows
from the weak monotonicity condition. �

Theorem 7.3. Suppose L is as in Theorem 6.13(c), that is, it is algebraic and
satisfies the weak monotonicity condition and the weak Kaplansky condition.
Then (x(ω))(1) = x(ω) (where ω is the first infinite ordinal), and so Solv(x) =
x(ω), for every x ∈ L.

Proof. Thanks to Lemma 7.2, it suffices to prove that for every compact c ∈ L
with c2 � x(ω), we have c � x(ω). Since c2 is compact (by the weak Kaplansky
condition) the inequality c2 � x(ω) = x(0) ∨ x(1) ∨ x(2) ∨ . . . (where all indices
are natural numbers) implies c2 � x(n) for some natural n. Hence c � x(n+1) �
x(ω), as desired. �

Theorem 7.4. We have:
(a) x(n) � y ⇒ x � y(n) for every x, y ∈ L and every natural n; in particular,

solv(y) � Solv(y).
(b) Suppose L algebraic and distributive, and satisfies the weak Kaplansky

condition. Then

Solv(y) = solv(y) = loc.solv(y) =
√

y.

Proof. (a): The implication is trivial for n = 0. If it holds for n, then:

x(n+1) � y ⇔ (x2)(n) � y ⇒ x2 � y(n) ⇒ x � y(n+1),

and so it holds for n + 1.
(b): The last two equalities hold by Theorems 6.13(c) and 6.17, respec-

tively. After that the first equality follows from (a), since Solv(y) � √
y (by

Proposition 7.1). �

Theorem 7.5. Under the assumptions of Theorem 7.3, the closure operator
Solv : L → L is algebraic.

Proof. For each x ∈ L, we have

x(0) = x, x(n+1) = (x(n))(1)

for all natural n, and

Solv(x) = x(0) ∨ x(1) ∨ x(2) ∨ . . .
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(the join over all finite ordinals = natural numbers; this follows from Theo-
rem 7.3), and so it suffices to prove that the map L → L defined by x �→ x(1)

preserves directed joins. To prove that is to prove the inequality (
∨

S)(1) �∨
s∈S s(1), which, according to Lemma 7.2, is the same as

c2 �
∨

S ⇒ c �
∨

s∈S

s(1)

for every compact c ∈ L and every directed subset S of L. Since c2 is compact

(by the weak Kaplansky condition) and S is directed, c2 �
∨

S implies the
existence of s ∈ S with c2 � s, and then c � s(1), by definition of s(1). �

From Theorems 7.4 and 7.5, we obtain:

Corollary 7.6. Under the assumptions of Theorem 7.4(b), L has algebraic rad-
icals.

And, putting this together with Theorem 4.4, we also obtain:

Theorem 7.7. Spec(L) is a spectral space whenever the following conditions
hold:
(a) L is compact, algebraic, and distributive;
(b) L satisfies the weak Kaplansky condition;
(c) if x and y are compact elements in L, then there exists a compact c ∈ L

with
√

c =
√

xy.

Definition 7.8. We will say that L satisfies the Kaplansky condition if, when-
ever x, y ∈ L are compact, so is xy.

The term Kaplansky condition is suggested by Kaplansky’s definition of
a neo-commutative ring (see Fact 1.5); this also explains why we used the
term weak Kaplansky condition before. Since the Kaplansky condition implies
conditions 7.7(b) and 7.7(c), Theorem 7.7 gives:

Corollary 7.9. Spec(L) is a spectral space whenever the following conditions
hold:
(a) L is compact, algebraic, and distributive;
(b) L satisfies the Kaplansky condition.

8. Internal pseudogroupoids

Let C be a category with finite limits. Given a span S =

S0 S1
π�� π′

�� S′
0
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in C, let us write

S1
π′

��

π

��

S′
0 S1

π′
��

π

��
S0 S4

π1

��

π3

		

π2




π4

��

S0

S1

π

��

π′
�� S′

0 S1
π′

��

π

��

for the commutative diagram whose dotted arrows form the limiting cone over
the diagram formed by the solid arrows. Accordingly, for any object X in C,
morphisms f : X → S4 can be displayed as 〈f1, f2, f3, f4〉, where f1, f2, f3,
and f4 are morphisms from X to S1 making the diagram

S1
π′

��

π

��

S′
0 S1

π′
��

π

��
S0 X

f1

��

f3

		

f2




f4

��

S0

S1

π

��

π′
�� S′

0 S1
π′

��

π

��

commute.

Definition 8.1. An internal pseudogroupoid in C is a pair (S,m) in which S is
a span and m : S4 → S1 a morphism satisfying the following conditions for
every morphism of the form 〈f1, f2, f3, f4〉 : X → S4:
(a) πm〈f1, f2, f3, f4〉 = πf3 and π′m〈f1, f2, f3, f4〉 = π′f3;
(b) m〈f1, f2, f3, f4〉 does not depend on f3 in the sense that

m〈f1, f2, f3, f4〉 = m〈f1, f2, f
′
3, f4〉,

whenever the right-hand side of this equality makes sense;
(c) f1 = f2 ⇒ m〈f1, f2, f3, f4〉 = f4;
(d) f2 = f4 ⇒ m〈f1, f2, f3, f4〉 = f1;
(e) m〈m〈f1, f2, f3, f4〉, f5, f

′
3, f6〉 = m〈f1, f2, f

′
3,m〈f4, f5, f

′′
3 , f6〉〉, whenever

both sides of this equality make sense.

Remark 8.2. Definition 8.1 is the same Definition 3.2 of [46], except that
[46] begins with the category Set of sets, and then defines an internal pseu-
dogroupoid in C via the Yoneda embedding.

9. Commutators in general categories

Let C be a well-powered finitely well complete category, which means that C

satisfies the following conditions:
• C has finite limits;
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• C is well-powered, that is, for every object C in it, the class Sub(C)
of isomorphism-classes [X,x] of pairs (X,x), where x : X → C is a
monomorphism, is a set;

• each Sub(C), considered as an ordered set, is a complete lattice with
meets being the limits of suitable diagrams in C.

In particular, for every object A in C, we have the complete lattice ER(A) of
(isomorphism classes of) internal equivalence relations on A.

The assignment A �→ ER(A) determines a functor

ER : Cop → CompLat∧,

where CompLat∧ is the category of complete lattices and arbitrary-meet-pre-
serving maps. Under this functor, for a morphism α : A → B in C, the induced
map ER(α) : ER(B) → ER(A) is defined by pulling back along α×α : A×A →
B × B.

Definition 9.1. A commutator C on C is a (large) family of binary operations

CA : ER(A) × ER(A) → ER(A),

defined for each object A of C, written as CA(x, y) = xy and satisfying the
following conditions:

(a) xy � x ∧ y for all A and all x, y ∈ ER(A);
(b) (ER(α)(x))(ER(α)(y)) � ER(α)(xy) for all α : A → B and all x, y ∈

ER(B).

Note: Here and below, xy should not be confused with the composite of
x and y as relations A → A.

Definition 9.1 is a simplified version of Definition 4.4 of [42], where a more
sophisticated Galois structure with commutators is introduced.

From Lemma 2.6 we immediately obtain:

Theorem 9.2. For every commutator C on C, every object A in C, and ER(A)
equipped with the multiplication CA (making it a complete multiplicative lattice)
the space Spec(ER(A)) is sober.

Note that condition 9.1(b) plays no role here and Theorem 9.2 would still
be correct without requiring it.

Let us now establish a connection with the commutators in the sense of
[46]. Recall that a morphism ϕ : S → T in the category Span(C) of spans in C

is defined as a triple ϕ = (ϕ0, ϕ1, ϕ
′
0) of morphisms, making the diagram

S0

ϕ0

��

S1
��

ϕ1

��

�� S′
0

ϕ′
0

��
T0 T1

�� �� T ′
0

whose two rows display S and T , respectively, commute. The commutator of
a span is defined as follows:
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Definition 9.3. (Definition 5.2 of [46]) Let S be a span and ΦS the class of
all span morphisms ϕ : S → T , in which T is a span that admits an internal
pseudogroupoid structure. For (ϕ : S → T ) ∈ ΦS , let Eq(ϕ1) be the element
of ER(A) corresponding to the kernel pair of ϕ1. The commutator C(S) of S
is defined as

C(S) =
∧

ϕ∈ΦS

Eq(ϕ1) ∈ ER(A).

When C is Barr exact, and x = [U, u] and y = [V, v] are elements of
ER(A), the commutator xy is defined as

xy = C(S) ∈ ER(A),

where S is the span

A/u A�� �� A/v

in which A → A/u and A → A/v are the coequalizers of (U, u) and (V, v),
respectively.

If C is not Barr exact, we have to modify this construction as follows:

• Use (any) existing limit-preserving full embedding Y : C → Ĉ with Barr
exact Ĉ satisfying the same conditions as we required for C; for example
it can be the Yoneda embedding.

• Call an internal pseudogroupoid (S,m) in Ĉ almost representable if S1

belongs to the (replete) image of Y .
• Given x = [U, u] and y = [V, v] in ER(A), write Y (x) and Y (y) for the

corresponding elements of ER(Y (A)), and form the span S =

Y (A)/Y (x) Y (A)�� �� Y (A)/Y (y)

in Ĉ.
• Consider the commutator C(S) ∈ ER(A). Since Y preserves all existing

limits and is fully faithful, there exist a unique object in ER(A) corre-
sponding via Y to C(S), and we define xy as that unique object. That
is, xy is defined by Y (xy) = C(S), in the notation above.

• Then, using the same arguments as in the proof of Proposition 5.4(c) of
[46], we obtain xy ≤ x ∧ y for all x, y ∈ ER(A). This makes ER(A) a
complete multiplicative lattice for each object A in C, which is a special
case of the complete multiplicative lattice of Theorem 9.2. In particular,
commutators in the sense of [46] are special cases of commutators in the
sense of Definition 9.1.

10. Commutators of congruences of universal algebras

In this section we assume that C is a variety of universal algebras; in particular
it is Barr exact. As follows from what we explained in the previous section,
for A in C, the complete multiplicative lattice ER(A) can be identified with
the complete multiplicative lattice Cong(A) of all congruences on A, whose
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multiplication is defined as the commutator (operation) in the sense of [46].
The following two important special cases are mentioned in [46]:
(a) If C is a Mal’tsev variety (=congruence permutable variety) of universal

algebras, then the commutator we use is the same as the Smith com-
mutator [68], which was the original definition of commutator of two
congruences that motivated further developments.

(b) More generally, if C is a congruence modular variety of universal algebras,
then the commutator coincides with the modular commutator studied e.g.
in [28] (see also references there, especially [37,38,34], and [35]).
As follows from the explanation at the end of the previous section, The-

orem 9.2 applies here, and so Spec(Cong(A)) is a sober space for each algebra
A in any variety of universal algebras.

Is Spec(Cong(A)) a spectral space? To find reasonable sufficient condi-
tions for that we have to analyze conditions required in Theorems 3.6, 4.4, and
7.7, and in Corollary 7.9 in the case L = Cong(A) we are considering here. We
will consider now only conditions required in Corollary 7.9:

Remark 10.1. Let L be the complete multiplicative lattice Cong(A). Then:
(a) x ∈ Cong(A) is compact if and only if it is finitely generated as a con-

gruence on A; in particular, L is compact if and only if A × A is finitely
generated as a congruence on A.

(b) Cong(A) is always algebraic.
(c) L is distributive whenever C is congruence modular (see e.g. Proposi-

tion 4.3 in [28]). Note that in contrast to this, the monotonicity condition
always holds, obviously.

(d) L satisfies the Kaplansky condition if and only if, whenever x and y are
finitely generated congruences on A, so is xy.

Here (a) and (b) are well known and easy to check directly, and (d) immediately
follows from (a).

This gives:

Theorem 10.2. The space Spec(Cong(A)) is spectral whenever the following
conditions hold:
(a) there is a congruence modular variety to which A belongs;
(b) A × A is finitely generated as a congruence on A;
(c) if congruences x and y on A are finitely generated, then so is their com-

mutator xy.

Remark 10.3. It is very easy to find many examples where conditions 10.2(a)
and 10.2(b) hold, but 10.2(c) is a very heavy condition. For example it holds
for all (not necessarily unital) commutative rings, but not for all rings (see
Fact 1.5), not for all groups (see e.g. [2]), and not for all Lie algebras (see e.g.
[1]).

Remark 10.4. Once the space Spec(Cong(A)) is considered, it is interesting to
know of course how large it is, and, in particular, whether or not Cong(A) has
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enough prime elements. Theorem 5.7 answers the last part of this question,
and, in particular tells us that:
(a) When A is a group, finitely generated as its normal subgroup, Cong(A)

has enough prime elements if and only if A is a perfect group.
(b) When A is a ring, finitely generated as its ideal, Cong(A) has enough

prime elements if and only if A·A = A. In particular, Cong(A) has enough
prime elements whenever A is unital ring (which is always generated by
its identity element).

Remark 10.5. Theorem 10.2 should be compared with the following two theo-
rems, which also say Spec(Cong(A)) is spectral, but under stronger conditions:
(a) Theorem 2.9 of [4], whose requirements (although it speaks about ideals

instead of congruences) can be reformulated as all requirements of our
Theorem 10.2 together with: (i) A belongs to an ideal determined variety;
(ii) every maximal congruence in A is prime.

(b) Theorem 3.3 of [5], where Cong(A) is required to satisfy the ascend-
ing chain condition. This immediately implies 10.2(b) and 10.2(c), while
10.2(a) is required in [5] from the beginning.

11. Ideals in an abstract commutative world

In this section V denotes a variety of universal algebras, and C the variety
of universal algebras obtained from V by adding a commutative semigroup
structure whose operation is written as · and such that, for all A in C and all
a ∈ A, the map a · (−) : A → A is a morphism in V. For subsets S and T of
A, we will write

S · T = {s · t | s ∈ S, t ∈ T},

while the V-subalgebra of A generated by S will be denoted by 〈S〉. We will
also use the letters v and w to denote terms in the algebraic theory of V of
suitable arities.

Definition 11.1. For A in C, an ideal of A is a subalgebra x of A with

(a ∈ A and s ∈ x) ⇒ a · s ∈ x.

Lemma 11.2. The ideal of A generated by a subset S of A is 〈A · S〉.
Proof. We only need to show that a · 〈A ·S〉 ⊆ 〈A ·S〉. Indeed, every element of
〈A · S〉 can be presented in the form v(a1 · s1, . . . , an · sn) with a1, . . . , an ∈ A
and s1, . . . , sn ∈ S, and we have

a · v(a1 · s1, . . . , an · sn) = v(a · a1 · s1, . . . , a · an · sn) ∈ 〈A · S〉,
simply because a · a1, . . . , a · an belong to A. �

The set Id(A) of all ideals of A obviously forms a complete lattice whose
meets are ordinary intersections of subalgebras, and (as easily follows from
Lemma 11.2) whose joins are joins in the lattice of V-subalgebras of A. More-
over, it is a complete multiplicative lattice with the multiplication defined by
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xy = 〈x · y〉. The fact that the so defined xy is indeed an ideal easily follows
from Lemma 11.2. And the inequality xy � x ∧ y is also straightforward.

Proposition 11.3. Id(A) is distributive.

Proof. Since Id(A) (obviously) satisfies the monotonicity condition and its
multiplication is commutative, we only need to prove that x(y ∨ z) � xy ∨
xz for all x, y, z ∈ Id(A). To prove that inequality is to prove that x · (y ∨
z) � xy ∨ xz. Every element of x · (y ∨ z) can be presented in the form
s·v(t1, . . . , tm, u1, . . . , un), and, since s·v(t1, . . . , tm, u1, . . . , un) = v(s·t1, . . . , s·
tm, s · u1, . . . , s · un), it belongs to xy ∨ xz. �

Proposition 11.4. If x and y are the ideals generated by sets S and T, respec-
tively, then xy is the ideal generated by S · T .

Proof. It suffices to prove that x · y is a subset of the ideal generated by S · T .
By Lemma 11.2, any element of x · y can be written as

v(a1 · s1, . . . , am · sm) · w(b1 · t1, . . . , bn · tn),

where s1 . . . , sm ∈ S and t1 . . . , tn ∈ T , and we have

v(a1 · s1, . . . , am · sm) · w(b1 · t1, . . . , bn · tn),
= v(a1 · s1 · w(b1 · t1, . . . , bn · tn), . . . , am · sm · w(b1 · t1, . . . , bn · tn))
= v(w(a1 · s1 · b1 · t1, . . . , a1 · s1 · bn · tn), . . . ,

w(am · sm · b1 · t1, . . . , am · sm · bn · tn))
= v(w(a1 · b1 · s1 · t1, . . . , a1 · bn · s1 · tn), . . . ,

w(am · b1 · sm · t1, . . . , am · bn · sm · tn))

and this element belongs to 〈A · (S · T )〉. �

Similarly to Theorem 10.2, from these results and Corollary 7.9, we ob-
tain:

Theorem 11.5. The space Spec(Id(A)) is spectral whenever A is a finitely gen-
erated ideal of itself.

Corollary 11.6. The space Spec(Id(A)) is spectral whenever the multiplication
of A makes it a monoid.

Example 11.7. At least in the following cases the assertion of Corollary 11.6
is known:
(a) If V is the variety of abelian groups, then C is the variety of (not nec-

essarily unital) commutative rings. In this special case Corollary 11.6
becomes a classical result of commutative algebra, which is mentioned
e.g. in [40] as a well-known one. Note, however, that Theorem 11.5 is
also well known in this case: for example, it follows from Theorem 2.9 of
[4] (cf. Remark 10.5(a)), and it follows from Theorem 7 of [3]. Generally
speaking, there are many similar cases where our Theorems 10.2 and 11.5
are both applicable.
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(b) If V is the variety of commutative monoids, then C is the variety of
(not necessarily unital) commutative semirings. In this special case Corol-
lary 11.6 becomes Theorem 3.1 of [64]. Note: [64] requires all semirings
to be unital and to have 0 	= 1, which we don’t. However, this does not
contradict our previous sentence, except that Theorem 3.1 of [64] does
not apply to the trivial semiring.

(c) If V is the category of sets (considered as a variety of universal algebras),
then C is the variety of commutative semigroups. In this special case
Corollary 11.6 is known: see 4.4 in [73], where, however the term “Kato
spectrum” is used instead of “prime spectrum”.

12. Additional remarks

12.1. Changing morphisms of complete multiplicative lattices

We called an adjunction (f, u) : X → Y compatible if f(x)f(x′) � f(xx′) for
all x, x′ ∈ X, and then called strictly compatible if this inequality is actually an
equality. But what about requiring the opposite inequality f(xx′) � f(x)f(x′),
and calling this property “op-compatibility” (by analogy with the opmonoidal
functors between monoidal categories in contrast to the monoidal ones)? Note
that:

(a) Unlike compatibility, once we require the monotonicity condition, the op-
compatibility of (f, u) : X → Y can be equivalently reformulated in terms
of u alone: it holds if and only if u(y)u(y′) � u(yy′) for all y, y′ ∈ Y . Note
also, that the counterpart of f(1) = 1, which is the same as 1 � f(1),
becomes here the trivial condition f(1) � 1.

(b) The reformulation above agrees with condition (b) of Definition 9.1. This
tells us that if C and C are as in Definition 9.1, then we have a commu-
tative diagram

(CMLs)op

�����
���

���
��

��
���

���
��

Cop

ER
�����

����
����

����
����

�� ��

��

(CMLop)op

(f,u) �→u

����
���

���
���

CMLop

(f,u) �→u

�����
���

���
��

Spec �� STop,

CompLat∧

in which:
(b1) CMLop is the same as CML, except that its morphisms are required

to be op-compatible adjunctions.
(b2) The horizontal unlabeled arrow denotes the functor opposite to the

functor C∗ : C → CMLop defined by C∗(α : A → B) = (f, u) :
ER(A) → ER(B), where u = ER(α) and so f is the left adjoint of
ER(α). In the situation of Section 10, after identifying ER(A) with
the lattice of congruences on A, we can say that, for x ∈ ER(A),
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f(x) is defined as the congruence on B generated by the image of x
under the homomorphism α × α : A × A → B × B.

(b3) The other unlabeled solid arrows denote the inclusion functors.
(b4) The dotted arrow, uniquely determined by commutativity of our

diagram, when it exists, in fact exists only in some special cases.
For example, in the situation of Section 10, it exists when C is the
category of commutative rings, but not when C is the category of
(all) rings.

(b5) If, however, again in the situation of Section 10, we take C to be any
congruence modular variety, but restrict its morphisms, namely take
only surjections, then the dotted arrow always exists. That is, in the
notation of (b2), if C is a congruence modular variety of universal
algebras and α : A → B is surjective, then f(xx′) = f(x)f(x′) for all
x, x′ ∈ ER(A). In the notation of [46], this equality would be written
as α#[x, x′] = [α#x, α#x′] (see Theorem 8.1 there, although it uses
different letters). This well-known fact goes back to first papers on
‘modular commutators’ and plays an important role in commutator
theory (see e.g. [28]).

12.2. Commutative reflections

Let MCML and CMCML be the full subcategories of CML with objects all ob-
jects of CML that satisfy the monotonicity condition, and that satisfy the
monotonicity condition and also have commutative multiplication, respec-
tively. Let MCMLs and CMCMLs be similar full subcategories of CMLs, and
MCMLop and CMCMLop be similar full subcategories of CMLop. Going back
to Example 3.7, let us write informally (1L, 1L) : Com(L) → L for the com-
patible adjunction considered there. By definition of CML, this makes (1L, 1L)
a morphism from Com(L) to L in CML. On the other hand, the same pair
(1L, 1L) can also be considered as a morphism from L to Com(L) in CMLop.
Moreover, we have:
(a) The assignment X �→ Com(X) together with all compatible adjunctions

of the form (1X , 1X) : Com(X) → X determines a functor

MCML → CMCML,

which is the right adjoint of the inclusion functor. To prove all this, just
note that, for every compatible adjunction (f, u) : X → Y with X in
CMCML and Y in MCML, we have

f(x) ∗ f(x′) = f(x)f(x′) ∨ f(x′)f(x) � f(xx′) ∨ f(x′x)
� f(xx′) ∨ f(xx′) = f(xx′)

for all x, x′ ∈ X, making (f, u) : X → Com(Y ) a compatible adjunction.
(b) The assignment X �→ Com(X) together with all compatible adjunctions

of the form (1X , 1X) : X → Com(X) determines a functor

MCMLop → CMCMLop,

which is the left adjoint of the inclusion functor. To prove all this, just
note that, for every compatible adjunction (f, u) : X → Y with X in
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MCMLop and Y in CMCMLop, we have

f(x ∗ x′) = f(xx′ ∨ x′x) = f(xx′) ∨ f(x′x)
� f(x)f(x′) ∨ f(x′)f(x) = f(x)f(x′) ∨ f(x)f(x′) = f(x)f(x′)

for all x, x′ ∈ X, making (f, u) : Com(X) → Y a compatible adjunction.
In particular, CMCML is a coreflective full subcategory of MCML, while
CMCMLop is a reflective full subcategory of MCMLop. What about CMCMLs

and MCMLs? Well, independently of the monotonicity condition it is easy to
see that:
(c) CMCMLs is a reflective full subcategory of MCMLs, but not with a reflec-

tion that has X → Com(X).
(d) CMCMLs is not coreflective in MCMLs.

12.3. The functor Spec as a right adjoint

Now let us go back to Theorem 3.2 and what we considered between it and
Theorem 3.6, and observe:
(a) Let Y be a spatial frame (=spatial locale) considered as a complete mul-

tiplicative lattice with yy′ = y ∧ y′ for all y, y′ ∈ Y . Then y = y′ in Y
if and only if y � p ⇔ y′ � p for every prime element p in Y . This is a
well known fact in frame theory; in fact a frame is spatial if and only if
it satisfies this condition.

(b) Let (f, u) : X → Y be a compatible adjunction between complete multi-
plicative lattices. If Y is a frame, then

√
x =

√
x′ ⇒ f(x) = f(x′)

for all x, x′ ∈ X. Indeed, we have
√

x =
√

x′ ⇒ ((p is prime in Y ) ⇒ (x � u(p) ⇔ x′ � u(p)))
⇔ ((p is prime in Y ) ⇒ (f(x) � p ⇔ f(x′) � p)) ⇔ f(x) = f(x′),

using Theorem 3.2(a) and observation (a).
(c) As easily follows from (b), the assignment X �→ √

X together with all
compatible adjunctions of the form X → √

X, constructed as in Re-
mark 3.5(c), determines a functor from CML to the category (CLoc)op of
spatial frames, which is the left adjoint of the inclusion functor.

(d) From (c) and known results on locales/frames recalled in Section 3, we
obtain the commutative diagram

CMLop

coreflection

��
X �→√

X
			

		

��		
			

Spec �� STop

Loc
X �→√

X

�� SLoc

Spec|SLoc

��

in which:
(d1) According to (c), the diagonal arrow is the coreflection from CMLop

to its full subcategory SLoc of spatial locales.
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(d2) The left-hand vertical arrow is well defined since: (i) Locop can be
seen as an equationally defined full subcategory of the infinitary
algebraic category CMLs; (ii) replacing CMLs with CML does not
change anything since every morphism in CML, whose codomain is
a frame, automatically belongs to CMLs.

(d3) The triangle involving Loc indeed commutes since all functors there
are right adjoints of the inclusion functors.

(d4) The fact that the triangle involving Stop commutes easily follows
our observations in Remark 3.5(c).

(e) As follows from (d) we could simply define the functor

Spec : CMLop → STop

as the right adjoint of the composite of

STop
standard equivalence �� SLoc

inclusion �� CMLop

or, equivalently, as the composite of

STop
inclusion �� Top

Ω �� Loc
inclusion �� CMLop.

(f) This suggests removing the condition xy � x ∧ y from our definition of
complete multiplicative lattice, call such more general structure a, say,
complete pseudo-multiplicative lattice, call the category of such struc-
tures PCML, and extend the functor Spec to PCML by taking the com-
posite

PCMLop coreflection �� CMLop Spec �� STop,

but we don’t see yet any interesting example of this construction.

12.4. Semiprime elements

Let us call an element s of L semiprime if it satisfies the implication

x2 � s ⇒ x � s,

or, equivalently, it has x2 � s ⇔ x � s, for all x ∈ L. It is clear that the set
of all semiprime elements of L is closed under arbitrary meets in L, and so
we have a closure operator sp : L → L, which associates, to each x ∈ L, the
smallest semiprime s ∈ L with x � s. Let us compare sp(x) with

√
x for an

arbitrary x ∈ L:
(a) Since every prime element is (obviously) semiprime, so is every radical

element and we have sp(x) � √
x.

(b) Using transfinite induction, it is easy to see that Solv(x) � sp(x).
(c) Therefore whenever

√
x � Solv(x), we have Solv(x) = sp(x) =

√
x. In

particular, these equalities hold under the assumptions of Theorem 7.4(b).
(d) We are interested in proving the equality sp(x) =

√
x under weaker con-

ditions, specifically only requiring L to be distributive and algebraic, as
in Theorem 6.17, which avoids the weak Kaplansky condition required in
Theorem 7.4(b). Having (a) and Theorem 6.17 in mind, we only need to
prove the inequality loc.solv(x) � sp(x). This can be done by copying an
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argument from the proof of Proposition 6.14 replacing the prime element
used there with a semiprime one. That is, we have: If L is distributive
and algebraic, then sp(x) =

√
x for every x ∈ L. However, this equality

is the same as Theorem A in [50]; recall: that Theorem A corrects Satz
2.5 of [69] (see also [70] for a more general result).

12.5. ‘Not enough’ primes

Not in the sense of Section 5, but in the sense that there are no primes strictly
between xy and x ∧ y. More precisely, for p, x, y ∈ L, if p is prime, then the
following conditions are equivalent:

(a) xy � p � x ∧ y;
(b) (x � p or y � p), p � x, and p � y;
(c) x = p � y or y = p � x;
(d) p = x ∧ y.

Indeed, each implication in (a)⇒(b)⇒(c)⇒(d)⇒(a) is obvious.

12.6. Involving different kinds of commutators

Considering complete multiplicative lattices of internal equivalence relations
and, in particular, congruences of universal algebras in Sections 9 and 10, we
were using the following kinds of commutators:

(a) General commutators, only required to satisfy ‘most mild’ axioms (see
Definition 9.1 with reference to [42]).

(b) Commutators defined via pseudogroupoids [46], which generalize the mod-
ular commutator, in fact considered ‘the most standard’ in universal alge-
bra (the references are given in Section 10), and, in particular, the Smith
commutator [68].

Now let us add, assuming for simplicity that all categories we are talking about
satisfy the three conditions given at the beginning of Section 9 and have finite
colimits:

(c) The notion of Smith commutator was extended from Mal’tsev varieties
to Barr exact Mal’tsev categories by M. C. Pedicchio [63], but this is also
a special case of the commutator in the sense of [46].

(d) The commutator used in the papers mentioned in the first sentence of
Fact 1.8 (of Section 1) is either Huq’s commutator in categories satisfying
Huq’s axioms, or Higgins’ commutator (for normal subobjects) in vari-
eties of groups with multiple operators. The relationship between these
two commutators was clarified by A. S. Cigoli, J. R. A. Gray, and T. Van
der Linden [22] in the context of semi-abelian categories [43], whose ‘old-
style’ axioms are essentially the same as Huq’s axioms. See also related
previous work of S. Mantovani and G. Metere [55], who in fact intro-
duced the categorical generalization of Higgins commutator in the more
general context of ideal determined categories in the sense of [44]. On the
other hand, the weighted commutators introduced in [32], again in the
semi-abelian context, give the Smith–Pedicchio commutator and the Huq
commutator as special cases. And of course each weighted commutator
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produces its own complete multiplicative lattice. As follows from the re-
sults of Sections 9 and 10, this gives many examples of sober and even
spectral (= coherent) spectra.

(e) Note, however, that the Smith–Pedicchio and the Huq commutator of-
ten coincide making the weighted commutator independent of its weight.
This is the case when the ground semi-abelian category C is strongly pro-
tomodular [16], or action accessible [18]. In particular, as follows from
the action accessibility theorem of A. Montoli [59], it is the case when C

is a ‘category of interest’ in the sense of G. Orzech [62], which applies to
many categories of classical algebraic structures. Various further relevant
comments about the coincidence of two commutators can be found in
[17,33,56,19,57], and [58]. The list of known algebraic structures whose
categories have the two commutators different from each other includes
loops (where, as mentioned in [32], this can be deduced from the result
of Exercise 10 of Chapter 5 in [28]), digroups (=sets equipped with two
independent group structures with the same identity element; see e.g.
[16]), and near-rings (as shown in [45]; note, on the other hand, that
prime ideals of near-rings were introduced and studied in [74]).

(f) There is more to say about various non-modular commutators introduced
in universal algebra, the relative commutator in the sense of T. Everaert
and T. Van der Linden [25], and commutator theory and related studies
in regular (not necessarily Barr exact) categories developed in several
papers of D. Bourn and M. Gran, but we omit it here.

12.7. Rings

We already mentioned the case of rings in Introduction and in Remarks 10.3
and 10.4(a). Now let us add, partly with repetitions:
(a) For a ring A, the complete multiplicative lattice Cong(A) considered in

Section 10 and, in particular, in Theorem 10.2, can be identified of course
with the complete lattice Id(A) of ideals of A, with the multiplication
defined by xy = x · y + y · x, where · denotes the usual multiplication
of ideals (this notation should not be confused with what we used in
Section 11).

(b) In particular an ideal p of A is defined to be prime, if, for all ideals x and
y of A, we have

x · y + y · x � p ⇒ (x � p or y � p).

However, as follows from the result of 12.2, this definition is equivalent
to the usual one, which uses x · y instead of x · y + y · x:

x · y � p ⇒ (x � p or y � p).

It seems that in the case of rings this equivalence was first noticed by G.
K. Gerber in [30] (see also [21] for a more general observation).

(c) As follows from (b), Spec(Cong(A)) = Spec(Id(A)) is the same as the
classical prime spectrum of A.

(d) Theorem 10.2 becomes: If (i) A is finitely generated as an ideal of itself,
and (ii) the product of any two finitely generated ideals of A is a finitely
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generated ideal, then Spec(Cong(A)) = Spec(Id(A)) is a spectral space.
Here: (i) holds whenever A unital (cf. 10.4(b)), and (ii) is exactly Ka-
plansky’s definition of neo-commutativity for A [48]. That is, when A is
unital, Theorem 10.2 becomes Kaplansky’s result on the spectrality of the
prime spectrum of A. This explains what we said about Kaplansky’s and
Belluce’s results in Fact 1.5. Specifically, we see that Theorem 10.2 gener-
alizes Kaplansky’s result, but to generalize Belluce’s result we would have
to prove Theorem 7.7 omitting condition 7.7(b) from its assumptions, or,
equivalently, prove Corollary 7.9 assuming 7.7(c) instead of 7.9(c). We
don’t know whether this is possible or not.
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[4] Aglianò, P.: The prime spectrum of a universal algebra. Riv. Mat. Pura Appl.
5, 97–105 (1989)
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