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Algebras from congruences

Peter Mayr and Ágnes Szendrei

Abstract. We present a functorial construction which, starting from a
congruence α of finite index in an algebra A, yields a new algebra C
with the following properties: the congruence lattice of C is isomorphic
to the interval of congruences between 0 and α on A, this isomorphism
preserves higher commutators and TCT types, and C inherits all idem-
potent Maltsev conditions from A. As applications of this construction,
we first show that supernilpotence is decidable for congruences of finite
algebras in varieties that omit type 1. Secondly, we prove that the sub-
power membership problem for finite algebras with a cube term can be
effectively reduced to membership questions in subdirect products of sub-
directly irreducible algebras with central monoliths. As a consequence, we
obtain a polynomial time algorithm for the subpower membership prob-
lem for finite algebras with a cube term in which the monolith of every
subdirectly irreducible section has a supernilpotent centralizer.
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1. Introduction

This paper was motivated by Problems 1.1 and 1.2 below. In each problem the
question is whether or not a result that is known for certain algebras can be
lifted to congruences.

Problem 1.1. Let A be a finite algebra (in a finite language). Given a congru-
ence α of A, is it decidable if α is supernilpotent?
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This question arises from the result that finite nilpotent Maltsev alge-
bras are non-dualizable if they have some non-abelian supernilpotent congru-
ence [3].

In the special case when α is the total congruence of A, i.e., when the
question is whether it is decidable if A itself is supernilpotent, the answer
to Problem 1.1 has been known to be YES by a combination of results from
[12,15,1] (see Section 4), provided the variety generated by A is assumed to
omit type 1.

Problem 1.2. Let A be a finite algebra (in a finite language) such that A has
a cube term. If for every subdirectly irreducible section S of A the centralizer
of the monolith of S is supernilpotent, does there exist a polynomial time
algorithm for solving the Subpower Membership Problem for A?

In the special case when A itself is supernilpotent (and, without loss of
generality, has prime power order), the answer has been known to be YES by
a result of [19].

Our goal in this paper is to use the composition of two known functors
to create “algebras from congruences”, to study the resulting (functorial) con-
struction, and show that it preserves many algebraic properties. Then we apply
these results to prove that the answer to Problem 1.2 is YES, and the answer
to Problem 1.1 is also YES provided the variety generated by A omits type
1. For finite algebras A not satisfying this assumption, Problem 1.1 remains
open even for the special case when α is the total congruence of A.

To describe the idea of the construction we use, let us look at a single
algebra A and a congruence α of A with finitely many blocks. The first step
of the construction yields a multisorted algebra in which the sorts are the α-
blocks, and the multisorted operations are the restrictions of the operations
of A to the sorts in all possible ways. The second step of the construction
takes this multisorted algebra as its input, and yields a single-sorted algebra
on the product of the sorts, where the operations are the diagonal operation
of the product of the sorts and some totally defined operations that faithfully
represent the operations of the multisorted algebra.

By restricting to pairs (A, α) where α is the kernel of a homomorphism
A → I of A into a fixed finite algebra I, the first step of the construction can
be made into a functor M from a category of algebras over I (cf. [17, Ch. II,
Sec. 6]) into a category of multisorted algebras, while the second step of the
construction can be made into a functor P from a category of multisorted alge-
bras to a category of (single-sorted) algebras. We will introduce these functors
in Section 2, and will prove that their composition C := P ◦ M—which is
our construction of “algebras from congruences”—is a categorical equivalence,
provided we restrict to the cases where the homomorphism A → I is onto,
that is, the sorts of the corresponding multisorted algebras are nonempty.

The functors M and P were introduced in the 1980’s by Novotný [23]
and Gardner [10], respectively. A precursor of P appears in [2] (see also the
last section of [11]). Somewhat dually to the functor C, which maps algebras
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with quotient I to algebras, Smith [25, Chapter 6] pursued a homological ap-
proach to describe extensions of I. Freese and McKenzie [9] used a variant
of the construction provided by the functor C to associate modules (over ap-
propriate rings) to abelian congruences of algebras in a congruence modular
variety, which has played a prominent role in commutator theory for over three
decades. The constructions afforded by the functors M and P were also ap-
plied by McKenzie and Valeriote [20] to uncover the structure of decidable,
strongly abelian, locally finite varieties, and by Idziak [14] in his characteri-
zation of finitely decidable congruence modular varieties. In the 1990’s, Van-
derWerf [29] used a functor similar to M for his construction of a “derived
algebra” (a multi-sorted algebra), a functor which is essentially the same as
P for his construction called “consolidation”, and their composition C, to
generalize the Krohn–Rhodes wreath decomposition theory of finite transfor-
mation semigroups to arbitrary finite algebras. More recently, the functor P
was applied by Mučka et al. [22] to find good sets of explicit defining identities
and quasi-identities for the variety of single-sorted algebras equivalent to the
class of all multisorted algebras of a given language where either all sorts are
nonempty or all sorts are empty.

In most applications of the categorical equivalence C, including those
mentioned in the preceding paragraph, a central role is played by the algebraic
properties preserved by C. To answer the questions in Problems 1.1 and 1.2
we will use a wide array of these properties. Since many of these results have
not been published in the literature in the generality we need them, we devote
Section 3 to a survey of the algebraic properties of C. To describe the properties
we consider, it will be convenient to introduce a notation for the C-image of
an algebra A (over I). In this section, we will use the informal notation AC.
(The precise definition of C and the notation that goes along with it, and is
used outside this section, can be found in Corollary 2.9.)

For congruences, we prove in Section 3 that for every algebra A and sur-
jective homomorphism A → I with kernel α, the functor C yields an isomor-
phism IA(0, α) → Con(AC) between the interval IA(0, α) = {β ∈ Con(A) :
0 ≤ β ≤ α} of the congruence lattice of A and the whole congruence lattice
Con(AC) of AC (see Corollary 3.4). Moreover, we show that this isomorphism
preserves commutators and higher arity commutators (see Theorem 3.6). In
particular, α is a supernilpotent congruence of A iff AC is a supernilpotent
algebra, and the degrees of supernilpotence are the same. In addition, we estab-
lish that the functor C preserves common finiteness conditions. For example, A
is finite, finitely generated, finitely presented, or residually finite, respectively,
iff AC is (see Theorem 3.1(4) and Corollaries 3.15, 3.5(3)). We also clarify the
relationship between the clones of A and AC, by explicitly describing how one
can obtain the clone of term operations and the clone of polynomial operations
of AC from the corresponding clone of A (see Corollaries 3.13(1) and 3.16). An
important consequence of this relationship between the clones of term opera-
tions of A and AC is that the variety generated by AC satisfies all idempotent
Maltsev conditions that hold in the variety generated by A (cf. Corollary 3.14).
Finally, we use the relationship between the clones of polynomial operations
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of A and AC to prove that for finite A, the tame congruence theoretic types
of covering pairs are preserved by the isomorphism IA(0, α) → Con(AC) men-
tioned above (see Theorem 3.18). Variants or particular cases of these results
appear in the applications of C in [9,20,29] mentioned above (see, e.g., [9,
Theorem 9.9], [20, Chapter 11], [29, Lemmas 2.24, 5.2]).

Sections 4 and 5 answer Problem 1.1 (for varieties omitting type 1) and
Problem 1.2, respectively, in the affirmative. In Section 4 (Theorem 4.2), for
finite algebras in a variety omitting type 1, we give a characterization for a con-
gruence α to be supernilpotent, which immediately proves that supernilpotence
is decidable. Recently, essentially the same characterization of supernilpotent
congruences (in congruence modular varieties) has also been observed and
used in algorithms for circuit satisfiability problems by Idziak, Kawa�lek and
Kraczkowski [13]. In Section 5 the theorems we prove apply to finite sets of
finite algebras—not just single finite algebras. First we show that the sub-
power membership problem for a finite set of finite algebras with a cube term
is polynomial time reducible to its subproblem where the algebras are sub-
directly irreducible and have central monoliths (see Theorem 5.7(3)). From
this we derive a common generalization of the main results of [7] and [19] (see
Theorem 5.9), which answers Problem 1.2.

2. Three equivalent categories

Throughout this paper F will denote an algebraic language. So, for each symbol
f ∈ F there is an associated natural number, ar(f) ≥ 0, the arity of f , which
indicates that in every F-algebra A = (A;F) each symbol f is interpreted as an
ar(f)-ary operation fA : Aar(f) → A. To simplify notation, we will usually drop
the superscript A from the operations fA. If F contains no nullary symbols,
we will allow the universe A of an F-algebra to be empty.

Analogously, G will always denote a multisorted algebraic language. There
is an associated nonempty set, J , indexing the sorts, and for each symbol
g ∈ G there is an associated natural number ar(g) ≥ 0, the arity of g, and
an associated pair (j, j′), where j = (j1, . . . , jar(g)) ∈ Jar(g) is the sequence
of input sorts of g and j′ ∈ J is the output sort of g. These data indicate
that in every multisorted G-algebra M =

(
(M (j))j∈J ;G) each symbol g is

interpreted as a multisorted operation gM : M (j1) ×· · ·×M (jar(g)) → M (j′). To
simplify notation, we will usually drop the superscript M from the multisorted
operations gM. For each j′ ∈ J , if G contains no nullary symbol with output
sort j′, we will allow the universe M (j′) of a multisorted G-algebra to be empty.

Next we introduce several categories.

Definition 2.1. (1) Alg(F) will denote the category of all F-algebras; that is,
the objects are all F-algebras, and the morphisms are all homomorphisms
between F-algebras.

(2) Given a nonempty F-algebra I = (I;F), the category
(
Alg(F) ↓ I) of all

F-algebras over I is defined (cf. [17, Ch. II, Sec. 6]) to be the category in
which
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• the objects are all pairs (A, χ) where A is an F-algebra and χ is a
homomorphism A → I of F-algebras, while

• a morphism between two such objects (A, χ) and (B, ξ) is a homo-
morphism ψ : A → B of F-algebras such that χ = ξ ◦ ψ.

(3) MSAlg(G) will denote the category of all multisorted G-algebras; that
is, the objects are all multisorted G-algebras, and the morphisms are all
homomorphisms between multisorted G-algebras.
Recall that a homomorphism ζ : M → N between multisorted G-algebras
M =

(
(M (j))j∈J ;G) and N =

(
(N (j))j∈J ;G) is a J-tuple ζ = (ζ(j))j∈J

of functions ζ(j) : M (j) → N (j) such that ζ preserves all multisorted
operations g ∈ G.

The next statement introduces a functor M :
(
Alg(F) ↓ I) → MSAlg(G)

for an appropriately defined multisorted language G, which is analogous to a
functor considered in [23].

Proposition 2.2. Given an algebraic language F and a nonempty F-algebra
I = (I,F), let FI be the multisorted language FI defined as follows:

• the sorts are indexed by the set I, and
• the operation symbols of the multisorted language FI are all symbols

fi with f ∈ F and i ∈ Iar(f),

where ar(fi) = ar(f), i is the sequence of input sorts,
and f(i)(computed in I) is the output sort.

The following functions define a functor M :
(
Alg(F) ↓ I)→ MSAlg(FI):

• M assigns to every object (A, χ) of
(
Alg(F) ↓ I) the multisorted algebra

M(A, χ) :=
(
(χ−1(i))i∈I ;FI

)

where the sorts are the congruence classes of the kernel of χ (indexed
by χ), and for each f ∈ F and for every tuple i = (i1, . . . , iar(f)) ∈
Iar(f), the operation fi is the restriction of the operation f of A to the
set χ−1(i1) × · · · × χ−1(iar(f)).

• M assigns to every morphism ψ : (A, χ) → (B, ξ) of
(
Alg(F) ↓ I) the

multisorted homomorphism

M(ψ) :=
(
ψ(i)
)
i∈I

: M(A, χ) → M(B, ξ)

where for each i ∈ I, ψ(i) is the restriction of ψ to χ−1(i), which is a
function χ−1(i) → ξ−1(i).

Definition 2.3. (1) Given a nonempty F-algebra I = (I;F),
(
Alg(F)� I

)
will

be our notation for the full subcategory of
(
Alg(F) ↓ I), which consists of

all objects (A, χ) such that χ is onto.
(2) MSAlg�(G) will denote the full subcategory of MSAlg(G), which consists

of all multisorted G-algebras M =
(
(M (j))j∈J ;G) whose sorts M (j) (j ∈

J) are pairwise disjoint.
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(3) MSAlg+(G) will stand for the full subcategory of MSAlg(G), which con-
sists of all multisorted G-algebras M =

(
(M (j))j∈J ;G) whose sorts M (j)

(j ∈ J) are all nonempty.
(4) Finally, MSAlg�(G) will be our notation for the full subcategory of the

category MSAlg(G) whose objects are the multisorted G-algebras that
belong to both MSAlg�(G) and MSAlg+(G).

MSAlg(G)

(disjoint sorts) MSAlg�(G) MSAlg+(G) (nonempty sorts)

MSAlg�(G)
= MSAlg�(G) ∩ MSAlg+(G)

Theorem 2.4. For any algebraic language F and any nonempty F-algebra I =
(I,F), the category

(
Alg(F) ↓ I) of F-algebras over I is equivalent to the cate-

gory MSAlg(FI) of multisorted FI-algebras. The full subcategories
(
Alg(F)� I

)

and MSAlg+(FI) of these categories are also equivalent.
In more detail, we have the following.

(1) The functor M described in Proposition 2.2 maps onto the full subcategory
MSAlg�(FI) of MSAlg(FI), and yields (by changing the target category)
an isomorphism

M :
(
Alg(F) ↓ I)→ MSAlg�(FI).

(2) M restricts to an isomorphism between the full subcategory
(
Alg(F)� I

)

of
(
Alg(F) ↓ I) and the full subcategory MSAlg�(FI) of MSAlg�(FI).

Proof. First we prove statement (1) by showing that the functor

M−1 : MSAlg�(FI) → (
Alg(F) ↓ I)

defined below is an inverse of M:

• M−1 assigns to every multisorted FI-algebra M =
(
(M (i))i∈I ;FI

)
in

MSAlg�(FI) the pair

M−1(M) :=

(
(⋃

i∈I

M (i);F
)
, χ

)

where for each symbol f ∈ F , the operation f of the F-algebra A =(⋃
i∈I M (i);F) is the union of the multisorted operations fi for all i ∈

Iar(f), and the homomorphism χ : A → I sends each element a ∈ ⋃i∈I M (i)

to the unique i ∈ I with a ∈ M (i).
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• M−1 assigns to every homomorphism ζ = (ζ(i))i∈I : M → N the mor-
phism

M−1(ζ) :=
⋃

i∈I

ζ(i) : M−1(M) → M−1(N)

in
(
Alg(F) ↓ I).

Let M =
(
(M (i))i∈I ;FI

)
be a multisorted FI-algebra in MSAlg�(FI), and let

J := {j ∈ I : M (j) 	= ∅}. Notice first that J is a subuniverse of I; indeed, if f ∈
F and i = (i1, . . . , iar(f)) ∈ Jar(f), then M has an operation fi with nonempty
domain M (i1) × · · · × M (iar(f)) and with codomain M (f(i)), so M (f(i)) must
be nonempty, i.e., f(i) ∈ J . It follows also that for every tuple i ∈ Iarf\Jarf ,
the multisorted operation fi of M is the empty function. Thus, the algebra
A =

(⋃
i∈I M (i);F) in M−1(M) described above is indeed an F-algebra, and

χ : A → I is indeed an F-algebra homomorphism. Thus, the object function
of M−1 is well-defined.

To check the analogous statement for morphisms, let ζ = (ζ(i))i∈I : M →
N be a homomorphism in MSAlg(FI), let M−1(M) = (A, χ) and M−1(N) =
(B, ξ). It is clear from the definitions of A and B that

⋃
i∈I ζ(i) is a homo-

morphism A → B. We also have ξ ◦ ⋃i∈I ζ(i) = χ, for the following rea-
son: for every a ∈ A there is a unique i ∈ I with a ∈ M (i), so χ(a) = i
and M (i) 	= ∅; since ζ(i) : M (i) → N (i), we also have N (i) 	= ∅, whence
(ξ ◦ ⋃i∈I ζ(i))(a) = ξ(ζ(i)(a)) = i. This shows that M−1(ζ) =

⋃
i∈I ζ(i) is

indeed a morphism M−1(M) → M−1(N) in
(
Alg(F) ↓ I).

To complete the proof of statement (1), one can easily verify from the
definitions that M−1 is a functor such that M ◦ M−1 is the identity functor
on MSAlg(FI) and M−1 ◦ M is the identity functor on

(
Alg(F) ↓ I).

Statement (2) follows immediately from statement (1).
Finally, the first statement of the theorem about the equivalence of the

categories
(
Alg(F) ↓ I) and MSAlg(FI) follows from the isomorphism of

(
Alg(F) ↓ I) and MSAlg�(FI) established in (1), and the fact that every multi-

sorted algebra is isomorphic to one in which the sorts are pairwise
disjoint. �

Next we discuss a variant of the main result of [10].

Proposition 2.5. Given a multisorted algebraic language G with no nullary
symbols and finitely many sorts indexed by the set [m] := {1, . . . , m} (m > 0),
let Ĝ be the algebraic language whose symbols are

• d with ar(d) = m, and
• ĝ with ar(ĝ) = ar(g) for all g ∈ G.

The following functions define a functor P : MSAlg(G) → Alg(Ĝ):

• P assigns to every multisorted G-algebra M =
(
(M (i))i∈[m];G

)
the Ĝ-

algebra

P(M) := (M (1) × · · · × M (m); Ĝ)

where
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– d is the diagonal operation on the product set M (1) × · · · × M (m);
that is, for any tuples (a(i)

j )i∈[m] ∈∏i∈[m] M
(i) (j ∈ [m]),

d
(
(a(i)

1 )i∈[m], . . . , (a(i)
m )i∈[m]

)
= (a(1)

1 , . . . , a(m)
m ), (2.1)

and
– for every g ∈ G, if the input and output sorts are i = (i1, . . . , ik) ∈

[m]k and i′ ∈ [m] (so, ar(g) = k), then the k-ary operation ĝ is the
following: for any input tuples (a(i)

j )i∈[m] ∈∏i∈[m] M
(i) (j ∈ [k]),

ĝ
(
(a(i)

1 )i∈[m], . . . , (a
(i)
k )i∈[m]

)

=
(
a
(1)
1 , . . . , a

(i′−1)
1 , g(a(i1)

1 , . . . , a
(ik)
k ), a(i′+1)

1 , . . . , a
(m)
1

)
. (2.2)

• P assigns to every morphism ζ = (ζ(i))i∈[m] : M → N in MSAlg(G),
where each ζ(i) (i ∈ [m]) is a function M (i) → N (i), the morphism

P(ζ) := ζ(1) × · · · × ζ(m) : P(M) → P(N)

in Alg(Ĝ), which is a function M (1) × · · · × M (m) → N (1) × · · · × N (m).

As it is remarked in [10], for a fixed G, the class of all isomorphic copies of
algebras of the form P(M), as described in Proposition 2.5, is a variety D(Ĝ)
(including the empty algebra); D(Ĝ) is defined by the following identities:

d(x, . . . , x) = x, (2.3)
d
(
d(x11, . . . , x1m), d(x21, . . . , x2m), . . . , d(xm1, . . . , xmm)

)
= d(x11, . . . , xmm),

(2.4)

and for every symbol g ∈ G with input and output sorts i = (i1, . . . , ik) ∈ [m]k

and i′ ∈ [m] (so, ar(g) = ar(ĝ) = k),

di′
(
ĝ(x1, . . . , xk), y

)
= di′

(
ĝ
(
di1(x1, z1), . . . , dik

(xk, zk)
)
, y
)
, (2.5)

dj

(
ĝ(x1, . . . , xk), y

)
= dj(x1, y) for all j ∈ [m]\{i′}, (2.6)

where d�(x, y) is an abbreviation for d(y, . . . , y, x, y, . . . , y) with x in the �th
position.

Briefly, the statement that every algebra A = (A; Ĝ) in D(Ĝ) is isomor-
phic to an algebra of the form P(M) can be proved as follows. The identities
(2.3) and (2.4) imply that for each � ∈ [m] there exists an equivalence relation
≡� on A such that for any a, b ∈ A we have

a ≡� b iff a = d�(b, a) iff d�(a, c) = d�(b, c) for all c ∈ A.

Moreover, ≡1, . . . ,≡m yield a product decomposition A → A/≡1×· · ·×A/≡m

so that for each � ∈ [m] and a ∈ A the elements of A with the same �th coordi-
nate as a are exactly the elements of the form d�(a, c) (c ∈ A). Thus, the identi-
ties (2.5) and (2.6) express that for any elements a1, . . . , ak ∈ A, the i′th coor-
dinate of ĝ(a1, . . . , ak) depends only on the coordinates i1, . . . , ik of a1, . . . , ak,
respectively, while for j ∈ [m]\{i′}, the jth coordinate of ĝ(a1, . . . , ak) is the
jth coordinate of a1.
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Definition 2.6. (1) DAlg(Ĝ) will denote the full subcategory of Alg(Ĝ) whose
objects are the Ĝ-algebras of the form P(M) for some multisorted G-
algebra M.

(2) We will use the notation DAlg+(Ĝ) for the full subcategory of DAlg(Ĝ)
obtained by omitting the empty algebra; that is, the objects of DAlg+(Ĝ)
are exactly the algebras P(M) for which the sorts of M are all nonempty.

(3) DAlg�(Ĝ) will be our notation for the full subcategory of DAlg+(Ĝ) con-
sisting of those algebras P(M) where the sorts of M are pairwise disjoint.

(4) D+(Ĝ) will denote the full subcategory of Alg(Ĝ) whose objects are the
nonempty members of the variety D(Ĝ).

D(Ĝ)

DAlg(Ĝ) D+(Ĝ) = D(Ĝ)\{(∅; Ĝ)}

DAlg+(Ĝ) = DAlg(Ĝ) ∩ D+(Ĝ)

DAlg�(Ĝ)

Clearly, DAlg+(Ĝ) is a full subcategory of D+(Ĝ).

Theorem 2.7. For any multisorted algebraic language G with no nullary sym-
bols and finitely many sorts, the category MSAlg+(G) of multisorted G-algebras
is equivalent to the category D+(Ĝ) of Ĝ-algebras.

In more detail, we have the following.
(1) The functor P described in Proposition 2.5 maps the full subcategory

MSAlg+(G) of MSAlg(G) into the full subcategory DAlg+(Ĝ) of Alg(Ĝ),
and yields (by changing the domain and target categories) an isomor-
phism

P : MSAlg+(G) → DAlg+(Ĝ).

(2) P restricts to an isomorphism between the full subcategory MSAlg�(G) of
MSAlg+(G) and the full subcategory DAlg�(Ĝ) of DAlg+(Ĝ).

Proof. As in the proof of Theorem 2.4, the crucial statement is (1), because (2)
is an immediate consequence of (1), while the first statement of the theorem
on the equivalence of the categories MSAlg+(G) and D+(Ĝ) follows from (1)
and the fact that every algebra in D+(Ĝ) is isomorphic to one in DAlg+(Ĝ).

To verify statement (1) it suffices to check that
(i) the object function of P is a bijection between the class of objects of

MSAlg+(G) and the class of objects of DAlg+(Ĝ),
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(ii) the morphism function of P is a bijection between the set of homomor-
phisms M → N in MSAlg+(G) and the set of homomorphisms P(M) →
P(N) in DAlg+(Ĝ) for all objects M,N in MSAlg+(G), and

(iii) the inverses of these object and morphism functions yield a functor
DAlg+(Ĝ) → MSAlg+(G).

For (i), the object function of P is surjective by the definition of the cate-
gory DAlg+(Ĝ), and it is injective, because for any multisorted G-algebra M,
the Ĝ-algebra P(M) uniquely determines M. Indeed, since the underlying set
M (1) × · · · × M (m) of P(M) is nonempty, this product set determines the
sorts M (1), . . . ,M (m) of M, and for every g ∈ G, the operation ĝ of P(M)
determines the operation g of M.

For (ii), let us fix two objects M,N in MSAlg+(G). It follows easily from
the definition ζ = (ζ(i))i∈[m] �→ P(ζ) = ζ(1) × · · · × ζ(m) of the morphism
function of P that homomorphisms M → N are mapped into homomorphisms
P(M) → P(N) injectively. To see that the morphism function is also surjec-
tive, notice that the diagonal operation d of the algebras in DAlg+(Ĝ) forces
every homomorphism P(M) → P(N) to be of the form σ(1) × · · · × σ(m)

for some functions σ(i) : M (i) → N (i). So, since such a homomorphism also
preserves the operations ĝ (g ∈ G), it follows that (σ(i))i∈[m] must be a homo-
morphism M → N.

The last statement, (iii), follows immediately from the definitions of the
object and morphism functions of P, completing the proof. �

Later on in the paper, when we use the definitions of the operations
of the algebra P(M) (see Proposition 2.5) it will be convenient to think of
the elements of

∏
i∈[m] M

(i) as column vectors of length m, and k-tuples of
elements of

∏
i∈[m] M

(i) as m × k matrices whose columns are in
∏

i∈[m] M
(i).

Accordingly, we will introduce the following convention: for an m × k matrix
a = (a(i)

j )i∈[m],j∈[k] ∈ (∏i∈[m] M
(i)
)k, we will denote the jth column (a(i)

j )i∈[m]

of a by aj , and the ith row (a(i)
j )j∈[k] of a by a(i). Thus, the definitions of the

operations of P(M) in (2.1) and (2.2) can be rewritten as follows:

• for every m × m matrix a = (a(i)
j )i∈[m],j∈[m] ∈ (∏i∈[m] M

(i)
)m,

d(a) = diagonal of a, (2.1)′

• for every symbol g ∈ G with input and output sorts i = (i1, . . . , ik) ∈
[m]k and i′ ∈ [m] (and hence of arity k), and for every m × k matrix
a = (a(i)

j )i∈[m],j∈[k] ∈ (∏i∈[m] M
(i)
)k,

ĝ(a) is obtained from a1 by replacing the i′th entry with g(a(i1)
1 , . . . , a

(ik)
k ).
(2.2)′

Remark 2.8. This description of the operations of D+(Ĝ) generalizes to all
terms, and yields an alternative view of (and proof for) Theorem 2.7. The
description is as follows:
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For any positive integer k, there is a bijection T (x) �→

⎡

⎢
⎣

t(1)(x)
...

t(m)(x)

⎤

⎥
⎦ between

• the k-ary terms T of D+(Ĝ) (modulo the identities in D+(Ĝ))and
• the m-tuples t(1), . . . , t(m) of mk-ary G-terms such that the input sort of
each t(i) (i ∈ [m]) is the m × k matrix with jth row [j . . . j] for each
j ∈ [m], while the output sort is i

such that the following equality holds in the algebra P := P(M) for each object
M =

(
(M (i))i∈[m],G

) ∈ MSAlg+(G):

T (a) =

⎡

⎢
⎣

t(1)(a)
...

t(m)(a)

⎤

⎥
⎦ for every m × k matrix a ∈

( ∏

i∈[m]

M (i)
)k

= P k,

where T is applied to the k columns of a, and t(1), . . . , t(m) are applied to the
mk entries of a.

It is clear from the definitions of the operations in D+(Ĝ) that terms of
height ≤ 1 have the form described in the statement, and an easy induction on
the complexity of terms yields the same result for arbitrary terms T . For the
converse, one can prove first, again by induction on the complexity of terms,
that every G-term with output sort i occurs as the ith coordinate term t(i) of
some term T of D+(Ĝ), and then use the diagonal operation d to construct a
single term T as claimed for every sequence t(1), . . . , t(m) of G-terms satisfying
the requirements in the statement above.

This paper will focus on the composition of the functors M and P. For
further reference we now summarize the consequences of Theorems 2.4 and 2.7
that we will need.

Corollary 2.9. For any algebraic language F with no nullary symbols and for
any finite F-algebra I = ([m];F), the category

(
Alg(F)� I

)
of F-algebras is

equivalent to the category D+(F̂I).
In more detail, the functor P ◦ M yields an isomorphism

C :
(
Alg(F)� I

)→ DAlg�(F̂I)

between
(
Alg(F)� I

)
and the full subcategory DAlg�(F̂I) of D+(F̂I) with object

and morphism functions defined as follows:

• C assigns to every object (A, χ) in
(
Alg(F)� I

)
the algebra

C(A, χ) :=
(
D(1) × · · · × D(m); F̂I

)

in DAlg�(F̂I) where
–
∏

i∈[m] D
(i) is the product of the congruence classes D(i) := χ−1(i)

of the kernel of χ,



55 Page 12 of 39 P. Mayr and Á. Szendrei Algebra Univers.

– d is the diagonal operation on
∏

i∈[m] D
(i), that is, for every m × m

matrix a = (a(i)
j )i∈[m],j∈[m] ∈ (∏i∈[m] D

(i)
)m,

d(a) = diagonal of a,

and
– for each f ∈ F (say k-ary), i = (i1, . . . , ik) ∈ [m]k, and for every

m × k matrix a = (a(i)
j )i∈[m],j∈[k] ∈ (∏i∈[m] D

(i)
)k,

f̂i(a) is obtained from a1 by replacing the f(i) th entry

with f(a(i1)
1 , . . . , a

(ik)
k ), where f(i) is evaluated in I.

• C assigns to every morphism ψ : (A, χ) → (B, ξ) in
(
Alg(F)� I

)
the

homomorphism

C(ψ) := ψ(1) × · · · × ψ(m) : C(A, χ) → C(B, ξ)

of F̂I-algebras, where for each i ∈ [m], ψ(i) : χ−1(i) → ξ−1(i) is the
restriction of ψ to χ−1(i), and ψ(1) × · · · × ψ(m) is the induced function

χ−1(1) × · · · × χ−1(m) → ξ−1(1) × · · · × ξ−1(m).

Note that it is necessary to assume that the algebra I is finite if we want
to obtain a finitary diagonal operation d. The assumption that the language
F has no nullary symbols is also unavoidable, unless we are willing to lose
nullary symbols during the construction (A, χ) �→ C(A, χ). Indeed, if an alge-
bra C(A, χ) had a nullary operation symbol, and hence a corresponding unary
constant term operation, then by the description of the term operations of
C(A, χ) in Corollary 3.13(1), the algebra A should have constant term oper-
ations t(i) (and hence their nullary counterparts) with values in every kernel
class χ−1(i) (i ∈ [m]) of the homomorphism χ : A → I.

This restriction on the language F does not affect the applicability of
the functor C. Indeed, if F is any language with at least one nullary symbol,
then letting F ′ be the algebraic language obtained from F by replacing each
nullary symbol c ∈ F by a unary symbol c′ we get a functor

′ : Alg(F) → Alg(F ′)

• by assigning to every F-algebra A = (A;F) (necessarily nonempty) the
algebra A′ = (A,F ′) obtained from A by defining c′ to be the unary
constant operation on A with value c for every nullary symbol c ∈ F ,
and by keeping all other operations unchanged; and

• by assigning to every homomorphism ϕ : A → B of F-algebras the same
function ϕ′ := ϕ, which is a homomorphism A′ → B′ of F ′-algebras.

Clearly, this is an isomorphism between Alg(F) and a full subcategory of
Alg(F ′). Given a finite F-algebra I = ([m];F), this isomorphism induces a
functor

I :
(
Alg(F)� I

)→ (
Alg(F ′)� I′)
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which is an isomorphism between
(
Alg(F)� I

)
and a full subcategory of(

Alg(F ′)� I′). This can now be composed with the isomorphism from Corol-
lary 2.9 with domain category

(
Alg(F ′)� I′).

Remark 2.10. For every algebraic language F with no nullary symbols and
for any finite F-algebra I = ([m];F), the description (stated without proof
in Remark 2.8) for the terms of the variety D+(F̂I) via FI-terms easily yields
a description of the terms of D+(F̂I) via F-terms and I. In Section 3 we
give a proof for this result, but instead of using computations with terms, we
derive the result from Corollary 2.9 via examining the relationship between
free algebras in

(
Alg(F)� I

)
and in Alg(F) (see Corollary 3.11).

3. Algebraic properties of the functor C

Throughout this section, F will be an algebraic language with no nullary
symbols, and I = ([m];F) will be a finite F-algebra (m > 0). The functor C (see
Corollary 2.9) describes a construction which produces from every F-algebra
A with a fixed homomorphism χ onto I a new algebra C(A, χ) in the language
F̂I. Our goal in this section is to demonstrate that this construction preserves a
lot of important algebraic properties. As discussed in the Introduction, variants
and special cases of many of these preservation results have appeared in the
literature, but often not in the generality that we need in Sections 4 and 5.
Therefore we decided to include this section to survey a wide range of algebraic
properties preserved by the functor C, most of which will be used in the proofs
of the main results of the paper in Sections 4 and 5.

Our survey will start with preservation theorems for subalgebras of prod-
ucts (see Theorem 3.1) and compatible relations, including endomorphisms and
automorphisms (see Corollaries 3.2, 3.3). Of particular interest are the preser-
vation results on congruences (see Corollary 3.4), commutator properties (see
Theorem 3.6), and tame congruence theoretic types (see Theorem 3.18). We
will also describe how the clone of term (resp., polynomial) operations changes
when we pass from A (paired with χ) to C(A, χ) (see Corollaries 3.13(1) and
3.16). The description of term operations will imply, for example, that under
this construction, the satisfaction of idempotent Maltsev conditions by the
generated varieties is also preserved (see Corollary 3.14). Finiteness proper-
ties of algebras and clones preserved by C will also be considered (see, e.g.,
Theorem 3.1(4) and Corollaries 3.5(3), 3.12, 3.15).

3.1. Subalgebras of products and compatible relations

In the category
(
Alg(F)� I

)
, the subobjects of an object (A, χ) are (up to

isomorphism) the objects (B, ξ) such that B ⊆ A and the inclusion map B → A
is a morphism (B, ξ) → (A, χ); equivalently, the subobjects of (A, χ) are (up to
isomorphism) the pairs (B, ξ) where B is a subalgebra of A and ξ = χ|I : B → I
is onto (i.e., B has a nonempty intersection with χ−1(i) for all i ∈ [m]).

The category
(
Alg(F)� I

)
has products for all nonempty families of ob-

jects. Namely, if (Aj , χj) (j ∈ J , J 	= ∅) is an indexed family of objects in



55 Page 14 of 39 P. Mayr and Á. Szendrei Algebra Univers.

(
Alg(F)� I

)
, then their product in

(
Alg(F)� I

)
is their pullback in Alg(F),

one representative of which is the fibered product
∏�I

j∈J Aj together with the
induced homomorphism χ defined as follows:

∏�I

j∈J

Aj =
{

(aj)j∈J ∈
∏

j∈J

Aj : χj(aj) = χj′(aj′) for all j, j′ ∈ J
}

=
⋃

i∈[m]

(∏

j∈J

D
(i)
j

)

where D
(i)
j = χ−1

j (i) for all i ∈ [m], j ∈ J , and

χ :
∏�I

j∈J

Aj → I, (aj)j∈J �→ χj(aj),

where the image χj(aj) is independent of the choice of j ∈ J .

Theorem 3.1. Let (Aj , χj) (j ∈ J) be arbitrary objects of
(
Alg(F)� I

)
, let

Cj := C(Aj , χj) (j ∈ J), and for any i ∈ [m] let D(i) :=
∏

l∈J χ−1
l (i).

(1) C
(∏�I

j∈J Aj , χ
)

=
∏

j∈J Cj, and the mapping

B �→ BC :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

b
(1)
j
...

b
(m)
j

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

j∈J

∈
∏

j∈J

Cj : (b(i)j )j∈J ∈ B ∩ D(i) for all i ∈ [m]

⎫
⎪⎪⎬

⎪⎪⎭

=
∏

i∈[m]

(B ∩ D(i)) (up to a rearrangement of coordinates)

is an isomorphism between
� the ordered set of all subuniverses B of the algebra

∏�I
j∈J Aj with

the property that B ∩ D(i) 	= ∅ for every i ∈ [m], and
� the ordered set of all nonempty subuniverses of the algebra

∏
j∈J Cj.

(2) This mapping C preserves all intersections of subuniverses and all coor-
dinate manipulations on subuniverses (namely: permutation and duplication
of coordinates, and projection of subuniverses onto subsets of coordinates). In
more detail, for intersection and for projection this means that if R� (� ∈ L)
and R are subuniverses of

∏�I
j∈J Aj in the domain of C and K ⊆ J , then

(⋂

�∈L

R�

)C
=
⋂

�∈L

RC
� and

(
R|K

)C = RC|K ,

respectively, where = means that if the left hand side is defined, then so is the
right hand side and the equality holds.
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(3) For arbitrary choice of elements d(i) = (d(i)j )j∈J ∈ D(i) (i ∈ [m]), the
function

:̃
∏�I

j∈J

Aj →
∏

j∈J

Cj , x = (xj)j∈J �→ x̃ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d
(1)
j
...

d
(i−1)
j

xj

d
(i+1)
j
...

d
(m)
j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

j∈J

if x ∈ D(i)

has the following property: If B is a subalgebra of
∏�I

j∈J Aj such that d(i) ∈
B ∩D(i) for every i ∈ [m], then for every set G ⊆ B that generates B, the set
G̃ := {b̃ : b ∈ G} generates BC.
(4) Consequently, for every subalgebra B of

∏�I
j∈J Aj such that B ∩ D(i) 	= ∅

for every i ∈ [m], B is finitely generated if and only if BC is finitely generated.

The elements d(i) (i ∈ [m]) used in the definition of the function˜ in part
(3) of the theorem above will be referred to as padding elements.

Proof of Theorem 3.1. Statements (1)–(2) follow by combining our description
of subobjects and products in the category

(
Alg(F)� I

)
(see the first two para-

graphs of this subsection) with the following properties of the functor C (see
Corollary 2.9): (i) C is an isomorphism between the category

(
Alg(F)� I

)
and

its image category C
(
Alg(F)� I

)
, (ii) C sends the product object

(∏�I
j∈J Aj , χ

)

to the product algebra
∏

j∈J C(Aj , χj) =
∏

j∈J Cj , and (iii) C sends the sub-
objects (B, χ|B) of an object (A, χ) to the subalgebras BC := C(B, χ|B) of
C(A, χ).

For the proof of statement (3) assume G generates B, and let T denote
the subalgebra of

∏
j∈J Cj generated by the set G̃. Since T is nonempty (as

B, and hence G are nonempty), statement (1) implies that T = SC for some
subalgebra S of

∏�I
j∈J Aj such that S ∩ D(i) 	= ∅ for every i ∈ [m]. Our goal is

to show that T = BC, or equivalently, SC = BC.
Since G ⊆ B, it follows from the description of the elements of BC that

G̃ ⊆ BC. Therefore, SC = T is a subalgebra of BC. To prove that BC is a
subalgebra of SC, it suffices to establish that B is a subalgebra of S. Since
G̃ ⊆ SC, the description of the elements of SC implies that G ∪ {d(i) : i ∈
[m]} ⊆ S. Hence the algebra B generated by G is a subalgebra of S.

In statement (4), the implication that if B is finitely generated, then so is
BC follows from the statement in part (3). Since in that statement G is finite
if and only if G̃ is finite if and only if G ∪ {d(i) : i ∈ [m]} is finite, the converse
follows by using that C is an isomorphism

(
Alg(F)� I

)→ C
(
Alg(F)� I

)
. �

An important special case of Theorem 3.1 is when all objects (Aj , χj)
(j ∈ J) are the same, say (A, χ). Then the algebra

∏�I
j∈J A depends only on
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A and α = ker(χ), and will be denoted by AJ [α]. The underlying set is

AJ [α] := {(aj)j∈J : aj α a� for all j, � ∈ J}.

In particular, A2[α] is nothing else than α.
Recall that for an algebra A the subuniverses of An are often called

n-ary compatible relations of A. An n-ary compatible relation of A, and the
corresponding algebra, is said to be reflexive if it contains all constant n-tuples
(a, . . . , a) (a ∈ A). The map C described in Theorem 3.1(1) is particularly well-
behaved for reflexive compatible relations of A that are contained in An[α],
as the following corollary shows.

Corollary 3.2. Let A be an F-algebra with an onto homomorphism χ : A → I.
Let C := C(A, χ) and α := ker(χ).

(1) For every positive integer n, the mapping

B �→ BC =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

a
(1)
1
...

a
(m)
1

⎤

⎥
⎥
⎦ , . . . ,

⎡

⎢
⎢
⎣

a
(1)
n

...
a
(m)
n

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ ∈ Cn : (a(i)

1 , . . . , a
(i)
n ) ∈ B

for all i ∈ [m]

⎫
⎪⎪⎬

⎪⎪⎭

is an isomorphism between
� the lattice of all n-ary reflexive compatible relation of A that are
contained in An[α], and
� the lattice of all n-ary reflexive compatible relations of C.

(2) This mapping C between reflexive relations (applied over all arities n ≥ 1)
also preserves the following relational clone operations: intersection of rela-
tions of the same arity, composition, and coordinate manipulations
(permutation, identification, and duplication of coordinates, and projection of
relations to a subset of coordinates). Moreover, C preserves product in the re-
spective categories; that is, if for any reflexive compatible relations R ⊆ Ak[α]
and S ⊆ An[α] we define R ×α S := (R × S) ∩ Ak+n[α], then

(R ×α S)C = RC × SC.

Proof. Statement (1) follows immediately from Theorem 3.1(1) and the fact
that for any n-ary reflexive relation B of A with B ⊆ An[α] the property that
“B ∩(χ−1(i)

)n 	= ∅ for every i ∈ [m]” holds automatically, since B ∩(χ−1(i)
)n

contains all constant tuples (a, . . . , a) with a ∈ χ−1(i). Statement (2) is a
straightforward consequence of statement (1). �

Recall that by Corollary 2.9, every homomorphism from C(A, χ) to C(B, ξ)
is of the form C(ψ) for some homomorphism ψ : A → B with χ = ξ ◦ ψ. By
identifying endomorphisms ψ of A with their graphs {(a, ψ(a)) : a ∈ A}, which
form subuniverses of A2, the map C described in Theorem 3.1(1) also yields
the following correspondence.
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Corollary 3.3. Let A be an F-algebra with an onto homomorphism χ : A → I.
Let C := C(A, χ) and α := ker(χ). The mapping

ψ �→ ψC =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

⎡

⎢
⎣

a(1)

...
a(m)

⎤

⎥
⎦ ,

⎡

⎢
⎣

ψ(a(1))
...

ψ(a(m))

⎤

⎥
⎦

⎞

⎟
⎠ ∈ C2 : a(i) ∈ χ−1(i) for all i ∈ [m]

⎫
⎪⎬

⎪⎭

is an isomorphism between

� the monoid of all endomorphisms (the group of all automorphisms) ψ of A
such that the graph of ψ is contained in α, and
� the endomorphism monoid (the automorphism group) of C.

3.2. Congruences and commutator properties

Results of the previous subsection specialize to congruences as follows.

Corollary 3.4. Let A be an F-algebra with an onto homomorphism χ : A → I,
and let C := C(A, χ), α := ker(χ).

(1) The mapping

β �→ βC =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

a
(1)
1
...

a
(m)
1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

a
(1)
2
...

a
(m)
2

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ ∈ C2 : (a(i)

1 , a
(i)
2 ) ∈ β for all i ∈ [m]

⎫
⎪⎪⎬

⎪⎪⎭

is an isomorphism between the interval I(0, α) of the congruence lattice
of A and the congruence lattice of C.

(2) The mapping C preserves meet (= intersection) and join of congruences,
and k-permutability of congruences for every k ≥ 2; that is, for arbitrary
congruences βj ∈ I(0, α) (j ∈ J) and β, γ ∈ I(0, α) of A,

(⋂

j∈J

βj

)C
=
⋂

j∈J

βC
j ,

(∨

j∈J

βj

)C
=
∨

j∈J

βC
j ,

and

β ◦k γ = γ ◦k β ⇐⇒ βC ◦k γC = γC ◦k βC.

(3) For every β ∈ I(0, α), β is a finitely generated congruence of A if and
only if βC is a finitely generated congruence of C.

Proof. Items (1)–(2) are immediate consequences of Corollary 3.2. Item (3)
follows from (2) and the fact that finitely generated congruences are exactly
the compact elements in the congruence lattice. �

The description of the functor C in Corollary 2.9, together with the de-
scription of the mapping C it induces on congruences, implies that quotient
algebras are also preserved by C in the following sense.

Corollary 3.5. Let A be an F-algebra with an onto homomorphism χ : A → I,
and let α := ker(χ).



55 Page 18 of 39 P. Mayr and Á. Szendrei Algebra Univers.

(1) For every congruence β ∈ I(0, α) of A,

C(A/β, χ/β) ∼= C(A, χ)/βC,

where χ/β : A/β → I is the unique homomorphism that is obtained by
factoring χ : A → I through the natural homomorphism A → A/β.

(2) In particular, for every congruence β ∈ I(0, α) of A, A/β is finite if and
only if C(A, χ)/βC is finite. Consequently, A is residually finite if and
only if C(A, χ) is residually finite.

Recall (see, e.g., [5,1,21]) that for any algebra A, the k-ary commutator is
a k-ary operation [−, . . . ,−] on the congruence lattice of A, and for any choice
of β1, . . . , βk ∈ Con(A), the definition of the commutator [β1, . . . , βk] uses a
specific subalgebra MA(β1, . . . , βk) of A2k

, called the algebra of (β1, . . . , βk)-
matrices. It is useful to think of the elements of A2k

as functions f : 2k → A
labeling the vertices of the k-dimensional cube 2k = {0, 1}k. For each j ∈ [k],
2k has two ‘faces’ of codimension 1 perpendicular to the jth direction: Fj(0)
and Fj(1), where Fj(u) is the set of all elements of 2k with jth coordinate u
(u ∈ 2). The algebra MA(β1, . . . , βk) of (β1, . . . , βk)-matrices is generated by
all labelings of the vertices of the k-dimensional cube that are constant on the
faces Fj(0) and Fj(1) for some j ∈ [k], and have the property that the two
values they assume are βj-related. We introduce some notation to describe this
generating set. For any j ∈ [k] and a0 βj a1, let gj [a0, a1] denote the labeling
g : 2k → A such that for each u ∈ 2 we have that g|Fj(u) is constant with value
au. So, the standard generating set for MA(β1, . . . , βk) is

G =
⋃

j∈[k]

Gj where Gj := {gj [a0, a1] : a0 βj a1} for all j ∈ [k]. (3.1)

The commutator [β1, . . . , βk] is defined to be the least congruence γ of A with
the following property:
(∗) whenever f is an element of MA(β1, . . . , βk) such that f(ε0) γ f(ε1) for
all ε ∈ 2k−1\{1 . . . 1}, then we also have that f(1 . . . 10) γ f(1 . . . 11).
Note that condition (∗) holds for γ = βk, because every labeling f in G—and
hence also every labeling f in MA(β1, . . . , βk)—satisfies f(ε0)βk f(ε1) for all
ε ∈ 2k−1. Therefore, [β1, . . . , βk] ≤ βk.

Theorem 3.6. Let A be an F-algebra with an onto homomorphism χ : A → I,
and let C := C(A, χ), α := ker(χ). The isomorphism C between the interval
I(0, α) of the congruence lattice of A and the congruence lattice of C (see
Corollary 3.4(1)) preserves higher commutators of congruences; that is, for
any integer k ≥ 2 and for arbitrary congruences β1, . . . , βk ∈ I(0, α) of A,

[β1, . . . , βk]C = [βC
1 , . . . , βC

k ]. (3.2)

Proof. We start by examining the effect of the mapping C from Corollary 3.2
to the algebra of (β1, . . . , βk)-matrices for congruences β1, . . . , βk below α.

Claim 3.7. Under the same assumptions on A, χ, and β1, . . . , βk as in Theo-
rem 3.6, (

MA(β1, . . . , βk)
)C = MC(βC

1 , . . . , βC
k ). (3.3)
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Proof of Claim 3.7. The algebra MA(β1, . . . , βk) of (β1, . . . , βk)-matrices in
A is generated by the set G indicated in (3.1). Analogously, the standard
generating set for the algebra MC(βC

1 , . . . , βC
k ) of (βC

1 , . . . , βC
k )-matrices in C

is the set

H =
⋃

j∈[k]

Hj where Hj := {hj [c0, c1] : c0 βC
j c1} for all j ∈ [k], (3.4)

where for any elements c0, c1 ∈ C with c0 βC
j c1, hj [c0, c1] denotes the labeling

h : 2k → C of the vertices of the k-dimensional cube with elements of C in
such a way that for each u ∈ 2, h|Fj(u) is constant with value cu.

The left hand side of (3.3) is defined since MA(β1, . . . , βk) is a sub-
algebra of A2k

[α] =
∏�I

ε∈2k A, because the assumption β1, . . . , βk ≤ α en-
sures that G ⊆ A2k

[α]. Moreover, MA(β1, . . . , βk) is reflexive, since G con-
tains all constant labelings 2k → A. Choose and fix one constant labeling
g1[d(i), d(i)] (= · · · = gk[d(i), d(i)]) with value d(i) (∈ χ−1(i)) from each set D(i)

(i ∈ [m]). By Theorem 3.1(3), the algebra
(
MA(β1, . . . , βk)

)C is generated by
the set

G̃ =
⋃

j∈[k]

G̃j where G̃j := {hj [ã0, ã1] : a0 βj a1} for all j ∈ [k], (3.5)

as the image of each labeling gj [a0, a1] ∈ G under the function :̃ A2k → C2k

with padding elements g1[d(i), d(i)] (i ∈ [m]) is the labeling hj [ã0, ã1], where
ã0, ã1 are obtained from a0, a1 by applying the function :̃ A → C with padding
elements d(i) (i ∈ [m]). Since G̃ ⊆ H, the inclusion ⊆ in (3.3) follows. For the
reverse inclusion notice that MC(βC

1 , . . . , βC
k ) is a reflexive subalgebra of C2k

,
hence by Corollary 3.2(1), it is equal to BC for some reflexive subalgebra B of
A2k

[α]. Thus, BC is the least reflexive subalgebra of C2k

which contains all
generators hj [c0, c1] ∈ H of MC(βC

1 , . . . , βC
k ) from (3.4); so j ∈ [k] and

c0 =

⎡

⎢
⎢
⎣

c
(1)
0
...

c
(m)
0

⎤

⎥
⎥
⎦ , c1 =

⎡

⎢
⎢
⎣

c
(1)
1
...

c
(m)
1

⎤

⎥
⎥
⎦

where c
(i)
0 βj c

(i)
1 and c

(i)
0 , c

(i)
1 ∈ χ−1(i) for each i ∈ [m].

It follows from Corollary 3.2(1) that B is the least reflexive subalgebra of
A2k

[α] which contains the projections of these generators to all coordinates
i ∈ [m], which are the functions

gj [c
(i)
0 , c

(i)
1 ] with c

(i)
0 βj c

(i)
1 and c

(i)
0 , c

(i)
1 ∈ χ−1(i).

Since all these functions belong to G, and MA(β1, . . . , βk) is reflexive, we
conclude that B is a subalgebra of MA(β1, . . . , βk). By applying C we get the
inclusion ⊇ in (3.3). This completes the proof of (3.3). �

Now we are ready to prove (3.2). Since our assumption β1, . . . , βk ∈
I(0, α) implies that [β1, . . . , βk] ≤ βk ≤ α, the commutator [β1, . . . , βk] is the
least congruence γ of A in the interval I(0, α) which satisfies condition (∗).
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So, let γ be a congruence of A with γ ≤ α. Condition (∗) in the definition
of [β1, . . . , βk] can be expressed by relational clone operations as follows:

MA(β1, . . . , βk) ∩ (γ ×α · · · ×α γ ×α A2[α])

⊆ γ ×α · · · ×α γ ×α γ (with 2k−1 factors)

provided the coordinates in 2k are listed so that ε0 and ε1 are consecutive
for every ε ∈ 2k−1, and the last two coordinates are 1 . . . 10 and 1 . . . 11.
All three compatible relations involved in this condition are reflexive and are
contained in A2k

[α]. Therefore, by Corollary 3.2(2), condition (∗) holds for γ
and MA(β1, . . . , βk) if and only if the analogous condition holds for γC and
(
MA(β1, . . . , βk)

)C = MC(βC
1 , . . . , βC

k ). Consequently, γ ∈ I(0, α) is the least
congruence of A satisfying (∗) for MA(β1, . . . , βk) if and only if γC is the least
congruence of C satisfying the analogous condition for MC(βC

1 , . . . , βC
k ). By

the definition of the k-ary commutator, and by our remark in the preceding
paragraph, this proves the desired equality (3.2). �

For any algebra A and congruence β of A, there is a largest congruence ρ of
A such that [ρ, β] = 0. This congruence is called the centralizer of β, and is
denoted by (0 : β). Theorem 3.6, combined with this definition, immediately
implies the following fact.

Corollary 3.8. Let A be an F-algebra with an onto homomorphism χ : A → I,
and let C := C(A, χ), α := ker(χ). The isomorphism C between the interval
I(0, α) of the congruence lattice of A and the congruence lattice of C (see
Corollary 3.4(1)) preserves centralizers in the following sense: for any congru-
ence β ∈ I(0, α) of A we have that

((0 : β) ∧ α)C = (0 : βC).

3.3. Varieties, clones, and Maltsev conditions

In this subsection let V be any variety of (nonempty) F-algebras, and let
I = ([m],F) (m > 0) be a finite algebra in V. We will use the notation

(V � I
)

for the full subcategory of
(
Alg(F)� I

)
consisting of those objects (A, χ) for

which A ∈ V.
The discussions following Proposition 2.5 and Corollary 2.9 imply that if

V is the variety of all (nonempty) F-algebras, then the class of all isomorphic
copies of F̂I-algebras in the range C

(V � I
)

= C
(
Alg(F)� I

)
= DAlg�(F̂I)

of the functor C :
(
Alg(F)� I

) → DAlg�(F̂I) is the variety D+(F̂I) of F̂I-
algebras. We can combine earlier results of this subsection to obtain an anal-
ogous conclusion for all subvarieties V of the variety of all F-algebras.

Corollary 3.9. If V is a variety of F-algebras and I = ([m],F) (m > 0) is a
finite algebra in V, then the class

VC := IC
(V � I

)

of all isomorphic copies of algebras in C
(V � I

)
is a variety of F̂I-algebras.
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Proof. The fact that VC is closed under taking products and subalgebras fol-
lows from the discussion preceding Theorem 3.1 and from the first paragraph
of the proof of that theorem. To show that VC is closed under taking quotients,
consider an algebra C in VC and a congruence γ of C. Since C is isomorphic to
an algebra of the form C(A, χ) for some A ∈ V and some onto homomorphism
χ : A → I, we may assume without loss of generality that C is actually equal
to C(A, χ). By Corollary 3.4, γ = βC for a unique congruence β of A such
that β ≤ ker(χ). Now Corollary 3.5 shows that C/βC ∼= C(A/β, χ/β) ∈ VC,
completing the proof. �

In the next theorem we exhibit a relationship between free algebras
FVC(X) in the variety VC and free algebras in V. The following notation will
be useful. For any set X we define X� to be the set X × [m], but we will use the
notation x(i) for its element (x, i) for every x ∈ X and i ∈ [m]. Furthermore,
we define

x :=

⎡

⎢
⎣

x(1)

...
x(m)

⎤

⎥
⎦ for each x ∈ X, and

X := {x : x ∈ X}.

Theorem 3.10. Let V be a variety of F-algebras, let I = ([m];F) (m > 0) be
a finite algebra in V, and let VC be the corresponding variety of F̂I-algebras
defined in Corollary 3.9. For any non-empty set X we have that

FVC(X) ∼= C
(
FV(X�), ξ

)
(3.6)

where ξ is the unique homomorphism FV(X�) → I in V that extends the set
map X� → [m], x(i) �→ i.

Proof. Let F := C
(
FV(X�), ξ

)
. It follows from the definitions of C and X that

X ⊆ F . Since X → X, x �→ x, is a bijection, to prove (3.6) it suffices to show
that F is a free algebra in VC with free generating set X.

To this end let C ∈ VC. Then C is isomorphic to C(A, χ) for some A in
V and some onto homomorphism χ : A → I. Without loss of generality assume
C = C(A, χ), and consider an arbitrary set map G : X → C =

∏
i∈[m] χ

−1(i).
Our goal is to show that G extends to a unique homomorphism F → C.

Note first that there exists a (unique) set map g : X� → A such that

G(x) =

⎡

⎢
⎣

g(x(1))
...

g(x(m))

⎤

⎥
⎦ and g(x(i)) ∈ χ−1(i) for all x ∈ X and i ∈ [m].

Thus, g : X� → A extends uniquely to a homomorphism ψ : FV(X�) → A.
Moreover, ψ satisfies the equality χ ◦ ψ = ξ, because it follows from our defi-
nitions that

χ(ψ(x(i))) = χ(g(x(i))) = i = ξ(x(i)) for all x(i) ∈ X�.
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Hence ψ is a morphism
(
FV(X�), ξ

) → (A, χ) in
(V � I

)
. Thus C(ψ) is a

homomorphism F → C by Corollary 2.9. By its construction, C(ψ) extends G.
To show that this extension is unique, consider any homomorphism Φ: F

→ C that extends G. By Corollary 2.9, Φ = C(ϕ) for some morphism
ϕ :
(
FV(X�), ξ

)→ (A, χ) in
(V � I

)
. It follows that ϕ extends g. Hence ϕ = ψ

since FV(X�) is free in V with free generating set X�. Thus Φ = C(ϕ) = C(ψ).
This concludes the proof of the theorem. �

Recall from [28] that the clone of a variety W is the multisorted algebra
with sorts indexed by positive integers k, the kth sort being the set of all k-
ary terms of W (i.e., all terms in the language of W in the first k variables
v1, . . . , vk, modulo the identities true in W), and the operations are superposi-
tions of terms and nullary operations naming the variables in each sort. Since
for every positive integer k, the k-ary terms of W are in one-to-one correspon-
dence with the elements of the free algebra FW(X) for a k-element set X, the
isomorphism (3.6) in Theorem 3.10 yields a description for the clone of the
variety VC in terms of the clone of V.

We state this description in Corollary 3.11 below. We will use the matrix
notation introduced in our discussion following Theorem 2.5. Furthermore,
em×k will denote the m × k matrix in which the ith row is [i i ... i] for every
i ∈ [m].

Corollary 3.11. Let V, I, and VC be the same as in Theorem 3.10. For any

positive integer k, there is a bijection T (x) �→

⎡

⎢
⎣

t(1)(x)
...

t(m)(x)

⎤

⎥
⎦ between

• the k-ary terms T of VC and
• the m-tuples t(1), . . . , t(m) of mk-ary terms of V satisfying

t(i)(em×k) = i in I for all i ∈ [m] (3.7)

so that the following equality holds in the algebra C := C(A, χ) for each A ∈ V
with an onto homomorphism χ : A → I:

T (a) =

⎡

⎢
⎣

t(1)(a)
...

t(m)(a)

⎤

⎥
⎦ for every m × k matrix a ∈

( ∏

i∈[m]

χ−1(i)
)k

= Ck, (3.8)

where T is applied to the k columns of a, and t(1), . . . , t(m) are applied to the
mk entries of a.

For every k-ary term T of VC, the mk-ary terms t(i) (i ∈ [m]) of V
satisfying conditions (3.7) and (3.8) above will be referred to as the coordinate
terms of T .

Corollary 3.12. Let V, I, and VC be the same as in Theorem 3.10. If the clone
of V is finitely generated, then so is the clone of VC.
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Proof. If the clone of V is finitely generated, then V is equivalent to its reduct
V◦ to a finite sublanguage F◦ of F . Clearly, the reduct I◦ = ([m];F◦) of I
belongs to V◦, and the variety (V◦)C = I

(V◦ � I◦) has a finite language, F̂◦
I◦ .

Since V and V◦ are equivalent varieties, i.e., they have the same terms, and any
m-tuple t(1), . . . , t(m) of mk-ary terms among them satisfies condition (3.7) for
I if and only if it does so for I◦, Corollary 3.11 shows that VC and (V◦)C are
equivalent varieties. As the latter variety has a finite language, their clones are
finitely generated. �

Corollaries 3.11 and 3.12 carry over easily from varieties to single algebras.

Corollary 3.13. Let (A, χ) be an object of
(
Alg(F)� I

)
, and let C := C(A, χ).

(1) A function T : Ck → C (where C =
∏

i∈[m] χ
−1(i)) is a k-ary term

operation of C if and only if A has mk-ary term operations t(1), . . . , t(m)

satisfying condition (3.7) such that (3.8) holds.
(2) If the clone of A is finitely generated, then so is the clone of C.

Corollary 3.11 also allows us to transfer idempotent terms from V to VC.

Corollary 3.14. Let V, I, and VC be the same as in Theorem 3.10.
(1) The map

t(x1, . . . , xk) �→ t̆(x1, . . . ,xk) :=

⎡

⎢
⎢
⎣

t(x(1)
1 , . . . , x

(1)
k )

...
t(x(m)

1 , . . . , x
(m)
k )

⎤

⎥
⎥
⎦ ,

which assigns to every k-ary idempotent term t(x1, . . . , xk) of V the k-
ary idempotent term t̆(x1, . . . ,xk) of VC with coordinate terms t(x(i)

1 , . . . ,

x
(i)
k ) (i ∈ [m]), is a clone homomorphism of the clone of all idempotent

terms of V into the clone of all idempotent terms of VC.
(2) Hence, VC satisfies every idempotent Maltsev condition that holds in V.
Proof. Since t is an idempotent term, i.e., the identity t(x, . . . , x) ≈ x holds
in V, the coordinate terms t(x(i)

1 , . . . , x
(i)
k ) satisfy t(i, . . . , i) = i for every

i ∈ [m]. Thus the coordinate terms t(x(i)
1 , . . . , x

(i)
k ) satisfy condition (3.7). It

follows from Corollary 3.11 that VC has a term t̆ with these terms as coordinate
terms.

Clearly, t̆ is an idempotent term of VC. It is also straightforward to check
that the map t �→ t̆ is a clone homomorphism. This proves statement (1).

For (2), recall that a strong Maltsev condition is a primitive positive sen-
tence in the language of clones, while a Maltsev condition is a disjunction of
a weakening infinite sequence of strong Maltsev conditions. Since the satis-
faction of conditions of this form is preserved under homomorphisms, we get
from part (1) that VC satisfies every idempotent Maltsev condition that holds
in V. �

We conclude this subsection by recording some finiteness properties of
varieties preserved by C.
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Corollary 3.15. Let V, I, and VC be the same as in Theorem 3.10.
(1) V is locally finite if and only if VC is locally finite.
(2) For every algebra A ∈ V with an onto homomorphism χ : A → I we

have that A is finitely presented in V if and only if the algebra C(A, χ)
is finitely presented in VC.

Proof. We will use the notation introduced in the paragraph preceding Theo-
rem 3.10.

Statement (1) will follow if we prove that for every finite set X,

|FVC(X)| ≤ |FV(X�)|m, and

|FV(X�)| ≤ m|FVC(X)|,
where |X�| = m|X|. The first inequality is an immediate consequence of the
isomorphism in (3.6). For the second inequality, combine (3.6) with the obser-
vation that every element of FV(X�) belongs to ξ−1(i) for some i ∈ [m].

To prove (2), let A be an algebra in V with an onto homomorphism
χ : A → I. By the definition of VC (see Corollary 3.9), we have C(A, χ) ∈ VC.
Assume first that C(A, χ) is finitely presented in VC, that is, for some finite
set X, C(A, χ) is a quotient of FVC(X) by a finitely generated congruence. By
Theorem 3.10 and Corollary 3.4, this is equivalent to the condition that

C(A, χ) ∼= C
(
FV(X�), ξ

)
/βC

for some finite set X and some finitely generated congruence β ≤ ker(ξ) of
FV(X�). By Corollary 3.5, the last displayed isomorphism can be rewritten as
follows:

C(A, χ) ∼= C
(
FV(X�)/β, ξ/β

)
.

Since C is an isomorphism between the category
(V � I

)
and its image in VC

(see Corollaries 2.9 and 3.9), it follows that FV(X�)/β ∼= A. Hence, A is
finitely presented in V.

Conversely assume that A ∈ V is finitely presented in V. That is, we have
a finite set X and an onto homomorphism h : FV(X) → A such that ker(h) is
a finitely generated congruence of FV(X). For each i ∈ [m] fix some element
d(i) ∈ χ−1(i) (⊆ A). Let h′ denote the unique homomorphism h′ : FV(X�) → A
that extends the set map X� → A defined by

h′(x(i)) =

{
h(x) if h(x) ∈ χ−1(i),
d(i) otherwise.

Since h = h′ ◦ ι holds for the injection ι : X → X�, x �→ xχ(h(x)), it follows
that, up to the isomorphism of FV(X) and FV

(
ι(X)

)
induced by ι, h and the

restriction of h′ to FV
(
ι(X)

)
are the same homomorphisms onto A. Hence,

FV(X)/ ker(h) ∼= A ∼= FV(X�)/ ker(h′). Since ker(h) is finitely generated and
X� is finite, we get that β := ker(h′) is a finitely generated congruence of
FV(X�) and FV(X�)/β ∼= A is finitely presented.

For ξ := χ ◦ h′, Theorem 3.10 implies that FVC(X) ∼= C
(
FV(X�), ξ

)
is

a finitely generated free algebra in VC. Since β ≤ ker(ξ), Corollary 3.4 yields
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that βC is a finitely generated congruence of C
(
FV(X�), ξ

)
. Now, Corollary 3.5

yields the leftmost ∼= below

C
(
FV(X�), ξ

)
/βC ∼= C

(
FV(X�)/β, ξ/β

) ∼= C(A, χ),

while the rightmost ∼= follows from the fact that
(
FV(X�)/β, ξ/β

)
and (A, χ)

are isomorphic objects in
(V � I

)
, mediated by the onto homomorphism h′

with kernel β. This proves that C(A, χ) is a finitely presented algebra in
VC. �

3.4. Polynomial operations and TCT types

For any object (A, χ) of
(
Alg(F)� I

)
, we have a description for the term op-

erations of the algebra C(A, χ) via term operations of A in Corollary 3.13(1).
The next corollary presents an analogous description for the polynomial oper-
ations of C(A, χ).

Corollary 3.16. Let (A, χ) be an object of
(
Alg(F)� I

)
, and let C := C(A, χ).

A function P : Ck → C (where C =
∏

i∈[m] χ
−1(i)) is a k-ary polynomial

operation of C if and only if A has mk-ary polynomial operations p(1), . . . , p(m)

such that for every m × k matrix a ∈ (∏i∈[m] χ
−1(i)

)k = Ck,

p(i)(a) ∈ χ−1(i) for every i ∈ [m], and P (a) =

⎡

⎢
⎣

p(1)(a)
...

p(m)(a)

⎤

⎥
⎦ . (3.9)

Proof. We want to deduce this statement from Corollary 3.13(1) by using the
fact that for every algebra U the polynomial operations of U are the term
operations of the constant expansion of U. In keeping with our convention
of excluding nullary symbols, we define the constant expansion of an algebra
U = (U ;L) to be the algebra Uc = (U ;L ∪ {cu : u ∈ U}) where each cu is a
unary symbol, and is interpreted as the unary constant operation on U with
value u.

Now let (A, χ) satisfy the assumptions of Corollary 3.16, and let Ac be
the constant expansion of A. The language of Ac is F c = F ∪ {ca : a ∈ A}.
Since χ is an onto homomorphism A → I, we can expand I to get an Fc-
algebra Ic = ([m],F c) by interpreting each symbol ca (a ∈ A) as the unary
constant function with value χ(a) on [m]. Thus, χ is an onto homomorphism
Ac → Ic, and (Ac, χ) is an object of the category

(
Alg(F c)� Ic

)
. By applying

the functors C with domain categories
(
Alg(F)� I

)
and

(
Alg(F c)� Ic

)
to the

objects (A, χ) and (Ac, χ), respectively, we get the F̂I-algebra C(A, χ) and the
F̂ c

Ic -algebra C(Ac, χ).

Claim 3.17. The clone of term operations of C(Ac, χ) coincides with the clone
of term operations of the constant expansion of C(A, χ).

Proof of Claim 3.17. The set C :=
∏

i∈[m] χ
−1(i) is the universe of all three

algebras that play a role in the claim: C(A, χ), C(Ac, χ), and the constant
expansion of C(A, χ). It also follows from the definition of the functor C that
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C(Ac, χ) is obtained from C(A, χ) by adding the unary operations (̂ca)i (a ∈ A,
i ∈ [m]), while the constant expansion of C(A, χ) is obtained from C(A, χ) by
adding the unary constant operations cc (c ∈ C). Therefore, to prove the claim
it suffices to show that
(1) every operation (̂ca)i (a ∈ A, i ∈ [m]) is a term operation of the constant

expansion of C(A, χ), and
(2) every unary constant operation cc (c ∈ C) is a term operation of C(Ac, χ).

(1) follows by observing that if a ∈ χ−1(i′) and c is an element of C =∏
�∈[m] χ

−1(�) with i′th coordinate a, then for each i ∈ [m] we have that

(̂ca)i(x) = d
(
x, . . . ,x, cc(x)

︸ ︷︷ ︸
i′th

x, . . . ,x
)
.

For (2), notice that if c = (c1, . . . , cm) ∈∏i∈[m] χ
−1(i) = C, then the unary op-

eration cc is the composition (in any order) of the unary operations (̂cc1)1, . . . ,
(̂ccm

)m. �

To summarize, we have that the clone of polynomial operations of C(A, χ)
is the clone of term operations of C(Ac, χ), while the clone of polynomial
operations of A is the clone of term operations of Ac. Therefore, if we apply
Corollary 3.13(1) to the object (Ac, χ) of the category

(
Alg(F c)� Ic

)
, we get

the conclusion of Corollary 3.16. �
For the basic concepts and notation of tame congruence theory we refer

the reader to [12]. If for a covering pair δ ≺ θ of congruences in some finite alge-
bra A we have that typA(δ, θ) = 2, and hence the minimal algebras A|N/δ|N
associated to all 〈δ, θ〉-traces N are weakly isomorphic one-dimensional vector
spaces over a finite field, we will refer to the characteristic of this field as the
characteristic of 〈δ, θ〉. In particular, if θ is an atom in the congruence lattice
of A, then the characteristic of the prime quotient 〈0, θ〉 will also be called the
characteristic of θ.

For non-indexed algebras V and W given by their universes V , W and
their clones, a weak isomorphism h : V → W is a bijection h : V → W with
the property that the isomorphism induced by h between the clones of all
operations on V and W maps the clone of V onto the clone of W. Here, the
isomorphism induced by h between the clones of all operations on V and W
is the map f �→ hf := h ◦ f ◦ h−1, that is, for every operation f on V (say, f
is k-ary),

h
(
f(v1, . . . , vk)

)
= hf

(
h(v1), . . . , h(vk)

)
for all v1, . . . , vk ∈ V.

Theorem 3.18. Let F be an algebraic language, and let I = ([m];F) and A be
finite F-algebras. If (A, χ) is an object of

(
Alg(F)� I

)
with α := ker(χ), then

for any covering pair δ ≺ θ of congruences of A in the interval I(0, α) and for
every 〈δ, θ〉-trace N of A there exist a 〈δC, θC〉-trace Ň of C := C(A, χ) and a
weak isomorphism A|N → C|Ň between the induced algebras which maps δ|N
to δC|Ň . Consequently,

typA(δ, θ) = typC(δC, θC);
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moreover, if typA(δ, θ) = typC(δC, θC) = 2, then the prime quotients 〈δ, θ〉
and 〈δC, θC〉 have the same prime characteristic.

Proof. We will use the notation D(i) := χ−1(i) (i ∈ [m]) for the equivalence
classes of α. So, C :=

∏
i∈[m] D

(i) is the underlying set of the algebra C =
C(A, χ).

Let δ ≺ θ (≤ α) be congruences in A, and let N be a 〈δ, θ〉-trace of A.
Then there exist a unary polynomial operation e = e2 of A such that U := e(A)
is a 〈δ, θ〉-minimal set of A, and N = U ∩ (a/θ) for some a ∈ U . Furthermore,
θ|N is the full relation on N and δ|N � θ|N .

Since θ ≤ α, N lies in a single α-class; without loss of generality we may
assume that N ⊆ D(1). Now we choose and fix elements c(2) ∈ D(2), . . . , c(m) ∈
D(m) from the remaining α-classes. For 2 ≤ i ≤ m let q(i) denote the unary
constant polynomial operation of A with value c(i), while for i = 1 let q(1) := e.
Notice that e(D(1)) ⊆ D(1), because D(1) = a/α and e(a) = a (as a ∈ N ⊆ U =
e(A)). Therefore, it follows from Corollary 3.16 that the function ě : C → C
defined by

ě(a) :=

⎡

⎢
⎢
⎢
⎣

q(1)(a(1))
q(2)(a(2))

...
q(m)(a(m))

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

e(a(1))
c(2)

...
c(m)

⎤

⎥
⎥
⎥
⎦

for all a =

⎡

⎢
⎢
⎢
⎣

a(1)

a(2)

...
a(m)

⎤

⎥
⎥
⎥
⎦

∈ C

is a polynomial operation of C. Clearly, ě = ě2, and for the set Ǔ := ě(C) we
have that

Ǔ = e(D(1)) × {c(2)} × · · · × {c(m)} = (U ∩ D(1)) × {c(2)} × · · · × {c(m)}.

For each u ∈ U ∩ D(1) let ǔ := (u, c(2), . . . , c(m)); thus, we have a bijection
U ∩ D(1) → Ǔ , u �→ ǔ. Restricting this mapping to the set N (⊆ U ∩ D(1)) we
obtain a bijection

N → Ň := N × {c(2)} × · · · × {c(m)}, u �→ ǔ.

It follows from Corollary 3.4(1) that δC|Ň � θC|Ň and Ň = Ǔ ∩ (ǎ/θC) (so
θC|Ň is the full relation on Ň). To establish that Ň is a 〈δC, θC〉-trace of C it
remains to show that Ǔ is a 〈δC, θC〉-minimal set of C.

Assume not, and let V̌ := V × {c(2)} × · · · × {c(m)} be a proper subset of
Ǔ which is 〈δC, θC〉-minimal in C. Then there exists a unary polynomial g of
C such that

V̌ = g(C), g = g2, and δC|V̌ � θC|V̌ . (3.10)

Hence, by Corollary 3.4(1), δ|V � θ|V where V � U ∩D(1). Since both g and ě
fix every element of V (⊆ Ǔ), so will the unary polynomial g ◦ ě. Therefore, by
replacing g with g◦ě, we may assume from now on that, in addition to (3.10), g
also satisfies g = g◦ě. Let g(1) denote the m-ary polynomial operation of A that
is the first coordinate function of g according to Corollary 3.16, and define a
unary polynomial operation f of A by f(x) := g(1)

(
e(x), c(2), . . . , c(m)

)
. Then,
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g(a) = (g ◦ ě)(a) = g

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

e(a(1))
c(2)

...
c(m)

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎣

g(1)
(
e(a(1)), c(2), . . . , c(m)

)

c(2)

...
c(m)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

f(a(1))
c(2)

...
c(m)

⎤

⎥
⎥
⎥
⎦

for all a =

⎡

⎢
⎢
⎢
⎣

a(1)

a(2)

...
a(m)

⎤

⎥
⎥
⎥
⎦

∈ C.

The first property of g in (3.10) implies that f(U ∩ D(1)) = V , while the
second one implies that f |U∩D(1) = (f |U∩D(1))2. Hence, f fixes all elements
of V . Since by the definition of f we have f = f ◦ e, it follows that ker(e) ⊆
ker(f) ⊆ ker(e◦f). The elements of U ∩D(1) are in distinct kernel classes of e,
because e fixes all elements of U . However, some elements of U ∩ D(1) are in
the same kernel class of e◦f , because (e◦f)(U ∩D(1)) = e(V ) = V � U ∩D(1).
Hence, ker(e) � ker(e ◦ f), and therefore U = e(A) � (e ◦ f)(A). Combining
the facts that δ|V � θ|V and e ◦ f fixes every element of V we also get that
θ|V ⊆ (e◦f)(θ), and hence (e◦f)(θ) 	⊆ δ. The existence of a unary polynomial
e ◦ f of A with these properties contradicts our initial assumption that U is a
〈δ, θ〉-minimal set of A. This contradiction shows that Ǔ is a 〈δC, θC〉-minimal
set of C, and Ň is 〈δC, θC〉-trace of C.

Now we will prove that the induced algebras A|N and C|Ň are weakly
isomorphic. Let P be a k-ary polynomial operation of C such that P (Ňk) ⊆ Ň .
If we write P in the form described in Corollary 3.16, where the coordi-
nate polynomials of P are the mk-ary polynomial operations p(1), . . . , p(m)

of A, then we get that for 2 ≤ i ≤ m, p(i) must be constant with value
c(i) for all allowable inputs. Thus, we may assume without loss of generality
that p(2), . . . , p(m) are these constant polynomials. For i = 1, the assumption
P (Ňk) ⊆ Ň forces that the first coordinate function of P assigns to any tu-
ple (ǔ1, . . . , ǔk) ∈ Ňk the element p(1)(ǔ1, . . . , ǔk) ∈ Ň . By the fact that the
second through mth coordinates of ǔ1, . . . , ǔk are c(2), . . . , c(m), we have the
equality p(1)(ǔ1, . . . , ǔk) = p(u1, . . . , uk) for all ǔ1, . . . , ǔk ∈ Ň if we denote by
p the k-ary polynomial of A obtained from p(1) by replacing appropriate vari-
ables by c(2), . . . , c(m). This shows that if P is a k-ary polynomial operation
of C such that P (Ňk) ⊆ Ň , then A has a k-ary polynomial operation p such
that p(Nk) ⊆ N and

P |Ň (ǔ1, . . . , ǔk) = P |Ň

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

u1

c(2)

...
c(m)

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

uk

c(2)

...
c(m)

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎣

p|N (u1, . . . , uk)
c(2)

...
c(m).

⎤

⎥
⎥
⎥
⎦

or equivalently,

P |Ň (ǔ1, . . . , ǔk) =
(
p|N (u1, . . . , uk)

)
ˇ for all u1, . . . uk ∈ N. (3.11)
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Conversely, if p is a k-ary polynomial operation of A satisfying p(Nk) ⊆ N ,
then the polynomial operation P of C whose coordinate functions are p and the
unary constant polynomials with values c(2), . . . , c(m) satisfies these equalities.
It is clear from (3.11) that each one of the induced operations p|N and P |Ň
uniquely determines the another; namely, P |Ň is the image of p|N under the
isomorphism between the clones of operations on N and Ň induced by the
bijection N → Ň , u �→ ǔ. Hence, this bijection is a weak isomorphism A|N →
C|Ň . Moreover, by Corollary 3.4(1), it maps δ|N to δC|Ň , which completes the
proof of the first statement of Theorem 3.18.

The second statement now follows easily from the facts that typ(δ, θ) is
the type of the minimal algebra A|N/δ|N , typ(δC, θC) is the type of the min-
imal algebra C|Ň/δC|Ň , we have a weak isomorphism A|N/δ|N → C|Ň/δC|Ň
induced by the weak isomorphism A|N → C|Ň mapping δ|N to δC|Ň obtained
above, and weakly isomorphic minimal algebras have the same type; moreover,
if that type is 2, then they also have the same prime characteristic. �

4. Supernilpotent congruences

A congruence α of an algebra A is called k-supernilpotent if

[ α, . . . , α
︸ ︷︷ ︸

k+1α′s

] = 0,

and α is called supernilpotent if it is k-supernilpotent for some k ≥ 1. An
algebra A is called k-supernilpotent or supernilpotent if its congruence 1 has
the property.

It is well known (see e.g. [1, p. 370]) and easy to check that for every
k ≥ 1 the 4-element algebra (Z4; +, 2x1 . . . xk) (k ≥ 2) is k-supernilpotent, but
not (k − 1)-supernilpotent. Therefore, even for finite algebras of a fixed size,
there is no a priori bound on the arity of the higher commutator [1, . . . , 1] to
be checked if one wants to determine whether the algebra is supernilpotent.
Hence, it is not clear from the definition whether supernilpotence is a decidable
property for congruences of finite algebras.

Under mild assumptions on a finite algebra in a finite language, a combi-
nation of basic facts from tame congruence theory (see [12]) and results from
[15] and [1] yields the following characterization of supernilpotence, which im-
plies that supernilpotence for these algebras is decidable.

Theorem 4.1 [12,15,1]. Let A be a finite algebra in a finite language such that
the variety V(A) generated by A omits type 1. Then A is supernilpotent if
and only if A factors as a direct product of nilpotent algebras of prime power
order.

In more detail, the three results on finite algebras A, which combine to
yield the characterization in Theorem 4.1, are as follows:
(I) If V(A) omits type 1 and A is supernilpotent or nilpotent, then V(A) is

congruence permutable (i.e., A has a Maltsev term).
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Indeed, since A is supernilpotent or nilpotent, A cannot have any 2-
snags, and hence is solvable by [12, Thm. 7.2]. Furthermore, all algebras
in V(A) are locally solvable by [12, Cor. 7.6]. Hence V(A) omits types 3, 4,
5 by [12, Thm. 7.11(2)]. Since V(A) also omits type 1, V(A) is congruence
permutable (i.e., A has a Maltsev term) by [12, Thm. 7.11(3)].

(II) If A is nilpotent in a finite language and V(A) is congruence modular,
then the following conditions on A are equivalent:
(a) A factors as a direct product of nilpotent algebras of prime power

order;
(b) A has a finite bound on the arities of nontrivial commutator terms;
(c) A has a finite bound on the arities of nontrivial commutator poly-

nomials.
The equivalence of (a) and (b) was proved in [15, Thm. 3.14]. Since
condition (a) is clearly invariant under expanding A by all constants,
condition (c) is also equivalent to (a).

(III) Assume V(A) is congruence permutable.
(1) If A is supernilpotent, then A is nilpotent [1, Cor. 6.15].
(2) Moreover A is supernilpotent if and only if A has a finite bound on

the arities of nontrivial commutator polynomials [1, Lm. 7.5].
Our goal in this section is to use the techniques developed in Sections

2 and 3 to lift the characterization of supernilpotence in Theorem 4.1 from
algebras to congruences as follows.

Theorem 4.2. Let A be a finite algebra in a finite language such that V(A)
omits type 1. For any congruence α of A the following conditions are equiva-
lent:
(a) α is supernilpotent.
(b) either α = 0, or else α is nilpotent, and A has congruences β1, . . . , β� ≤ α

(for some � > 0) such that
(1) β1 ∧ · · · ∧ β� = 0,
(2) (β1 ∧ · · · ∧ βi−1) ◦ βi = α for every i ∈ [�], i > 1, and
(3) for each i ∈ [�] there exists a prime pi such that every block of α/βi

in A/βi has size a power of pi.

Proof. Suppose A satisfies the assumptions of the theorem, let F denote the
(finite) language of A, and let V := V(A). Let us consider any congruence
α of A. The statement of the theorem is trivial if α = 0, therefore we will
assume from now on that α > 0. Let us choose and fix an algebra I = ([m];F)
isomorphic to the (finite) algebra A/α, and let us fix an onto homomorphism
χ : A → I. Thus, (A, χ) is an object of the category

(V � I
)
.

Now let C := C(A, χ). Clearly, C is a finite algebra in a finite language,
F̂I, which belongs to the variety VC consisting of all isomorphic copies of alge-
bras in the category C

(V � I
)

(cf. Corollary 3.9). Clearly, V(C) is a subvariety
of VC. Since V omits type 1, and omitting type 1 is characterized, for lo-
cally finite varieties, by an idempotent Maltsev condition (see [12, Thm. 9.6]),
Corollary 3.14(2) implies that V(C) also satisfies this Maltsev condition, and
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therefore V(C) omits type 1. In summary, our discussion in this paragraph
shows that C satisfies the assumptions of Theorem 4.1.

Let us return to the congruence α of A. By Corollary 3.4(1), its image
under C is the congruence αC = 1 of C, and by Theorem 3.6, α is a supernilpo-
tent congruence of A if and only if 1 is a supernilpotent congruence of C, that
is, if and only if the algebra C is supernilpotent. By Theorem 4.1, the latter
condition holds if and only if C factors as a direct product of nilpotent alge-
bras of prime power order; that is, C is nilpotent and C factors as a direct
product of algebras of prime power order. Using congruences this condition
can be expressed as follows:

(b)∗ the congruence 1 of C is nilpotent, and C has congruences γ1, . . . , γ�

(for some � > 0) such that
(1) γ1 ∧ · · · ∧ γ� = 0,
(2) (γ1 ∧ · · · ∧ γi−1) ◦ γi = 1 for every i ∈ [�], i > 1, and
(3) for each i ∈ [�] there exists a prime pi such that the algebra
C/γi has size a power of pi.

Condition (2) here is equivalent to requiring that the natural homomorphism
νi : C → (C/γ1) × · · · × (C/γi) with kernel γ1 ∧ · · · ∧ γi is surjective for
every i ∈ [�], i > 1. Hence, (1)–(2) hold iff ν� yields an isomorphism C ∼=
(C/γ1) × · · · × (C/γ�).

By Theorem 3.6, 1 = αC is a nilpotent congruence of C if and only if
α is a nilpotent congruence of A. Furthermore, using the bijection C from
Corollary 3.4 between the interval I(0, α) of the congruence lattice of A and
the congruence lattice of C, which also preserves ∧ and ◦, we can write each γi

as γi = βC
i for a unique βi ∈ I(0, α), and we see that the existence of γ1, . . . , γ�

with properties (1)–(3) is equivalent to the existence of β1, . . . , β� ∈ I(0, α)
such that conditions (1)–(3) in (b) hold. For translating condition (3) in (b)∗

to condition (3) in (b) we also use the fact that the underlying set of each
C/βC

i is the product of the blocks of the congruence α/βi of A/βi. �

5. The subpower membership problem

Let K be a finite set of finite algebras in a finite language. The Subpower
Membership Problem for K is the following combinatorial decision problem:

SMP(K)
Input: a1, . . . , ak, b ∈ A1 × · · · × An with A1, . . . ,An ∈ K.
Question: Is b a member of the subalgebra of A1 × · · · × An generated
by the set {a1, . . . , ak}?

For background and recent results on the subpower membership problem, see
[19,6,27,26,24,7].

In this section we will assume that the set K of algebras fixed for the Sub-
power Membership Problem satisfies the following condition for some integer
d ≥ 2:
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V is a variety in a finite language F with a d-cube term, and
K is a finite set of finite algebras in V. (5.1)

For the definition of a d-cube term, the reader is referred to [4,16]. Note also
that every variety with a cube term is congruence modular by [4, Thm. 4.2]
(for an easy proof, see [8]), therefore we may use concepts and results from the
theory of the modular commutator (see [9]).

It was proved in [7, Thm. 6.4] that under assumption (5.1) on K, SMP(K)
∈ P provided K generates a residually small variety. This was done by reducing
the general problem SMP(K) to a ‘well-structured’ subproblem.

In this section we will employ the techniques developed in Sections 2 and
3 to further reduce this subproblem of SMP(K), and use this reduction to
extend the result of [7, Thm. 6.4] on SMP(K) ∈ P mentioned above to a wider
family of sets K.

Our starting point for the new reduction will be the reduction proved in
[7], therefore we need to recall the relevant concepts and results from [7].

Definition 5.1 ([7, Def. 6.2]). Let a1, . . . , ak, b ∈ A1 × · · · ×An (A1, . . . ,An ∈
K) be an input for SMP(K) where ar = (ar1, . . . , arn) (r ∈ [k]) and b =
(b1, . . . , bn). We call this input d-coherent if the following conditions are satis-
fied:

(i) n ≥ max{d, 3};
(ii) A1, . . . ,An are similar subdirectly irreducible algebras, and each A� has

abelian monolith μ�; let ρ� denote the centralizer of μ�;
(iii) for all I ⊆ [n] with |I| < max{d, 3}, the subalgebra of

∏
i∈I Ai generated

by {a1|I , . . . , ak|I} is a subdirect subalgebra of
∏

i∈I Ai, and b|I is a
member of this subalgebra;

(iv) for all i, j ∈ [n], the subalgebra of Ai/ρi × Aj/ρj generated by

{(a1i/ρi, a1j/ρj), . . . , (aki/ρi, akj/ρj)}
is the graph of an isomorphism Ai/ρi → Aj/ρj .

It is easy to see that d-coherence for inputs of SMP(K) can be checked
in polynomial time.

Definition 5.2 ([7, Def. 6.3]). We define SMPd-coh(K) to be the restriction of
SMP(K) to d-coherent inputs.

Theorem 5.3 ([7, Thm. 6.4]). If V is a variety in a finite language with a d-cube
term, then the decision problems SMP(K) and SMPd-coh(HSK) are polynomial
time equivalent for every finite family K of finite algebras in V.

Now we are ready to define our new reduction for SMP(K).

Definition 5.4. An input a1, . . . , ak, b ∈ A1 × · · · × An (A1, . . . ,An ∈ K) for
SMP(K) will be called d-central if it satisfies conditions (i) and (iii) in Defini-
tion 5.1 and the following new condition:
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(ii)′ A1, . . . ,An are subdirectly irreducible algebras such that the monolith
μ� of each A� is a central congruence of A� (i.e., [1, μ�] = 0, hence in
particular, μ� is abelian), and the monoliths μ1, . . . , μn have the same
prime characteristic.

As before, it is clear that d-centrality for inputs of SMP(K) can be checked
in polynomial time.

Definition 5.5. We define SMPd-centr(K) to be the restriction of SMP(K) to
d-central inputs.

Our reduction theorem will reduce the solution of SMP(K) to the solution
of SMPd-centr(K�) for several new sets K� of algebras constructed from K,
which are defined as follows.

Definition 5.6. Given K as in (5.1), let K denote the set of all subdirectly
irreducible algebras S in HSK whose monolith μS is abelian. Recall that simi-
larity of subdirectly irreducible algebras is an equivalence relation on K, so let
K1, . . . ,Kq denote its equivalence classes. For each � ∈ [q], let I� = ([m�],F)
be a fixed algebra that is isomorphic to S/(0 : μS) for all S ∈ K�, and let

K�
� := {C(S, χ) : S ∈ K�, χ is an onto homomorphism S → I�

with kernel (0 : μS)},

where C is the functor with domain category
(
Alg(F)� I�

)
.

Theorem 5.7. Let V be a variety in a finite language F with a d-cube term.
For any finite set K of finite algebras in V, the sets K�

1, . . . ,K�
q of algebras have

the following properties:
(1) Each K�

� (� ∈ [q]) is a finite set of finite algebras in a variety in a finite
language with a d-cube term.

(2) Each K�
� (� ∈ [q]) is a set of subdirectly irreducible algebras whose mono-

liths are central and have the same prime characteristic.
(3) SMP(K) is polynomial time reducible to the problems SMPd-centr(K�

� ) (� ∈
[q]), and the sets K�

� (� ∈ [q]) of algebras can be computed from K in
constant time.

Proof. We will use all notation introduced in Definition 5.6. For the proofs of
statements (1) and (2) we fix an � ∈ [q].

To prove (1), let W� denote the subvariety of V generated by K�. Since

{(S, χ) : S ∈ K�, χ is an onto homomorphism S → I� with kernel (0 : μS)}
(5.2)

is a finite set of objects in
(W� � I�

)
with all S ∈ K� finite, it follows from

Corollary 3.9 that K�
� is a finite set of finite algebras in the variety WC

� (whose
language F̂I�

is finite). Since V has a d-cube term, so does its subvariety W�.
The existence of a d-cube term is a strong idempotent Maltsev condition,
therefore the variety WC

� also has a d-cube term by Corollary 3.14.
For statement (2), let C := C(S, χ) be any algebra in K�

� . Here (S, χ)
is a member of the set in (5.2), so S is subdirectly irreducible with abelian
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monolith μS, and for the centralizer αS = (0 : μS) (≥ μS) we have that αS =
ker(χ). The map C described in Corollary 3.4 is an isomorphism between the
interval I(0, αS) in the congruence lattice of S and the congruence lattice of
C. Therefore, C is subdirectly irreducible with monolith μC

S. Moreover, by
Corollary 3.8, we have that (0 : μC

S) = (0 : μS)C = αC = 1, so the monolith μC
S

of C is central. Since S ∈ V and V is congruence modular, Theorem 3.18 and
the fact that μS is abelian imply that typC(0, μC

S) = typS(0, μS) = 2, and the
congruences μC

S and μS — i.e., the prime quotients 〈0, μC
S〉 and 〈0, μS〉 — have

the same prime characteristic. Since all algebras S in (5.2) are similar, and
hence by the definition or by the characterization of similarity in [9, Def. 10.6,
Thm. 10.8] they have the same characteristic, we conclude that the monoliths
of all members of K�

� have the same prime characteristic.
In statement (3) it is clear that the sets K�

� (� ∈ [q]) of algebras can
be computed from K in constant time. We need to argue that SMP(K) is
polynomial time reducible to the problems SMPd-centr(K�

� ) (� ∈ [q]). In view
of Theorem 5.3, it suffices to show that SMPd-coh(HSK) is polynomial time
reducible to the problems SMPd-centr(K�

� ) (� ∈ [q]). We will prove this by
describing how to assign to every input a1, . . . , ak, b for SMPd-coh(HSK) a
number � ∈ [q] and an input ã1, . . . , ãk, b̃ for SMPd-centr(K�

� ) in such a way
that

• the answer to the input a1, . . . , ak, b is ‘yes’ if and only if the answer to
the input ã1, . . . , ãk, b̃ is ‘yes’, and

• ã1, . . . , ãk, b̃ can be computed from a1, . . . , ak, b in polynomial time.

Let a1, . . . , ak, b ∈ ∏
j∈[n] Aj (A1, . . . ,An ∈ HSK) be an input for

SMPd-coh(HSK). Then this is a d-coherent input for SMP(K), that is, con-
ditions (i)–(iv) from Definition 5.1 hold. In particular, (ii) implies that there
is a unique � ∈ [q] such that A1, . . . ,An ∈ K�. This � can be found in con-
stant time. Now let us fix I := I� as described in Definition 5.6, choose an
isomorphism ϕ1 : A1/ρ1 → I, and for 2 ≤ j ≤ n define the isomorphisms
ϕj : Aj/ρj → I by ϕj := ϕ1◦ιj,1 where ιj,1 is the isomorphism Aj/ρj → A1/ρ1
from condition (iv) in Definition 5.1. For each j ∈ [n] let χj : Aj → I be de-
fined by χj := ϕj ◦ νj where νj : Aj → Aj/ρj is the natural homomorphism.
So, ker(χj) = ρj = (0 : μj) for every j ∈ [n]. Clearly, the algebra I and each
isomorphism ιj,1 can be computed in constant time, so the homomorphisms
χj (j ∈ [n]) can be computed in O(n) time.

Let B and B+ denote the subalgebras of
∏

j∈[n] Aj generated by the
sets {a1, . . . , ak} and {a1, . . . , ak, b}, respectively. Using the homomorphisms
χj (j ∈ [n]) we can express condition (iv) as follows: B is a subalgebra of
the algebra

∏�I
j∈[n] Aj , where (

∏�I
j∈[n] Aj ;χ) with χ defined by (x1, . . . , xn) �→

χ1(x1) = · · · = χn(xn), is the product of the objects (Aj , χj) (j ∈ [n]) in the
category

(
Alg(F)� I

)
. Condition (iii) of Definition 5.1 implies that B and B+

are both subdirect subalgebras of
∏

j∈[n] Aj , moreover, the requirements on b

in this condition ensure that B+ is a subalgebra of
∏�I

j∈[n] Aj as well. Therefore,
the map χ restricts to B and B+ as onto homomorphisms χ|B : B → I and
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χ|B+ : B+ → I. The kernel classes of these homomorphisms are the sets B∩D(i)

and B+ ∩ D(i) (i ∈ [m]), respectively, where D(i) =
∏

j∈[n] χ
−1
j (i). Hence,

B+ ∩ D(i) ⊇ B ∩ D(i) 	= ∅ for every i ∈ [m].
We can compute representatives d(i) ∈ B ∩ D(i) for each i ∈ [m] by

generating all elements of B/ ker(χ|B) ∼= I using χ(a1), . . . , χ(ak) (at most m
distinct elements), and replicating the same computation using at most m of
the generators a1, . . . , ak instead, one from each set {a1, . . . , ak} ∩ χ−1

(
χ(ar)

)

(r ∈ [k]). This requires O(kn) time.
Now let Cj := C(Aj , χj) for every j ∈ [n], and let BC and (B+)C be

the subalgebras of
∏

j∈[n] Cj obtained from B and B+ by applying the map C

described in Theorem 3.1(1). Furthermore, let :̃
∏�I

j∈[n] Aj →∏
j∈[n] Cj be the

function defined in Theorem 3.1(3), using the elements d(i) (i ∈ [m]) from the
preceding paragraph as padding elements. Let ã1, . . . , ãk, b̃ be the elements
of (B+)C obtained from the given input elements a1, . . . , ak, b by applying
this function. Clearly, ã1, . . . , ãk, b̃ can be computed from a1, . . . , ak, b and
d(1), . . . , d(m) in O

(
kn
)

time.
Since {a1, . . . , ak} generates B, and {a1, . . . , ak, b} generates B+, Theo-

rem 3.1(3), together with the fact d(1), . . . , d(m) ∈ B ⊆ B+, implies that

{ã1, . . . , ãk} is a generating set for BC, and
{ã1, . . . , ãk, b̃} is a generating set for (B+)C.

(5.3)

Now we want to show that

ã1, . . . , ãk, b̃ ∈ C1 × · · · × Cn (C1, . . . ,Cn ∈ K�
� ) (5.4)

is a correct input for SMPd-centr(K�
� ), that is, ã1, . . . , ãk, b̃ is a d-central input

for SMP(K�
� ). We need to check that conditions (i), (ii)′, and (iii) from Defi-

nition 5.4 hold for the new input (5.4), that is, they hold for ãr (r ∈ [k]), b̃,
Cj (j ∈ [n]), and K�

� in place of ar (r ∈ [k]), b, Aj (j ∈ [n]), and K. Note
first that our general assumption (5.1) (suppressed in Definition 5.4) holds for
K�

� by Theorem 5.7(1). Condition (i) from Definition 5.4 holds for the new
input (5.4), because it is identical to condition (i) of d-coherence for the orig-
inal input a1, . . . , ak, b. Condition (ii)′ from Definition 5.4 holds for (5.4) by
Theorem 5.7(2), since C1, . . . ,Cn ∈ K�

� . To check condition (iii) from Defini-
tion 5.4 for the new input (5.4), let I ⊆ [n] be such that |I| < max{d, 3}. In
view of (5.3), the subalgebra of

∏
j∈I Cj generated by {ã1|I , . . . , ãk|I} is BC|I ,

while the subalgebra of
∏

j∈I Cj generated by {ã1|I , . . . , ãk|I , b̃|I} is (B+)C|I .
Therefore, condition (iii) from Definition 5.4 for (5.4) and for the chosen I is
equivalent to saying that BC|I projects to each coordinate j ∈ I to be Cj ,
and (B+)C|I = BC|I . To prove that BC|I and (B+)C|I meet these conditions,
notice that our assumption that the original input a1, . . . , ak, b is d-coherent,
implies that the analogous conditions hold for B|I , B+|I , and Aj (j ∈ I). Con-
sequently, they also hold if we pass to their images under the map C described
in Theorem 3.1(1). Thus, (B|I)C projects to each coordinate j ∈ I to be Cj ,
and (B+|I)C = (B|I)C. According to Theorem 3.1(2), projection onto a set of
coordinates is preserved by C, therefore these conditions hold with the order
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of |I and C switched. This proves (iii) from Definition 5.4 for the new input
(5.4), and hence finishes the proof that the input (5.4) is d-central.

Finally, using again (5.3), we get that

the answer of SMPd-centr(K�
� ) to the input ã1, . . . , ãk, b̃ is ‘yes’

⇔ b̃ ∈ BC ⇔ (B+)C = BC Thm 3.1⇔ (B+) = B ⇔ b ∈ B

⇔ the answer of SMPd-coh(HSK) to the input a1, . . . , ak, b is ‘yes’.

The crucial step is Thm 3.1⇔ , where we use the bijective property of the map C

in Theorem 3.1(1). The proof of Theorem 5.7 is complete. �

Corollary 5.8. The following conditions are equivalent:
(a) SMP(K) ∈ P for every finite set K of finite algebras in a variety in a

finite language with a d-cube term.
(b) SMPd-centr(K) ∈ P for every finite set K of finite algebras in a variety in

a finite language with a d-cube term.

Theorem 5.9. Let V be a variety in a finite language F with a d-cube term. If
K is a finite set of finite algebras in V such that

(‡) for every subdirectly irreducible algebra S ∈ HSK with abelian mono-
lith μS the centralizer of μS is supernilpotent,

then SMP(K) ∈ P.

The result of [7, Thm. 6.4] mentioned earlier is a special case of Theo-
rem 5.9; it is obtained from this theorem by replacing the word ‘supernilpotent’
in condition (‡) by the word ‘abelian’. Indeed, the strengthening of condition
(‡) where ‘supernilpotent’ is replaced by ‘abelian’ is equivalent to the condi-
tion that K generates a residually small variety, and hence V can be chosen to
be residually small (see. e.g., [7, Cor. 2.4] and the discussion preceding it).

Finite algebras with a Maltsev term that satisfy a slightly weaker condi-
tion than (‡), namely that in every subdirectly irreducible homomorphic image
the monolith has supernilpotent centralizer, already appeared in [18] where a
relational description of their polynomial clones was given.

Proof of Theorem 5.9. We will use the notation introduced in Definition 5.6.
By Theorem 5.7(3), it suffices to show that under the assumptions of Theo-
rem 5.9 we have SMPd-centr(K�

� ) ∈ P for every � ∈ [q]. Let � ∈ [q] be fixed for
the rest of the proof. For notational convenience, we will drop the subscript �;
that is, we will write K for K�, I = ([m];F) for I� = ([m�];F), and K� for K�

� .
Furthermore, let K :=

∏K� be the product of all members of K�. Clearly, the
variety V(K) it generates coincides with the variety generated by K�.

We know from Theorem 5.7(1) that K� is a finite set of finite algebras in
a variety in a finite language (namely, F̂I) with a d-cube term. Therefore, K is
a finite algebra, the variety V(K) has a d-cube term, and hence is congruence
modular.

In the proof of Theorem 5.7(2) we saw that for every algebra C = C(S, χ)
in K�,
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• C is subdirectly irreducible with monolith μC
S, where μS is the monolith

of S, and
• 1 = αC

S centralizes μC
S, where αS = (0 : μS).

Now, our additional assumption (‡) implies that αS is a supernilpotent con-
gruence of S. Hence, by Theorem 3.6, 1 = αC

S is a supernilpotent congruence of
C. Thus, all algebras in K� are supernilpotent. Since they are also subdirectly
irreducible, Theorem 4.1 implies that they are nilpotent algebras of prime
power order. By Theorem 5.7(2) we also have that the algebras in K� have the
same prime characteristic. It follows that the cardinality of every algebra in
K� is a power of the same prime. Hence, the product of these algebras, K, is
also nilpotent of prime power order. Statement (I) following Theorem 4.1 also
implies that K has a Maltsev term.

Now we can use [19, Thm. 1.2] to conclude that SMP({K}) ∈ P. Clearly,
SMP({K}) is polynomial time reducible to SMP(K�), since every computation
for SMP({K}) can be viewed as a computation for SMP(K�). Conversely,
SMP(K�) is also polynomial time reducible to SMP({K}) for the following
reason: by [7, Thm. 4.11], if L is a finite set of finite algebras in a variety in a
finite language with a cube term, then SMP(L) and SMP(HSL) are polynomial
time equivalent. This theorem applies to L = {K}, so since K� ⊆ HS{K}, we
get that SMP(K�) is a subproblem of SMP(HS{K}), which is polynomial time
equivalent to SMP({K}). This proves that SMP(K�) ∈ P. It follows that for
its subproblem we also have SMPd-centr(K�) ∈ P, which completes the proof
of Theorem 5.9. �
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[23] Novotný, M.: Remarks on heterogeneous algebras. Časopis Pěst. Mat. 107(4),
397–406 (1982)

[24] Shriner, J.: Hardness results for the subpower membership problem. Int. J. Al-
gebra Comput. 28(5), 719–732 (2018)

[25] Smith, J.D.H.: Mal’cev Varieties, Lecture Notes in Mathematics, vol. 554.
Springer, Berlin (1976)

[26] Steindl, M.: The subpower membership problem for bands. J. Algebra 489, 529–
551 (2017)

[27] Steindl, M.: On semigroups with PSPACE-complete subpower membership prob-
lem. J. Aust. Math. Soc. 106(1), 127–142 (2019)

[28] Taylor, W.: Characterizing Mal′cev conditions. Algebra Univ. 3, 351–397 (1973)

[29] Vanderwerf, J.: Wreath decompositions of algebras. Thesis (Ph.D.)–University
of California, Berkeley (1994)

Peter Mayr and Ágnes Szendrei
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