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Residual finiteness and related properties
in monounary algebras and their direct
products

Bill de Witt

Abstract. In this paper we discuss the relationship between direct prod-
ucts of monounary algebras and their components, with respect to the
properties of residual finiteness, strong/weak subalgebra separability, and
complete separability. For each of these properties P, we give a criterion
CP such that a monounary algebra A has property P if and only if it
satisfies CP . We also show that for a direct product A×B of monounary
algebras, A×B has property P if and only if one of the following is true:
either both A and B have property P, or at least one of A or B are
backwards-bounded, a special property which dominates direct products
and which guarantees all P hold.
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1. Summary of results

Monounary algebras are the simplest types of algebraic structure which are
not entirely trivial, and yet display some interesting structure and behaviours.
In this paper we work with residual finiteness and the related properties of
strong/weak subalgebra separability and complete separability. Throughout
this paper we will use N to denote the set of non-negative integers, and N

+ to
denote the set of positive integers. For a monounary algebra (A, f) we use, for
x ∈ A and n ∈ N the notion of preimage sets f−n(x) (defined in Section 2) to
give necessary and sufficient conditions for A to have these properties (Theo-
rems 4.3, 6.7, and 6.14). Specifically:
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Residual finiteness. For all x, y ∈ A such that x �= y and f(x) = f(y),
there exists n ∈ N such that either f−n(x) = ∅ or f−n(y) = ∅. Strong/weak
subalgebra separability. For all x ∈ A, either there exists n ∈ N such that
f−n(x) = ∅, or x is in a cycle. Complete separability. For all a ∈ A there
exists n ∈ N such that f−n(a)\ ⋃n−1

i=0 f−i(a) = ∅.
We then consider direct products, and take into particular consideration

algebras where for every x ∈ A there exists n ∈ N such that f−n(x) = ∅,
which we call backwards-bounded. We show in Theorems 5.6, 6.10, and 6.17
that when it comes to direct products, all of these properties behave in the
same way. More precisely, we show that a direct product has property P if and
only if one of the following is true: both components have property P, or at
least one of them is backwards-bounded.

2. Basics of monounary algebras and residual finiteness

We will begin with an introduction to monounary algebras, and prove some
results regarding their structure which are both useful in the overall context
of this paper, but also are helpful for the reader to visualise these algebraic
structures. A general overview of monounary algebras can be found in [1].

A unary operation is a function from a set to itself, and a monounary
algebra is a set together with a single unary operation defined on it. Note
that we will usually identify a monounary algebra with its underlying set,
and as such will omit mentioning the function where it is not necessary. A
monounary algebra (A, f) can be visualised in a natural way, as a directed
graph; the vertices are the elements of A, and for all a ∈ A there is a directed
edge from a to its image f(a). Note that there is exactly one out-edge at each
vertex. We now define a few specific monounary algebras, which will be used
in the paper:

Example 2.1. (1) The n-line is the monounary algebra Ln = ({ 0, 1, . . . , n −
1 }, x �→ max{ 0, x − 1 }).

(2) The n-cycle is the monounary algebra Cn = ({ 0, 1, . . . , n−1 }, x �→ (x+1)
mod n).

(3) The n-trivial monounary algebra on n points is Tn = ({ 0, 1, . . . , n −
1 }, x �→ x).

(4) The bi-infinite path (Z, x �→ x + 1), hereafter referred to as Z.

Note that Ln, Cn and Tn are defined for all n ∈ N
+.

Some specific instances of these algebras are depicted in Figure 1.
We will be using a number of results about the structure of these graphs,

rephrased as results about monounary algebras. Many of these results can be
found in [2] in more detail. Relevant graph theory definitions and results can
be found in [3], and a discussion of the combinatorial aspects of monounary
algebras can be found in [4].

One particular graph theoretic property we will deal with is connected-
ness. A monounary algebra is called connected if the corresponding undirected
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Figure 1. The monounary algebras L4, C4, T4 and Z

Figure 2. There cannot be a path between two cycles

graph is connected. For the purposes of this paper, it will almost always be
sufficient to prove results for connected monounary algebras.

As is the usual for algebraic structures, we have notions of subalgebras
and homomorphisms. For a monounary algebra (A, f) a subalgebra (S, g) of A
is a subset S ⊆ A such that f(S) ⊆ S with a unary operation g = f |S , the
restriction of f to S. A function φ : A → B between two monounary algebras
(A, f1) and (B, f2) is a homomorphism if φ(f1(a)) = f2(φ(a)) for all a ∈ A.
An isomorphism is a homomorphism which is a bijection.

Lemma 2.2. Let A be a monounary algebra. Then:

(1) If A is finite and non-empty, there is a subalgebra C ≤ A which is a cycle
(i.e. C ∼= Ck for some k ∈ N

+).
(2) If A is connected and there exists a subalgebra C isomorphic to a cycle,

then it is the unique such subalgebra, and is contained in every non-empty
subalgebra of A.

We omit the proof of this Lemma, as it is sufficiently simple. The impor-
tant observation to show uniqueness is that paths cannot come out of a cycle,
they must go into cycles (see Figure 2).

For a monounary algebra (A, f), and a subset S ⊆ A, we may want to
consider the subalgebra generated by S, denoted 〈S〉. By this we mean the
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Figure 3. The homomorphism φ separates a and b in a finite algebra

smallest subalgebra of A containing S, which can be constructed as follows:

〈S〉 = { fn(s) : n ∈ N, s ∈ S }.

Residual finiteness is a property which has been studied in depth for a
number of algebraic structures (groups in particular) for many decades. One
can find discussions of residual finiteness in groups in [5, Chapter 9] as well as
in [6, Chapter 2]. The notion has also been investigated in general algebraic
structures, such as in [7], which looks at the relationship between residual
finiteness and other algebraic properties. A recent work in this area is [8],
which discusses residual finiteness of direct products in congruence modular
varieties. It is with the goal of understanding how the property is reflected in
general algebraic structures, that we investigate its nature in this specific type
of structure.

We now define the property of residual finiteness for monounary algebras.

Definition 2.3. A monounary algebra A is residually finite if for all distinct
x, y ∈ A, there exists a finite monounary algebra F and a homomorphism
φ : A → F such that φ(x) �= φ(y).

We give the specific example of Z, and show that it is residually finite.
This will be used in the main classification theorem for residual finiteness in
Section 4.

Lemma 2.4. The monounary algebra Z is residually finite.

Proof. Let a,b ∈ Z with a �= b, and set m = |b − a| + 1. Then we construct
a map φ : Z → Cm defined by φ(n) = n (mod m). It is then easy to verify
that this is a homomorphism, and that φ(a) �= φ(b). An example is depicted
in Figure 3. �

One of the main motivations for this paper is to study how residual finite-
ness interacts with direct products. The following is well-known in universal
algebra:

Lemma 2.5. Let A and B be residually finite algebras of the same type. Then
the direct product A × B is residually finite.

Proof. If two pairs (a1, b1), (a2, b2) ∈ A × B are not equal, then they differ in
at least one component. Assume without loss of generality that a1 �= a2. Then
as A is residually finite there exists a homomorphism φ : A → F where F is
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finite and φ(a1) �= φ(a2). Thus, letting π1 : A × B → A be the projection onto
the first co-ordinate, we have that θ = π1 ◦φ : A×B → F is a homomorphism
such that θ(a1) �= θ(a2). �

But the converse is more challenging. That is: if A×B is residually finite,
is it true that both A and B are residually finite? It was shown in [9] that this
is true for many well-studied classes of algebras, via the following proposition.

Proposition 2.6. Let A and B be algebras, and suppose that A contains an
idempotent. If A × B is residually finite then B is residually finite.

Note: an idempotent is an element e such that f(e, e, . . . , e) = e for every
operation f . Equivalently, it is an element such that { e } is a subalgebra.

From this proposition it follows that the condition is true for any class
which always contains idempotents, such as: groups, rings, monoids, semilat-
tices, loops, quasirings etc.

Less obviously, in [9] the analogous assertion was also shown for the
variety of semigroups, which do not necessarily have idempotents. However it is
not true in unary algebras. Specifically, [9] provided an example of a residually
finite product of monounary algebras, one of which is not residually finite, as
well as an example of two biunary algebras neither of which are residually
finite, but whose product is. We will show in Section 5 that in monounary
algebras, at least one component must be residually finite to obtain residual
finiteness in the direct product.

3. Preliminaries on preimages

We now introduce some notation for a key concept featured in the major results
in this paper, that of preimage sets.

Notation 3.1. Let (A, f) be a monounary algebra, and a ∈ A. Then for n ∈ N

we define

f−n(a) = { b ∈ A : fn(b) = a }.

In graphical terms, this would be the set of points from which there is a walk
of length n terminating at a.

It turns out that this is the most important thing to consider when dealing
residual finiteness of a monounary algebra, and so this chapter is dedicated to
their properties, and some constructions we can use them for.

Definition 3.2. For a monounary algebra A, we say a point a ∈ A is backwards
eternal if f−n(a) �= ∅ for all n ∈ N.

Backwards eternality is particularly useful, and so it is worth clarifying
that it is not equivalent to a point being at the end of a path of infinite length,
it can also be at the end of infinitely many finite paths with no upper bound
on length, as in the following example.
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Figure 4. A monounary algebra containing a backwards
eternal point, but no backwards infinite paths

Example 3.3. Let A = N∪{ (a, b) ∈ N
2 : a ≤ b }, and define a unary operation

by

f(x) =

⎧
⎪⎨

⎪⎩

x + 1 if x ∈ N,

0 if x ∈ { 0 } × N,

x − (1, 0) otherwise.
This monounary algebra is depicted in Figure 4. Every point in N is backwards
eternal.

Note that, for simplicity, in the following lemma we identify fn(a) with
the set { fn(a) } for n ∈ N.

Lemma 3.4. Let (A, f) be a monounary algebra, and a, x ∈ A. Then:
(i) fn(f−m(a)) ⊆ fn−m(a) for all n,m ∈ N;
(ii) if there exists n ∈ N such that f−n(a) = ∅, then f−m(a) = ∅ for all

m ≥ n;
(iii) if a is in a cycle then a is backwards eternal;
(iv) if a is not in a cycle, then f−n(a)∩f−m(a) = ∅ for any distinct n,m ∈ N;
(v) f(x) ∈ f−n(a) if and only if x ∈ f−(n+1)(a).

Proof. (i) First note that fm(f−m(a)) = a by definition, and so the result
follows trivially for n ≥ m. For n < m, note that for all b ∈ f−m(a) we have
that a = fm(b) = fm−n(fn(b)), so fn(b) ∈ fn−m(a).

(ii) Follows immediately from (i).
(iii) Let k be the length of the cycle containing a. Then a ∈ f−mk(a) for

all m ∈ N. So by (ii) we have that f−n(a) �= ∅ for all n ∈ N.
(iv) Assume not, and that n > m. Then there exists b ∈ f−n(a)∩f−m(a).

So fn(b) = fm(b) = a, and it follows that fn−m(a) = a, so a is in a cycle, a
contradiction.

(v) Follows immediately from the definition. �

These results are sufficiently intuitive that they will be used without
explicit reference in later sections. The following is slightly more complicated,
and deals with the interactions between pre-images of distinct points.
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Lemma 3.5. Let (A, f) be a connected monounary algebra, and let a, b ∈ A be
two distinct elements. Then precisely one of the following is true:
(1) There exists n ∈ N such that fn(a) = b or fn(b) = a;
(2) (

⋃
n∈N

f−n(a)) ∩ (
⋃

n∈N
f−n(b)) = ∅.

Additionally, in the case of (2), there exist n,m ∈ N such that fn(a) =
fm(b).

Proof. It is clear that if (1) is true then (2) is false. It is then sufficient to show
that if (1) is false, then (2) must be true.

We show the contrapositive. Assume (2) is false. It therefore follows that
there exists x ∈ A such that x ∈ f−n(a) ∩ f−m(b) for some n,m ∈ N. We thus
have that fn(x) = a and fm(x) = b. Assuming without loss of generality that
n < m, we get that b = fm(x) = fm−n(fn(x)) = fm−n(a), so (1) is true.

Finally, for the additional condition, when (2) is true, as A is connected
there exists an (undirected) path (a = a0, a1, . . . , ak = b). If this path were a
directed path, then we would have (1), so this is not the case.

As an out-edge corresponds to the action of the function f , there cannot
be two out-edges at a vertex ai. Thus for a path to not be directed there must
exist an ai with two in-edges, or in other words, ai = f(ai−1) = f(ai+1). Since
f(ai−1)=ai �=ai−2 we have that f(ai−2)=ai−1, or in other words, the edge goes
from ai−2 to ai−1. Repeating this process until we reach a gives us that f i(a) =
ai and a similar process from ai+1 gives us that fk−i(b) = ai = f i(a). �

The two possibilities are depicted in Figure 5.
We will now use preimage sets to construct some homomorphisms which

will be used in later sections.

Lemma 3.6. Let (A, f) be a connected monounary algebra containing a cycle
of length k. Then there exists a homomorphism φ : A → Ck.

Proof. Fix a point a ∈ A contained in the cycle. Note that since A is connected,
we have that for all y ∈ A\{ a } there exists n ∈ N such that fn(y) is in the
cycle. Thus there exists a minimal ny ∈ N such that fny (y) = a. Then since
the unary operation on Ck (which we will call fCk

) is a bijection, f−n
Ck

is a

Figure 5. The two possibilities as discussed in Lemma 3.5
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well defined function for all n ∈ N. Thus we define a function φ : A → Ck as
follows:

φ(x) =

{
0 if a = x,

f−nx

Ck
(0) otherwise.

We show this is a homomorphism. If nx ≥ 2 then fnx−1(f(x)) = a and so

φ(f(x)) = f
−nf(x)

Ck
(0) = f−nx+1

Ck
(0) = fCk

(f−nx

Ck
(0)) = fCk

(φ(x)).

If nx = 1 then

φ(f(x)) = φ(a) = 0 = fCk
(f−1

Ck
(0)) = fCk

(φ(x)).

If x = a then nf(x) = k − 1, and so

φ(f(x)) = f−k+1
Ck

(0) = fk
Ck

(f−k+1
Ck

(0)) = fCk
(0) = fCk

(φ(x)). �

Lemma 3.7. Let A be a monounary algebra. Suppose a ∈ A such that f−n(a) =
∅ for some n ∈ N. Define λa : A → Ln+1 by:

λa(x) =

{
m + 1 if x ∈ f−m(a),
0 else.

Then
(i) λa is a homomorphism.
(ii) λa(a) = λa(b) if and only if a = b.

Proof. By Lemma 3.4, a is not in a cycle, thus the f−i(a) are disjoint for all
i < n, so λa is a well-defined function. If x ∈ f−k(a) for some k ≥ 1 then by
Lemma 3.4, we have λa(f(x)) = λa(x)−1 = fLn+1(λa(x)). If x = a then f(x) =
f(a) �∈ f−k(a) for any k ∈ N, so λa(f(x)) = 0 = λa(x) − 1 = fLn+1(λa(x)).
Finally, if x �∈ f−k(a) for all k ∈ N then by Lemma 3.4, f(x) �∈ f−k(a) for
all k ∈ N. Hence λa(f(x)) = 0 = fLn+1(λa(x)). Thus λa is a homomorphism.
Furthermore, λ−1

a (λa(a)) = λ−1
a (1) = f−0(a) = { a }. �

Notation 3.8. This type of homomorphism will make repeated appearances
throughout the paper, as it allows us to separate a from all other elements
of A in a finite homomorphic image. As such we will reserve the notation λa

specifically for these homomorphisms.

4. A graphical characterisation of residual finiteness

This section provides a criterion for residual finiteness of monounary algebras.
The proof of the criterion uses results from previous sections, in particular
Lemmas 3.5 and 2.2. But first, we briefly discuss how connectedness can affect
residual finiteness.

Lemma 4.1. Let (A, f) be a monounary algebra, with connected components
{Ki : i ∈ I } (where I is an arbitrary index set). Then A is residually finite
if and only if Ki is residually finite for all i ∈ I.
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Figure 6. Showing the results of attempting to get a finite
homomorphic image of an algebra which fails the RF criterion

Proof. First assume each of the Ki is residually finite. Let x,y ∈ A, then there
exist ix,iy ∈ I such that x ∈ Kix and y ∈ Kiy . Then if ix �= iy we can construct
a homomorphism φ : A → T2 as follows:

φ(a) =

{
0 if a ∈ Kix ,

1 otherwise.

It is easily verifiable that φ is a homomorphism, and φ(x) �= φ(y). If ix = iy
then since Kix is residually finite, there exists a homomorphism φ : Kix → F ,
where F is finite, such that φ(x) �= φ(y). Let F ′ = F �T1 be the disjoint union
of F with T1. Then we extend φ to a homomorphism Φ : A → F ′ by letting
Φ(A\Kix) = 0 where 0 is the single point in T1. Thus A is residually finite.

For the converse, simply note that residual finiteness is preserved under
taking subalgebras. �
Lemma 4.2. Let (A, f) be a monounary algebra, and (B, g) a finite monounary
algebra such that there is a homomorphism φ : A → B. If x, y ∈ A are distinct
backwards eternal elements such that f(x) = f(y), then φ(x) = φ(y).

Proof. As x, y are in the same connected component of A, we can assume
without loss of generality that A is connected. We may also assume without
loss of generality that φ is surjective, and thus that B is connected.

Since f−n(x) �= ∅ for all n ∈ N, then there exists xn ∈ A such that
fn(xn) = x. Applying φ, we get φ(fn(xn)) = gn(φ(xn)) = φ(x). Thus g−n(φ(x))
�= ∅ for all n ∈ N. However, since B is finite, there must be elements which
lie in the intersection of two preimage sets of φ(x), and so it follows from
Lemma 3.4 (iv) that φ(x) is in the unique cycle in B. However, we can ap-
ply the same logic to y to see that φ(y) is also in the cycle. But g(φ(x)) =
φ(f(x)) = φ(f(y)) = g(φ(y)), and since g is a bijection when restricted to the
cycle, it follows that φ(x) = φ(y) (Figures 6, 7). �

Theorem 4.3. Let (A, f) be a monounary algebra. Then the following are equiv-
alent:

Figure 7. RF criterion fails due to x and y



32 Page 10 of 22 B. de Witt Algebra Univers.

(1) A is residually finite,
(2) for all distinct x, y ∈ A such that f(x) = f(y), there exists n ∈ N such

that either f−n(x) = ∅ or f−n(y) = ∅.

Notation 4.4. As we will make repeated reference to it, for simplicity we will
refer to the second condition as the RF criterion.

Proof. By Lemma 4.1, we may assume without loss of generality that A is
connected.

(1)⇒(2) Follows immediately from Lemma 4.2.
(2)⇒(1) Next we show that if the RF criterion holds, then the algebra is

residually finite. We shall do this by constructing homomorphisms. Let x, y ∈
A. Note that via Lemma 3.5, we have that one of the following holds
(1) There exists n ∈ N such that fn(x) = y or fn(y) = x.
(2) (

⋃
n∈N

f−n(x)) ∩ (
⋃

n∈N
f−n(y)) = ∅.

We shall first deal with case 2. By Lemma 3.5, we may find minimal
i, j ∈ N (with i, j ≥ 1 such that f i(x) = f j(y). Call this common point
p. It then follows that there exist x′ = f i−1(x) �= f j−1(y) = y′ such that
f(x′) = f(y′) = p. It then follows by the RF criterion that, without loss of
generality, there exists n′ ∈ N such that f−n′

(x′) = ∅ (and by Lemma 3.4,
n′ > i − 1), and so setting n = n′ − (i − 1) we have f−n(x) = ∅. Then we
can use λx from Lemma 3.7, which is a homomorphism to a finite algebra, and
λx(x) �= λx(y).

For case 1, note that if there exists a finite cycle Ck ⊂ A and a backwards
eternal element a ∈ A\Ck, then the RF criterion does not hold. Thus if there
exists a cycle, then for every point a ∈ A which is not in the cycle, there
exists m ∈ N such that f−m(a) = ∅. We can thus further separate case 1 into
subcases:
(a) both x and y are in the cycle Ck;
(b) there exists m ∈ N such that f−m(x) = ∅ or f−m(y) = ∅;
(c) there are no cycles in A.

For subcase 1(a), note that as the algebra is connected and contains a
cycle we can use the homomorphism φ defined in Lemma 3.6. Then note that
this homomorphism separates all elements of the cycle from each other, and
so φ(x) �= φ(y).

For subcase 1(b), we can again use λx or λy.
For subcase 1(c), we note that if we are not also in subcase 1(b), we have

that y is backwards eternal and f i(y) �= f j(y) for all distinct i, j ∈ N. Let
Z = { f i(y) : i ∈ N }∪ (

⋃
n∈N

f−n(y)). Let z ∈ A\Z, then by Lemma 3.5, there
exist i,j ∈ N such that f i(z) = f j(y). Thus for each a ∈ A\Z we associate the
value p(z) = j − i ∈ Z. Then let Pk = { z ∈ A\Z : p(z) = k }. We thus have
that A = Z � (

⊔
i∈Z

Pi). We then define a function θ : A → Z as follows:

θ(a) =

⎧
⎪⎨

⎪⎩

−k if a ∈ f−k(y) ∪ P−k,

0 if a ∈ { y } ∪ P0,

k if a ∈ { fk(y) } ∪ Pk.
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We show that this is a homomorphism to the monounary algebra Z and
that θ(x) �= θ(y). If a ∈ f−k(y) for some k ≥ 1 then f(a) ∈ f−k+1(y), and so
θ(f(a)) = −k + 1 = θ(a) + 1. If a = y then θ(f(a)) = 1 = 0 + 1 = θ(a) + 1.
If a = fk(y) for some k ≥ 1 then θ(f(a)) = θ(fk+1(y)) = k + 1 = θ(a) + 1. If
a ∈ Pk for some k ∈ Z and f(a) = fk+1(y) then θ(f(a)) = k + 1 = θ(a) + 1.
If a ∈ Pk for some k ∈ Z and f(a) �= fk+1(y) then f(a) ∈ Pk+1 so θ(f(a)) =
k+1 = θ(a)+1. Thus θ is a homomorphism. And since we have that fn(x) = y
or fn(y) = x for some n ∈ N, it is clear that θ(x) �= θ(y).

Then using Lemma 2.4, we can construct a homomorphism σ : Z → Cm

for some m ∈ N such that σ(θ(x)) �= σ(θ(y)). Thus the composition σθ is a
homomorphism into a finite algebra which separates x and y as required. �

If we were to rephrase the RF criterion in graphical terms, it would
be as follows:“For all distinct vertices x, y, if there exists a vertex z such
that (x, z), (y, z) are edges, then at least one of x or y has a finite bound on
the length of walks that terminate there.” We can also phrase it in terms of
backwards eternality, and it would become: “For all a ∈ A, at most one element
of f−1(a) is backwards eternal.”

5. Direct products

Our primary goal in this section is to use our criterion from Section 4 to
obtain necessary and sufficient conditions on components of a direct product
of monounary algebras for the direct product itself to be residually finite.

We first take note of a class of monounary algebras that seems to exhibit
residual finiteness that is, in some sense, more powerful than usual. We shall
give this particular type of monounary algebra a name, as they turn out to
have some very strong separation properties, and behave in fundamentally
different ways with respect to direct products.

Definition 5.1. A monounary algebra A is called backwards-bounded if for all
a ∈ A there exists an n ∈ N such that f−n(a) = ∅. Equivalently, it is a
monounary algebra which contains no backwards eternal elements.

Note that it is possible for f−m(a) to be an infinite set, as there could
be infinitely many paths ending at a, but with finite maximum length.

Rephrased in graphical terms, this becomes: “A monounary algebra A is
backwards-bounded if for all vertices x there is a finite bound on the length of
walks which terminate at x.”

By definition such structures satisfy the RF criterion, and so;

Lemma 5.2. Backwards-bounded monounary algebras are residually finite.

In addition, for a direct product (A × B, f) of monounary algebras
(A, f1), (B, f2), we have fn((a, b)) = (fn

1 (a), fn
2 (b)). From this we get the fol-

lowing lemma, which shows that the finite number of non-empty preimages
is particularly powerful. From here on, we will drop the double brackets and
write f(a, b) instead of f((a, b)), and whenever we have a direct product, we
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will use fi to refer to the operation on the ith component and f to refer to
the operation on the product unless otherwise specified.

Lemma 5.3. For a direct product A × B of monounary algebras A and B, we
have f−n(x, y) = f−n

1 (x) × f−n
2 (y).

Proof.

(a, b) ∈ f−n(x, y) ⇔ fn(a, b) = (x, y),

⇔ fn
1 (a) = x, fn

2 (b) = y

⇔ a ∈ f−n
1 (x), b ∈ f−n

2 (y). �

This yields the following two propositions about residual finiteness of
certain direct products, which essentially show that backwards-boundedness
forces direct products to be residually finite, and that it is the only class of
monounary algebras that do so.

Proposition 5.4. Let A be a backwards-bounded monounary algebra. Then for
any monounary algebra B we have that A×B is backwards bounded, and hence
residually finite.

Proof. Let (a, b) ∈ A×B. Then there exists ka ∈ N such that f−ka
1 (a) = ∅. It

then follows by Lemma 5.3 that f−ka(a, b) = ∅. Thus we have that for every
point x ∈ A × B, there exists an n ∈ N such that f−n(x) = ∅, and so A × B
is backwards-bounded. Thus A × B is residually finite. �

Proposition 5.5. Let A be a non-residually finite monounary algebra, and B
another monounary algebra. If A × B is residually finite then B is backwards-
bounded.

Proof. We show the contrapositive: assume B is not backwards-bounded, so
there exists b ∈ B which is backwards eternal.

As A is not residually finite, the RF criterion does not hold, so there
exist two distinct backwards eternal points x, y ∈ A. Consider the points
(x, b), (y, b) ∈ A × B. These are distinct points and f(x, b) = (f1(x), f2(b)) =
(f1(y), f2(b)) = f(y, b). Then since f−n

1 (x), f−n
1 (y), f−n

2 (b) �= ∅ for all n ∈ N,
it follows by Lemma 5.3 that f−n(x, b), f−n(y, b) �= ∅ for all n ∈ N. Thus by
Theorem 4.3, A × B is not residually finite. �

These propositions combine to give us the following theorem, which de-
termines the residual finiteness of a direct product of monounary algebras from
the properties of the components. In particular it shows there is only one way
to get a residually finite product without both components being residually
finite.

Theorem 5.6. A direct product of monounary algebras, A × B, is residually
finite if and only if one of the following holds:
(1) Both A and B are residually finite.
(2) A is backwards-bounded.
(3) B is backwards-bounded.
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Proof. The reverse implication follows trivially for 1, and from Proposition 5.4
for 2 and 3. For the forward implication, let A × B be residually finite. Then
if 1 is not true, then at least one of A and B is not residually finite, so by
Proposition 5.5, the other is backwards-bounded, giving 2 or 3. �

We can easily extend this result to arbitrary products.

Theorem 5.7. For an arbitrary index set I, a direct product of monounary
algebras

∏
i∈I Xi is residually finite if and only if one of the following holds:

(1) Xi is residually finite for all i,
(2) There exists an i such that Xi is backwards-bounded.

Proof. First note that it can be seen shortly from Lemma 5.3 that in fact a
direct product is backwards bounded if and only if at least one of its component
is backwards-bounded.

For the reverse direction, note we can show (1) implies the product is
residually finite in exactly the same way as in the case for two factors. For (2),
as at least one component is backwards-bounded, the product is backwards-
bounded (and thus residually finite). For the forward implication, note that
if at least one of the factors Xi is not residually finite and the rest are not
backwards-bounded, then the remaining product

∏
j∈I\{ i } Xj is not back-

wards bounded, and so the whole product is not residually finite. Thus if the
product is residually finite, and at least one of the factors is not residually
finite, then at least one factor must be backwards-bounded. �

As a brief aside, we consider subdirect products, subalgebras of the di-
rect product such that the projection maps are surjective. We show that the
equivalence we obtained for direct products does not hold, by constructing
an explicit example of a residually finite subdirect product of two monounary
algebras, neither of which are residually finite.

Example 5.8. We define a monounary algebra A on the set Z∪{−n : n ∈ N
+ }

by

f(x) =

⎧
⎪⎨

⎪⎩

0 if x = −1,

−(n − 1) if x = −n, n > 1,

x + 1 otherwise.
Note: What we are doing is attaching another disjoint copy of the negatives
to the integers, and this is the same monounary algebra that is depicted in
Figure 8.

We then consider the direct product of this algebra with

N = (N,max{x − 1, 0 }).

Both components fail the RF criterion (with the points −1 and −1 for A and
0 and 1 for B) so by Theorem 5.6, A × N is not residually finite. However,
we can construct a subdirect product which is residually finite. Consider the
subalgebra of the direct product A × N generated by the set

G = { (n, 0) : n ∈ Z } ∪ { (−m, 2m) : m ∈ N
+ }
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Figure 8. An example of a monounary algebra which is not
residually finite

Figure 9. A residually finite subdirect product of not resid-
ually finite monounary algebras

(this is depicted in Figure 9). This is clearly a subdirect product, and satisfies
our criterion from Theorem 4.3, as each element x other than those in Z×{ 0 }
has the property that f−n(x) = ∅ for a large enough n ∈ N.

It is worth noting however, that as backwards-boundedness is preserved
under subalgebras, if either component is backwards-bounded, then any sub-
direct product is also backwards-bounded, and hence residually finite.

6. Further separability properties

In this section we discuss three notions related to residual finiteness: weak and
strong subalgebra separability, and complete separability. While these proper-
ties have been studied for some time, such as in [10] and [11], the names used
for them have not been consistent. The names we use are from [12], as these
are designed to be more descriptive of the property. We provide characterisa-
tions for these properties, and show how they interact with direct products in
a similar fashion to how we dealt with residual finiteness.

Definition 6.1. A monounary algebra A is strongly (weakly) subalgebra sepa-
rable if for any a ∈ A and any (any finitely generated) subalgebra B ≤ A such
that a �∈ B, there exists a finite monounary algebra F and a homomorphism
φ : A → F such that φ(a) �∈ φ(B).

To deal with these conditions we will introduce the notion of bi-eternal
monounary algebras. We show in Theorem 6.7 that these algebras are the only
ones which distinguish residual finiteness from strong and weak subalgebra
separability.
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Definition 6.2. A monounary algebra A is bi-eternal if there exists a ∈ A such
that the following two conditions hold:

(1) f i(a) = f j(a) if and only if i = j,
(2) a is backwards eternal.

Remark 6.3. From here on we shall refer to the first criterion from the above
definition as the forward eternality.

Rephrased in graphical terms, the forward eternality condition becomes:
“The unique infinite walk starting at a is an infinite path.”

Example 6.4. The monounary algebra Z is bi-eternal, as any point satisfies
both eternality conditions.

Example 3.3 is an example of a bi-eternal monounary algebra which does
not contain Z as a subalgebra.

It is useful to note that the forward eternality condition corresponds
to not having a cycle (in the corresponding connected component) and the
backwards eternality condition means we do not have backwards-boundedness.
We can thus split connected monounary algebras into three distinct classes.

Lemma 6.5. Let A be a connected monounary algebra. Then exactly one of the
following is true:

(1) A contains a cycle,
(2) A is bi-eternal,
(3) A is backwards bounded.

Proof. Assume A is not bi-eternal. If there is a point for which the forward
eternality condition fails, then there exists a cycle in A, and since A is con-
nected, every point therefore fails the forward eternality condition. Otherwise,
the forward eternality condition holds for every point, thus no point is back-
wards eternal, and so A is backwards bounded. �

Remark 6.6. Note that, in much the same way as residual finiteness, weak and
strong subalgebra separability hold if and only if they hold for every connected
component.

We now show that strong and weak subalgebra separability are equivalent
and that bi-eternality is the only thing which separates them from residual
finiteness.

Theorem 6.7. For a monounary algebra A, the following are equivalent:

(1) A is strongly subalgebra separable,
(2) A is weakly subalgebra separable,
(3) A is residually finite and not bi-eternal,
(4) For all x ∈ A either x is contained in a cycle or there exists n ∈ N such

that f−n(x) = ∅.
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Proof. Since bi-eternality is determined by the existence of a point with certain
properties, a monounary algebra is bi-eternal if and only if at least one of its
connected components is bi-eternal, and so we can assume without loss of
generality that A is connected.

(1)⇒(2). This follows from the definitions.
(2)⇒(3) We show the contrapositive.
If A is not residually finite, then we can take the two points which fail

the RF criterion, x and y. Since they are distinct points with the same image
under the unary operation, at most one of them can be in a cycle. Thus we
must have at least one of x �∈ 〈y〉 or y �∈ 〈x〉. But as these two points are
backwards eternal, by Lemma 4.2 they cannot be mapped to distinct points
in a finite algebra , and so we must have that φ(x) ∈ 〈φ(y)〉 and φ(y) ∈ 〈φ(x)〉
for any φ a homomorphism from A to a finite monounary algebra. Hence A is
not weakly subalgebra separable.

If A is bi-eternal, then consider the element a for which the eternality
conditions hold. The forward eternality condition shows that a is not in a cycle,
and so a �∈ 〈f(a)〉. Now if φ is a homomorphism from A to a finite monounary
algebra (F, g), then φ(〈f(a)〉) is a non-empty subalgebra of F and so contains
the cycle of F . But as a is backwards eternal, for all n ∈ N there exists an ∈ A
such that gn(φ(an)) = φ(a). As F is finite, some of these must be the same,
which forces φ(a) to be in the cycle of F , so φ(a) ∈ φ(〈f(a)〉). Thus A is not
weakly subalgebra separable.

(3)⇒(1) Since A is not bi-eternal, we can use Lemma 6.5 to split into
cases:

(1) A is backwards-bounded,
(2) A contains a cycle (and is residually finite).

In case (1), for any a ∈ A and B ⊂ A such that a �∈ B, we can use λa as
defined in Lemma 3.7, as in this case φ(a) �∈ φ(A\{ a }) ⊇ φ(B).

In case (2), since the cycle is contained in every non-empty subalgebra,
if a ∈ A is in the cycle of A then B = ∅, and we are done. If a ∈ A is not in
the cycle, then f−n(a) = ∅ for some n ∈ N. Thus we can once again use λa.

Thus in either case A is strong subalgebra separable.
(3)⇒(4) Using Lemma 6.5 we can conclude that A is either backwards-

bounded (in which case we are done), or contains a cycle and is residually
finite. But since every element a of the cycle has f−n(a) �= ∅ for all n, in order
to be residually finite, we must have that for every element x outside the cycle
f−n(x) = ∅ for some n ∈ N.

(4)⇒(3) Now assume for every x ∈ A either x is contained in a cycle or
there exists n ∈ N such that f−n(x) = ∅. Thus the only backwards eternal
elements are the cycle elements (if the cycle exists) and so the RF criterion is
satisfied, and it is clear to see by the definition that A is not bi-eternal, as the
forward eternality condition is not satisfied by any point. �

Rephrasing the fourth condition in graphical term, it becomes: “For any
vertex x which is not in a cycle, then there is a finite bound on the length
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of walks terminating at x.” In terms of backwards eternality, it is: “Every
backwards eternal element is contained in a cycle.”

For the rest of this document we shall refer to such algebras as subalgebra
separable for simplicity.

Lemma 6.8. Let A be a bi-eternal monounary algebra. Then for B a mo-
nounary algebra , A×B is bi-eternal if and only if B is not backwards-bounded.

Proof. The forward implication follows immediately from Proposition 5.4.
For the converse, note that if B is not backwards-bounded then it is either

bi-eternal or contains a cycle. If x ∈ A satisfies the eternality conditions, then
in both cases we identify a corresponding point in the direct product which
satisfies the eternality condition. If B contains a cycle, let b be a point in the
cycle. Then (x, b) satisfies the eternality conditions: the first is inherited from
x, and the second follows from Lemma 5.3. If B is instead bi-eternal, then we
can take a point y ∈ B which satisfies the eternality conditions, and (x, y) also
satisfies the eternality conditions by the same argument as for (x, b). �

Lemma 6.9. For monounary algebras A and B, if A × B is bi-eternal, then at
least one of A and B is bi-eternal.

Proof. Since a monounary algebra is bi-eternal if at least one connected com-
ponent is bi-eternal, we may assume without loss of generality that A and B
are connected. Note that A × B is backwards-bounded if and only if at least
one of its components is backwards-bounded. Thus neither A nor B is back-
wards bounded and so by Lemma 6.5 each must be either bi-eternal or contain
a cycle. Let us assume for a contradiction, that both contain a cycle. Then for
every (a, b) ∈ A×B, there exists n,m ∈ N such that fn

1 (a) is in the cycle of A
and fm

2 (b) is in the cycle of B. Then, since a pair with both coordinates in the
corresponding cycle of the component is in a cycle in the product, fn+m(a, b)
is in a cycle, and so (a, b) does not satisfy the eternality condition. Since (a, b)
was arbitrary, A × B is not bi-eternal, a contradiction. �

Using these results, we obtain a result that mirrors Theorem 5.6. In
particular, the conditions for a direct product of monounary algebras to be
subalgebra separable are the same as those for being residually finite (replacing
residually finite with subalgebra separable).

Theorem 6.10. Let A and B be monounary algebras. Then A×B is subalgebra
separable if and only if one of the following is true.
(1) A and B are subalgebra separable,
(2) A is backwards-bounded,
(3) B is backwards-bounded.

Proof. Note that A × B is the union of the direct products of each connected
component of A with each connected component of B. Then since a monounary
algebra is subalgebra separable if and only if its connected components are
subalgebra separable (and similarly for backwards-bounded), we may assume
without loss of generality that A and B are connected.
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For the converse, if one component is backwards-bounded, then by Propo-
sition 5.4, A × B is backwards-bounded, and thus subalgebra separable by
Theorem 6.7, item (4). If both A and B are subalgebra separable, then they
are both residually finite and not bi-eternal, and so by Theorem 5.6 and
Lemma 6.9, the product is both residually finite and not bi-eternal, and thus
is subalgebra separable.

For the forward implication, we show the contrapositive. Thus we assume
one of A or B (say A) is not subalgebra separable (and so by Theorem 6.7,
either is not residually finite or is bi-eternal), and that neither is backwards-
bounded. In particular, as neither are backwards-bounded, Theorem 5.6 tells
us that if A was not residually finite, the direct product is not residually finite,
and thus not subalgebra separable by Theorem 6.7. If A was instead bi-eternal
then, by Lemma 6.8 the direct product is bi-eternal and thus not subalgebra
separable. �

Having dealt with subalgebra separability, we now move on to the concept
of complete separability.

Definition 6.11. A monounary algebra is completely separable if for every a ∈ A
there exists a finite monounary algebra F and homomorphism φ : A → F such
that φ(a) �∈ φ(A\a).

Lemma 6.12. Let A be a monounary algebra. If A is completely separable, then
it is also subalgebra separable (and thus residually finite).

Proof. This is immediate from the definitions. �

In fact, the converse of this lemma only fails in a specific scenario. The
obstacle is cycles, which need not be considered for subalgebra separability as
they are contained in every non-empty subalgebra. As such we will use the
following definition to deal with complete separability.

Definition 6.13. Let (A, f) be a monounary algebra. Then we define

Bn(a) = f−n(a)\
n−1⋃

i=0

f−i(a)

Theorem 6.14. A monounary algebra (A, f) is completely separable if and only
if for all a ∈ A there exists n ∈ N such that Bn(a) = ∅.

Proof. As per usual, we may assume without loss of generality that A is con-
nected. First assume that A is completely separable. Let x ∈ A with cor-
responding finite algebra (F, g) and homomorphism φ : A → F . Consider
φ(x). If φ(x) is not in the cycle of F , then as F is finite there exists n ∈ N

such that g−n(φ(x)) = ∅. But since φ is a homomorphism, if y ∈ f−n(x)
then φ(y) ∈ g−n(φ(x)). Thus f−n(x) = ∅ (and so Bn(x) = ∅). Now if
φ(x) is in the cycle of F then, denoting the cycle length by k, we have
φ(fk(x)) = gk(φ(x)) = φ(x), and so by complete separability we have that
fk(x) = x, and so x is in the cycle of A. As F is finite, there exists n ∈ N such
that Bn(φ(x)) = ∅. Thus if Bn(x) �= ∅, then φ(Bn(x)) is in the cycle. Let m
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Figure 10. A monounary algebra which is subalgebra sepa-
rable, but not completely separable

be the least multiple of the cycle length greater than n. Then if Bm(x) �= ∅,
we have φ(Bm(x)) = φ(x) a contradiction. Thus Bm(x) = ∅.

Now assume that for all a ∈ A there exists n ∈ N such that Bn(a) = ∅.
For x ∈ A, if x is not in a cycle, then Bn(x) = f−n(x) = ∅ so we can use
the standard homomorphism λx to separate x. Now let x ∈ A be in the cycle,
and say the cycle has length k. As A is connected, the cycle is the minimal
non-empty subalgebra, and so every element of A is in Bm(x) for precisely
one m. Let N ∈ N be the minimal value such that BN (x) = ∅, then as
f(Bn(a)) ⊆ Bn−1(a), it follows that BM (x) = ∅ for all M ≥ N . Thus we
construct a homomorphism to an algebra F = ({ 0, . . . , N − 1 }, g) where g is
given by:

g(y) =

{
k if y = 0,

y − 1 otherwise.

and the homomorphism φ : A→F is given by φ(Bn(x))=n. This is a
homomorphism as f(Bn(x)) ⊆ Bn−1(x) for n ≥ 1 and f(x) ∈ Bk(x). Addition-
ally, φ−1(0) = {x } and so x is completely separated by φ as required. �

Rephrasing the condition in graphical terms, it becomes: “For all vertices
a, there is a finite bound on the length of paths terminating at a. Note that
the use of Bn(a) rather than f−n(a) corresponds to considering paths instead
of walks.”

Example 6.15. Consider the monounary algebra formed by taking every n-line
(as defined in Example 2.1) and identifying the zeros (depicted in Figure 10).
This is subalgebra separable, but not completely separable.

Lemma 6.16. Let A,B be monounary algebras, and (a, b) ∈ A × B. Then

Bn(a, b) = (Bn(a) × f−n
2 (b)) ∪ (f−n

1 (a) × Bn(b)).

Proof. Note that, by the definition of Bn, we have that f−n(x) = Bn(0) �
· · · � Bn(x). Using this together with the Lemma 5.3 shows that the pairs
in Bn(a, b) are precisely those that contain either an element of Bn(a) or an
element of Bn(b). �



32 Page 20 of 22 B. de Witt Algebra Univers.

Now we get conditions for a direct product to be completely separable
based on the properties of the components, and again, the conditions turn out
to be the same as for residual finiteness and subalgebra separability.

Theorem 6.17. Let A and B be monounary algebras, then A×B is completely
separable if and only if one of the following is true:
(1) A and B are completely separable,
(2) A is backwards-bounded,
(3) B is backwards-bounded.

Proof. For the converse, if either A or B is backwards-bounded then by Propo-
sition 5.4, A × B is backwards-bounded and so by Theorem 6.14, is com-
pletely separable. If both are completely separable then for all (a, b) ∈ A × B
there exists an n ∈ N such that Bn(a) = Bn(b) = ∅, and so Bn(a, b) =
∅ × f−n

2 (b) ∪ f−n
1 (a) × ∅ = ∅ and so A × B is completely separable.

For the forward implication, we show the contrapositive. Assume without
loss of generality that A is not completely separable and B is not backwards
bounded. Then there exists a ∈ A and b ∈ B such that for all n ∈ N Bn(a) �= ∅

and f−n
2 (b) �= ∅, and so Bn(a, b) ⊇ Bn(a) × f−n

2 (b) �= ∅. Thus A × B is not
completely separable. �

7. Concluding remarks

One application of the results in this paper is to investigate separation proper-
ties within varieties of monounary algebra. In [13] a classification of all varieties
of monounary algebras is given:

• V0: The trivial variety, containing only the trivial monounary algebra T1,
and the empty monounary algebra. This is defined by the equation x = y
for all x, y.

• Vk: for k ∈ N
+: This contains all connected monounary algebras contain-

ing a cycle of length 1, such that for all x not in a cycle, f−k(x) = ∅.
This is defined by the equation fk(x) = fk(y).

• Vk,d: for k, d ∈ N, d ≥ 1: This contains monounary algebras where each
connected component contains a cycle whose length divides d, and for all
elements x not in a cycle, f−k(x) = ∅. This is defined by the equation
fk+d(x) = fk(x).

• V0,0: The variety of all monounary algebras. This is defined be the equa-
tion x = x.
We can note from these definitions that in any connected component of an

algebra from Vk,d every vertex of the corresponding graph is either in a cycle of
length at most d, or is on a path of length at most k ending at such a cycle, and
so Bk+d+1(x) = ∅ for all x, and thus the connected component is completely
separable by Theorem 6.14. It can be similarly seen that any algebra in Vk is
completely separable. Thus in every variety of monounary algebra other than
the class of all monounary algebras, every algebra is completely separable (and
thus both subalgebra separable and residually finite). It is then trivially true
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that in all but the full variety, we have A × B is residually finite if and only if
A and B are residually finite.

There are a few potential directions in which one could build on these
results. Here we formulate a few questions of interest.

We saw in Example 5.8 that we can have a residually finite subdirect
product of two monounary algebras which are not residually finite. So perhaps
it is possible to find some conditions on the components of the product and/or
the construction of the subdirect product which ensure residual finiteness.
Obviously one can also extend this question to subalgebra separability and
complete separability.

Question 7.1. What are necessary and sufficient conditions for a subdirect
product of monounary algebras to be residually finite?

Unary algebras are significantly different to monounary algebras. There
are no obvious generalisations of the results from this paper that one could
apply. However, the potential use of unary algebras to apply to more complex
structures like semigroups, makes it a very intriguing topic for research.

Question 7.2. Can we find a criterion for residual finiteness in the more general
class of unary algebras?

Acknowledgements

I would like to thank an anonymous referee for their comments on the paper
in general, and specifically their insightful questions regarding varieties, which
led to the application discussed at the beginning of the concluding remarks.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References
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