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Abstract. A commutative residuated lattice A is said to be subidempotent
if the lower bounds of its neutral element e are idempotent (in which case
they naturally constitute a Brouwerian algebra A−). It is proved here
that epimorphisms are surjective in a variety K of such algebras A (with
or without involution), provided that each finitely subdirectly irreducible
algebra B ∈ K has two properties: (1) B is generated by lower bounds of
e, and (2) the poset of prime filters of B− has finite depth. Neither (1)
nor (2) may be dropped. The proof adapts to the presence of bounds. The
result generalizes some recent findings of G. Bezhanishvili and the first
two authors concerning epimorphisms in varieties of Brouwerian algebras,
Heyting algebras and Sugihara monoids, but its scope also encompasses
a range of interesting varieties of De Morgan monoids.
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1. Introduction

In a variety of algebras, if a homomorphism is surjective, then it is an epimor-
phism, but the converse need not hold. Indeed, rings and distributive lattices
each form varieties in which non-surjective epimorphisms arise. As it hap-
pens, this reflects the absence of unary terms defining multiplicative inverses
in rings, and complements in distributive lattices, despite the uniqueness of
those entities when they exist.

Such constructs are said to be implicitly (and not explicitly) definable.
In a variety of logic, they embody implicitly definable propositional functions
that cannot be explicated in the corresponding logical syntax, and Beth-style
‘definability properties’ preclude phenomena of this kind. (The allusion is to
E.W. Beth’s theorems for classical propositional and predicate logic in [3]).

In particular, when a logic L is algebraized, in the sense of [7], by a
variety K of algebras, then the ES property for K—i.e., the demand that all
epimorphisms in K be surjective—amounts to the so-called infinite Beth defin-
ability property for L. The most general version of this ‘bridge theorem’ was
formulated and proved by Blok and Hoogland [5, Theorems 3.12, 3.17] (also
see [39, Theorem 7.6] and the antecedents cited in both papers).

In this situation, the subvarieties of K algebraize the axiomatic extensions
of L, but the ES property need not persist in subvarieties. It is therefore a
well-motivated (but often nontrivial) task to determine which subvarieties of
K have surjective epimorphisms. The present paper addresses this question in
the context of residuated structures, i.e., the algebraic models of substructural
logics (see [17,27]).

We consider algebras called SRLs, which are residuated lattice-ordered
commutative monoids satisfying the subidempotent law x � e =⇒ x · x =
x (where · is the monoid operation and e its neutral element) and possibly
equipped with an involution (SIRLs) and/or lattice-bounds. They need not
be integral, i.e., e need not be the greatest element. They include De Morgan
monoids, i.e., the algebraic models of the relevance logic Rt of [1]. The negative
cone of an S[I]RL A, which comprises the lower bounds of e, may be given the
structure of a Brouwerian or Heyting algebra A−, to which the Esakia duality
of [13] applies. In particular, the depth of A may be defined as that of A−.

Heyting and Brouwerian algebras model intuitionistic propositional logic
and its positive fragment. A result of Kreisel [28] shows (in effect) that every
variety consisting of such algebras has a weak form of the ES property, whereas
Maksimova established that only finitely many enjoy a certain strong form; see
[16,32,33]. Uncountably many varieties of Heyting [Brouwerian] algebras have
finite depth [29], and all of these have surjective epimorphisms; the latter claim
was proved recently by G. Bezhanishvili and the first two authors [4], using
Esakia duality. On the other hand, the ES property fails in uncountably many
further varieties of Heyting [Brouwerian] algebras [40].

Relational duals for non-integral S[I]RLs are sometimes available [46],
but they are rather complicated. Also, the functor that constructs negative
cones (and restricts morphisms accordingly) is not a category equivalence,
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except in quite special cases; see [15,18,20,21]. Partly for these reasons, we
cannot systematically reduce ES problems for arbitrary varieties of S[I]RLs to
an examination of negative cones.

Nevertheless, A− contains enough information about A to facilitate the
main result of this paper (Theorem 8.1), which is a sufficient condition for
the surjectivity of epimorphisms. It states that, in a variety K of S[I]RLs,
epimorphisms will be surjective if each finitely subdirectly irreducible member
of K has finite depth and is generated by elements of its negative cone. Neither
hypothesis may be dropped.

The assumptions of Theorem 8.1 persist in subvarieties and under vari-
etal joins, so the result is labour-saving. Apart from generalizing the afore-
mentioned findings of [4], it settles the question of epimorphism-surjectivity
for many interesting varieties of De Morgan monoids (see Sections 9 and 10),
yielding definability results for a corresponding range of relevance logics.

Notation. In an indicated partially ordered set 〈X;�〉, we define

↑ x = {y ∈ X : x � y} and ↑ U =
⋃

u∈U
↑ u,

for U ∪ {x} ⊆ X, and if U = ↑ U , we call U an up-set of 〈X;�〉. We define
↓ x and ↓ U dually. For x, y ∈ X, the notation x ≺ y (‘y covers x’) signifies
that x < y and there is no z ∈ X such that x < z < y.

If Y ⊆ X and x ∈ X, we sometimes need to refer to Y ∩ ↑x, which we
then denote as ↑Y x, even if x /∈ Y .

The universe of an algebra A is denoted by A. Thus, the congruence
lattice Con A of A has universe Con A. For ∅ = X ⊆ A, the subalgebra of A
generated by X is denoted by SgAX (and its universe by SgAX).

The class operator symbols H, S, P and PU stand, respectively, for closure
under homomorphic images, subalgebras, direct products and ultraproducts,
while V denotes varietal generation, i.e., V = HSP. We abbreviate V({A}) as
V(A).

Recall that an algebra A is finitely subdirectly irreducible (briefly, FSI )
iff its identity relation idA is meet-irreducible in Con A. For a variety K, we
use KFSI to denote the class of all FSI members of K. Of course, K = V(KFSI),
by the Subdirect Decomposition Theorem.

2. Epimorphisms

Let K be a class of similar algebras. By a K-morphism, we mean a homomor-
phism f : A −→ B, where A,B ∈ K. It is called a K-epimorphism provided
that, whenever g, h : B −→ C are K-morphisms with g ◦ f = h ◦ f , then g = h.
Clearly, surjective K-morphisms are K-epimorphisms. We say that K has the
epimorphism-surjectivity (ES) property if all K-epimorphisms are surjective.

A subalgebra D of an algebra E ∈ K is said to be K-epic (in E) if every
K-morphism with domain E is determined by its restriction to D. (This means
that the inclusion map D −→ E is a K-epimorphism, assuming that D ∈ K.)
Thus, a K-morphism is a K-epimorphism iff its image is a K-epic subalgebra of
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its co-domain. And, when K is closed under subalgebras, it has the ES property
iff none of its members has a K-epic proper subalgebra.

Recall that if A is a subalgebra of an algebra B, and μ ∈ Con B, then
the relation μ|A := A2 ∩ μ is a congruence of A.

Lemma 2.1. Let K be a variety of algebras, and A a K-epic subalgebra of
B ∈ K. Then, for any μ ∈ Con B, the map f : A/(μ|A) −→ B/μ defined by
a/(μ|A) �→ a/μ is an injective K-epimorphism.

Proof. As K is a variety, B/μ, A/(μ|A) ∈ K. Let i : A −→ B be the inclusion
homomorphism and q : B −→ B/μ the surjective homomorphism b �→ b/μ.
Clearly, μ|A is the kernel of the homomorphism q ◦ i : A −→ B/μ, so f is an
injective K-morphism.

Suppose g, h : B/μ −→ C ∈ K are homomorphisms with g ◦ f = h ◦ f .
Then g ◦ q and h ◦ q are homomorphisms from B to C. For each a ∈ A,

g(q(a)) = g(a/μ) = g(f(a/(μ|A))) = h(f(a/(μ|A))) = h(q(a)),

i.e., g ◦ q ◦ i = h ◦ q ◦ i. Therefore, g ◦ q = h ◦ q, as i is a K-epimorphism. Since
q is surjective, it follows that g = h, as required. �

A variety K is said to have EDPM if it is congruence distributive and
KFSI is a universal class (i.e., subalgebras and ultraproducts of FSI members
of K are FSI). The acronym stands for ‘equationally definable principal meets’
and is motivated by other characterizations of the notion in [6,9].

Theorem 2.2 (Campercholi [8, Theorem 6.8]). If a congruence permutable va-
riety K with EDPM lacks the ES property, then some FSI member of K has a
K-epic proper subalgebra.

3. Residuated structures

General information about residuated structures (and their connection with
substructural logics) can be found in [17]. Here, we recall the basic definitions
and facts that will be relied on below.

Definition 3.1. An algebra A = 〈A;∧,∨, ·,→, e〉 will be called a (commutative)
subidempotent residuated lattice, or briefly an SRL, if 〈A;∧,∨〉 is a lattice,
〈A; ·, e〉 is a commutative monoid and → is a binary operation (called the
residual) such that A satisfies

x · y � z ⇐⇒ x � y → z (the law of residuation) (3.1)

x � e =⇒ x = x2 (:= x · x) (subidempotence), (3.2)

where � is the lattice order. An equational paraphrase of (3.2) is

(x ∧ e)2 = x ∧ e.

Every SRL satisfies the postulates below. Here and subsequently, x ↔ y
abbreviates (x → y) ∧ (y → x).

x · (y ∨ z) = (x · y) ∨ (x · z) (3.3)
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x → (y ∧ z) = (x → y) ∧ (x → z) (3.4)

(x ∨ y) → z = (x → z) ∧ (y → z) (3.5)

x � y ⇐⇒ e � x → y (3.6)

x = y ⇐⇒ e � x ↔ y (3.7)

e � x → x and e → x = x (3.8)

(x � e & y � e) =⇒ x ∧ y = x · y. (3.9)

Of these properties, only (3.9) relies on subidempotence. It follows from (3.3)
that · is isotone in both arguments, and from (3.4) and (3.5) that → is isotone
in its second argument and antitone in its first. In particular, the implication
x � e =⇒ x2 � x does not rely on (3.2), so we could express (3.2) as

x � e =⇒ x � x2.

The key step in the proof of (3.9) is x ∧ y ∧ e = (x ∧ y ∧ e)2 � x · y.
An SRL A is said to be

• square-increasing if it satisfies x � x2;
• idempotent if it satisfies x = x2;
• distributive if its lattice reduct 〈A;∧,∨〉 is distributive; and
• integral if e is its greatest element.

By (3.9), an SRL is integral iff its operations · and ∧ coincide.

Definition 3.2. A Brouwerian algebra is an integral SRL A; it is normally
identified with its reduct 〈A;∧,∨,→, e〉 (in view of the previous remark).

It follows that a Brouwerian algebra is idempotent, distributive (by (3.3)) and
determined by its lattice reduct, and that it satisfies x → e = e = x → x.

Definition 3.3. An involutive SRL, briefly an SIRL, is the expansion A of an
SRL by an involution, i.e., a unary operation ¬ such that A satisfies ¬¬x = x
and x → ¬y = y → ¬x. In these algebras, we define f = ¬e.

An SIRL satisfies x → y = ¬(x · ¬y) and ¬x = x → f . Every SRL can be
embedded into an SIRL, in such a way that distributivity and the square-
increasing law x � x2 are preserved (see [34,19] and Section 9 below).

The class of all S[I]RLs is a finitely axiomatizable variety. It is arithmeti-
cal, i.e., congruence distributive and congruence permutable. (See [17, p. 94],
where a termwise-equivalent formulation is used.) The variety of Brouwerian
algebras has the ES property [33] (also see [14,16,32]).

Distributive square-increasing SIRLs—a.k.a. De Morgan monoids—alge-
braize the principal relevance logic Rt of [1] (also see [10,36,37,38]), while dis-
tributive square-increasing SRLs—a.k.a. Dunn monoids—algebraize the ‘pos-
itive’ (negationless) fragment of Rt. Their non-distributive counterparts sim-
ilarly match the subsystem LRt of Rt and its positive fragment. (LRt adds
the double-negation axiom to the system FLec of [17]; also see [35,45].) The
square-increasing law embodies the logical contraction axiom

(p → (p → q)) → (p → q).
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The idempotent De Morgan monoids are called Sugihara monoids. They model
the logic RMt (a.k.a. R-mingle), and their structure is better understood
than that of other De Morgan monoids; see [1,11,20,21,41]. In all of these
cases, there is a transparent lattice anti-isomorphism between the axiomatic
extensions of the logic and the subvarieties of the model class.

A bounded S[I]RL is the expansion of an S[I]RL by a distinguished element
⊥, which is the least element of the order, whence ⊥ → ⊥ is the greatest
element. A Heyting algebra is a bounded Brouwerian algebra. For simplicity,
we defer further discussion of bounded S[I]RLs until Section 10.4.

4. Filters

Let A be an S[I]RL. By a filter of A, we mean a filter of the lattice 〈A;∧,∨〉,
i.e., a non-empty subset F of A that is upward closed and closed under the
binary operation ∧. It is called a deductive filter of A if, moreover, e ∈ F . In
that case, F is a submonoid of 〈A; ·, e〉 and, whenever b ∈ A and a, a → b ∈ F ,
then b ∈ F . The respective explanations are that A satisfies

x · y � (x ∧ e) · (y ∧ e) = x ∧ y ∧ e( by (3.9)) and

x · (x → y) � y (by (3.1)).

The lattice of deductive filters of A is isomorphic to Con A. The isomor-
phism and its inverse are given by

F �→ ΩAF := {〈a, b〉 ∈ A2 : a ↔ b ∈ F};

θ �→ {a ∈ A : a ∧ e ≡θ e}.

We abbreviate A/ΩAF as A/F , and a/ΩAF as a/F , noting that

a → b ∈ F iff a/F � b/F in A/F.

Whenever B is a subalgebra of A, and F is a deductive filter of A, then B ∩F
is a deductive filter of B and

ΩB (B ∩ F ) = (ΩAF )|B . (4.1)

Because of the above isomorphism, A is FSI iff its smallest deductive filter
{a ∈ A : e � a} is meet-irreducible in its lattice of deductive filters, and that
amounts to the join-irreducibility of e in 〈A;∧,∨〉. Since this last condition
is expressible as a universal first order sentence, every variety of S[I]RLs has
EDPM. Therefore, Theorem 2.2 applies to all such varieties.

For any subset X of A, the smallest deductive filter of A containing X
is denoted by FgAX. Thus, FgAX consists of all a ∈ A such that

a � x1 ∧ · · · ∧ xn for some x1, . . . , xn ∈ X ∪ {e}, where 0 < n ∈ ω.

In particular, if e � b ∈ A, then FgA{b} = {a ∈ A : b � a}.
It follows that the deductive filters of a subalgebra B of A are just the

sets B ∩ F such that F is a deductive filter of A. Note that the deductive
filters of a Brouwerian algebra are exactly its (lattice-) filters.
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A filter F of a lattice 〈L;∧,∨〉 is said to be prime if its complement L\F
is closed under the binary operation ∨. For any filters F,G,H of 〈L;∧,∨〉,

if F ∩ G ⊆ H and H is prime, then F ⊆ H or G ⊆ H. (4.2)

The Prime Filter Extension Theorem asserts that, when 〈K;∧,∨〉 is a sublat-
tice of a distributive lattice 〈L;∧,∨〉, then the prime filters of 〈K;∧,∨〉 are
exactly the non-empty sets K ∩ F such that F is a prime filter of 〈L;∧,∨〉 [2,
Theorem III.6.5].

We use Pr(A) to denote the set of all prime deductive filters of an S[I]RL
A, including A itself. We always consider Pr(A) to be partially ordered by set
inclusion. For a deductive filter F of A, we write

↑AF = {H ∈ Pr(A) : F ⊆ H},

i.e., ↑AF abbreviates ↑Pr(A)F , where Pr(A) is considered as a subset of the
lattice of deductive filters of A.

Remark 4.1. Suppose h : A −→ B is a surjective homomorphism of S[I]RLs.
The kernel of h is ΩAK for some deductive filter K of A. If G is a deductive
filter of A, with K ⊆ G, then h[G] := {h(g) : g ∈ G} is a deductive filter of
B, and by the Correspondence Theorem of Universal Algebra,

H �→ h←[H] := {a ∈ A : h(a) ∈ H}
is a lattice isomorphism from the deductive filter lattice of B onto the lattice
of deductive filters of A that contain K; the inverse isomorphism is given by
G �→ h[G]. In particular,

h←[h[G]] = G for all deductive filters G of A such that K ⊆ G. (4.3)

Clearly, a deductive filter H of B is prime iff the filter h←[H] of A is prime, so
H �→ h←[H] also defines an isomorphism of partially ordered sets from Pr(B)
onto ↑AK (both ordered by inclusion).

5. Negative cones

Definition 5.1. The negative cone of an S[I]RL A = 〈A;∧,∨, ·,→, e [,¬]〉 is the
Brouwerian algebra

A− =
〈
A−; ∧|(A−)2 , ∨|(A−)2 , →−, e

〉
,

where A− = {a ∈ A : a � e} and a →− b = (a → b) ∧ e for all a, b ∈ A−.

Lemma 5.2. Let A and B be S[I]RLs, and F a deductive filter of A.

(i) If h : A −→ B is a homomorphism, then h|A− is a homomorphism from
A− to B−. If, moreover, h is surjective, then so is h|A− .

(ii) A− ∩F is a filter of A−, and (A/F )− ∼= A−/(A− ∩F ), the isomorphism
and its inverse being

a/F �→ (a ∧ e)/(A− ∩ F ) and a/(A− ∩ F ) �→ a/F.
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Proof. (i) Since homomorphisms between S[I]RLs are isotone maps that pre-
serve e, we have h[A−] ⊆ B−. Also, as h is a homomorphism, it is clear from
the definitions of the operations on the negative cone that h|A− is a homomor-
phism from A− to B−. Now suppose h is onto. For each b ∈ B−, there exists
a ∈ A with h(a) = b, and since b � e, we have b = h(a) ∧ e = h(a ∧ e). As
a ∧ e ∈ A−, this shows that B− = h[A−].

(ii) Clearly, A− ∩ F is a filter of A−. Let q : A −→ A/F be the canonical
surjection. By (i), q|A− : A− −→ (A/F )− is a surjective homomorphism. For
all a, b ∈ A−, we have a ↔ b ∈ F iff (a ↔ b) ∧ e ∈ A− ∩ F (since F is upward
closed and contains e), i.e., the kernel of q|A− is ΩA−

(A− ∩ F ). Thus, by the
Homomorphism Theorem, a/(A− ∩ F ) �→ a/F defines an isomorphism from
A−/(A− ∩F ) onto (A/F )−. For any a ∈ A, if a/F ∈ (A/F )−, then a∧e ∈ A−

and (a∧ e)/F = (a/F )∧ (e/F ) = a/F , so a/F �→ (a∧ e)/(A− ∩F ) defines the
inverse of the above isomorphism. �

Given an S[I]RL A, if F is a filter of A−, then

FgAF = {a ∈ A : a � b for some b ∈ F}, so A− ∩ FgAF = F. (5.1)

Definition 5.3. An S[I]RL A is negatively generated if A = SgA (A−).

As surjective homomorphisms always map generating sets onto generat-
ing sets, the following lemma applies.

Lemma 5.4. If h : A −→ B is a surjective homomorphism of S[I]RLs and A
is negatively generated, then so is B.

6. Duality for Brouwerian algebras

A well-known duality between Heyting algebras and Esakia spaces was estab-
lished in [12,13]. It entails an analogous duality between the variety BRA of
Brouwerian algebras (considered as a concrete category, equipped with all al-
gebraic homomorphisms) and the category PESP of ‘pointed Esakia spaces’
defined below, i.e., there is a category equivalence between BRA and the op-
posite category of PESP. This is explained, for instance, in [4, Section 3], but
we recall the key definitions here.

A structure X = 〈X; τ,�,m〉 is a pointed Esakia space if 〈X;�〉 is a par-
tially ordered set with a greatest element m, and 〈X; τ〉 is a compact Hausdorff
space in which

(i) every open set is a union of clopen (i.e., closed and open) sets;
(ii) ↑x is closed, for all x ∈ X;
(iii) ↓V is clopen, for all clopen V ⊆ X.
In this case, the Priestley separation axiom of [42] holds: for all x, y ∈ X,
(iv) if x � y, then x ∈ U and y /∈ U , for some clopen up-set U ⊆ X.
The morphisms of PESP are the so-called Esakia morphisms between these
objects. They are the isotone continuous functions g : X −→ Y such that,

whenever x ∈ X and g(x) � y ∈ Y, then y = g(z) for some z ∈ ↑x. (6.1)
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It follows that g(m) = m, and if g is bijective then g−1 : Y −→ X is also an
Esakia morphism, so g is a (categorical) isomorphism.

Given A ∈ BRA and a ∈ A, let ϕA (a) denote {F ∈ Pr(A) : a ∈ F} and
ϕA (a)c its complement {F ∈ Pr(A) : a /∈ F}. The dual (in PESP) of A is
A∗ = 〈Pr(A); τ,⊆, A〉, where τ is the topology on Pr(A) with sub-basis

{ϕA (a) : a ∈ A} ∪ {ϕA (a)c : a ∈ A}.

The dual of a morphism h : A −→ B in BRA is the Esakia morphism
h∗ : B∗ −→ A∗, defined by F �→ h←[F ]. Thus, the contravariant functor
(−)∗ : BRA −→ PESP is given by A �→ A∗; h �→ h∗.

The contravariant functor (−)∗ : PESP −→ BRA works as follows. Let
g : X −→ Y be an Esakia morphism, where X,Y ∈ PESP. Then

X∗ = 〈Cpu(X);∩,∪,→,X〉 ∈ BRA,

where Cpu(X) is the set of all non-empty clopen up-sets of X, and

U → V := X \ ↓(U \ V )

for all U, V ∈ Cpu(X). The homomorphism g∗ : Y ∗ −→ X∗ is given by
U �→ g←[U ]. We refer to X∗ [resp. g∗] as the dual of X [resp. g] in BRA.

The functors (−)∗ and (−)∗ establish the aforementioned duality. For
A ∈ BRA and X ∈ PESP, the respective canonical isomorphisms from A to
A∗∗ and from X to X∗∗ are given by a �→ ϕA (a) and

x �→ {U ∈ Cpu(X) : x ∈ U}.

In PESP, there is a notion of substructure: an E-subspace of X ∈ PESP
is a non-empty closed up-set U of X. It is the universe of a pointed Esakia
space U , with the restricted order and the subspace topology, so the inclusion
U −→ X is an Esakia morphism.

Lemma 6.1 [13].
(i) A homomorphism h between Brouwerian algebras is surjective iff h∗ is

injective. Also, h is injective iff h∗ is surjective.
(ii) The image of a morphism in PESP is an E-subspace of the co-domain.

The ES property for BRA is relied on in the right-to-left implication of
the first assertion of Lemma 6.1(i). The forward implication in the second
assertion of (i) employs the Prime Filter Extension Theorem. In the absence
of a convenient reference, a proof of the next lemma is supplied below; the
result is presumably well-known.

Lemma 6.2. Let F be a filter of a Brouwerian algebra A, and q : A −→ A/F
the canonical surjection. Then q∗ is an isomorphism from (A/F )∗ onto the
E-subspace q∗[(A/F )∗] of A∗ whose universe is ↑AF . Also, the map

ϕA
F : a/F �→ {H ∈ Pr(A) : F ∪ {a} ⊆ H}

is an isomorphism from A/F onto (q∗[(A/F )∗])∗ and the following diagram
commutes, where i1 : q∗[(A/F )∗] −→ A∗ is the inclusion map.
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A∗∗ −−−−−→−−−−−→i∗
1 (q∗[(A/F )∗])∗ = (↑AF )∗

A −−−−−−−−→−−−−−−−−→q

A/F−−−→∼ ϕA

−−−→∼ ϕA
F

Furthermore, if G is a filter of A, with F ⊆ G, then the following diagram
commutes, where q′ : a/F �→ a/G, and i2 is the inclusion map.

(↑AF )∗ = (q∗[(A/F )∗])∗ −−−→−−−→i∗
2 (q∗[(A/G)∗])∗ = (↑AG)∗

A/F −−−−−−−−→−−−−−−−−→q′
A/G−−−→∼ ϕA

F

−−−→∼ ϕA
G

Proof. As q : A −→ A/F is a surjective BRA-morphism, Lemma 6.1(i) shows
that q∗ : (A/F )∗ −→ A∗ is an injective Esakia morphism; its image is the E-
subspace ↑AF of A∗, by Lemma 6.1(ii) and Remark 4.1. Let k = q∗−1

∣∣
↑A F

,

so k : ↑AF ∼= (A/F )∗ is defined by

k(H) = q[H] = H/F := {a/F : a ∈ H} (H ∈ ↑AF ),

and k∗ : (A/F )∗
∗ ∼= (↑AF )∗. Since ϕA/F : A/F ∼= (A/F )∗

∗, we have

k∗ ◦ ϕA/F : A/F ∼= (↑AF )∗.

For each a ∈ A,

(k∗ ◦ ϕA/F )(a/F ) = k∗({H ∈ Pr(A/F ) : a/F ∈ H})

= {G ∈ ↑AF : a/F ∈ G/F}
= {G ∈ ↑AF : a ∈ G}(by (4.3)) = ϕA

F (a/F ),

so k∗ ◦ ϕA/F = ϕA
F , whence ϕA

F : A/F ∼= (↑AF )∗ = (q∗[(A/F )∗])∗.
Commutativity of the second diagram subsumes that of the first (after

identification of A/{e} with A, and ϕA
{e} with ϕA ).

Accordingly, let G be a filter of A, with F ⊆ G, so q′ : a/F �→ a/G
is a homomorphism from A/F onto A/G. For each a ∈ A, the respective
left and right hand sides of the equation ϕA

G(q′(a/F )) = i∗2(ϕ
A
F (a/F )) are, by

definition,

{H ∈ Pr(A) : G ∪ {a} ⊆ H} and (↑AG) ∩ {H ∈ Pr(A) : F ∪ {a} ⊆ H},

which are clearly equal, so i∗2 ◦ ϕA
F = ϕA

G ◦ q′. �

7. Depth

For X = 〈X; τ,�,m〉 ∈ PESP and x ∈ X, we define depth (x) (the depth of x
in X) to be the greatest n ∈ ω (if it exists) such that there is a chain

x = x0 < x1 < · · · < xn = m
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in X. (Thus, m has depth 0 in X.) If no greatest such n exists, we set
depth (x) = ∞. We define depth(X) = sup {depth(x) : x ∈ X}.

For A ∈ BRA and any subvariety K of BRA, we define

depth(A) = depth(A∗) and depth(K) = sup {depth(B) : B ∈ K}.

If a subvariety of BRA is finitely generated (i.e., of the form V(A) for some
finite A ∈ BRA) then it has finite depth, and if it has finite depth then it is
locally finite (i.e., its finitely generated members are finite). Both converses
are false. For each n ∈ ω, the class BRAn = {A ∈ BRA : depth(A) ≤ n} is
a finitely axiomatizable variety. These claims are explained in [4, Section 4],
where their antecedents are also discussed.

Definition 7.1. For any S[I]RL A and any variety K of S[I]RLs, we define the
depth of A to be the depth of its negative cone A−, and the depth of K to be
sup {depth(B) : B ∈ K}.

For each n ∈ ω, an S[I]RL has depth at most n iff it satisfies the equations
that result from the axioms for BRAn when we replace → by →− and x by
x∧ e, for every apparent variable x. Thus, the S[I]RLs of depth at most n also
form a finitely axiomatizable variety.

Consequently, every finitely generated variety of S[I]RLs has finite depth,
and the class of S[I]RLs of depth greater than (any fixed) n is closed under
ultraproducts. Since the class of S[I]RLs that are FSI is also closed under
ultraproducts, it follows that, when each FSI member of a variety K of S[I]RLs
has finite depth, then so does K.

8. The ES property

We can now formulate the main result of this paper.

Theorem 8.1. Let K be a variety of S[I]RLs, such that each FSI member of
K has finite depth and is negatively generated. Then every K-epimorphism is
surjective.

The proof of Theorem 8.1 is by contradiction, and it proceeds via a
sequence of claims. Let K be as postulated, and suppose that K lacks the ES
property. By Theorem 2.2, some A ∈ KFSI has a proper K-epic subalgebra.
Now A/θ ∈ K for all θ ∈ Con A, as K is a variety. We shall define a congruence
θ of A such that the following is true.

Claim 1. There exist a ∈ A and a K-epic proper subalgebra C of A/θ such
that C is negatively generated and A/θ is generated by C− ∪ {a/θ}, and
a/θ ≺ e/θ in A/θ.

Once θ has been identified and Claim 1 proved, we shall contradict the
fact that C is K-epic in A/θ, by constructing a non-identity homomorphism
� : A/θ −→ A/θ, such that �|C = idC , as follows.
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Let b = a/θ. Then FgA/θ{b} = {d ∈ A/θ : b � d}, because b < e/θ. Let
α = ΩA/θ FgA/θ{b}. For any u, v ∈ A/θ, we have

u ≡α v iff b � u ↔ v. (8.1)

In particular, e/θ ≡α b, by (3.6) and (3.8).
Let {ai : i ∈ I} be an indexing of A/θ, and �c = c0, c1, . . . a well-ordering

of the elements of C−. Since C = A/θ and A/θ is generated by C− ∪ {b}, it
follows that b /∈ C and, for each i ∈ I, we have ai = t

A/θ
i (b, �c) for a suitable

S[I]RL-term ti(x, �y), where �y = y0, y1, . . . . When ai is some cj ∈ C−, we can
(and do) choose ti to be the variable yj .

We define � : A/θ −→ A/θ by

�(ai) = t
A/θ
i (e/θ, �c) for all i ∈ I.

By the above choice, �(cj) = cj for j = 0, 1, . . . , while �[A/θ] ⊆ C, because C
is a subalgebra of A/θ. We claim that � is a homomorphism.

To see this, let σ be a fundamental S[I]RL-operation symbol, and consider
ai1 , . . . , ain ∈ A/θ, where n is the rank of σ. Then σA/θ(ai1 , . . . , ain) = aj for
some j ∈ I. For this j, we perform the following calculation, where every term
is evaluated in A/θ :

σ(�(ai1), . . . , �(ain)) = σ(ti1(e/θ, �c), . . . , tin(e/θ, �c))
≡α σ(ti1(b, �c), . . . , tin(b, �c))
= σ(ai1 , . . . , ain) = aj = tj(b, �c)
≡α tj(e/θ, �c) = �(aj) = �(σ(ai1 , . . . , ain)).

By (8.1), therefore,

b � (σ(�(ai1), . . . , �(ain)) ↔ �(σ(ai1 , . . . , ain))) ∧ (e/θ).

Note that

(σ(�(ai1), . . . , �(ain)) ↔ �(σ(ai1 , . . . , ain))) ∧ (e/θ) ∈ C

(because �[A/θ] ⊆ C), but b /∈ C, so

b < (σ(�(ai1), . . . , �(ain)) ↔ �(σ(ai1 , . . . , ain))) ∧ (e/θ) � e/θ.

Since b ≺ e/θ in A/θ, this forces

e/θ = (σ(�(ai1), . . . , �(ain)) ↔ �(σ(ai1 , . . . , ain))) ∧ (e/θ),

i.e., e/θ � σ(�(ai1), . . . , �(ain)) ↔ �(σ(ai1 , . . . , ain)). Then, by (3.7),

σ(�(ai1), . . . , �(ain)) = �(σ(ai1 , . . . , ain)),

confirming that � is a homomorphism.
For each c ∈ C, we have c = tA/θ(�c) for some S[I]RL-term t (as C is

generated by C−), so

�(c) = �(t(�c)) = t(�(c0), �(c1), . . . ) = t(c0, c1, . . . ) = c.

This shows that �|C = idC , but �(b) = b, since �(b) ∈ C. As intended, this
contradicts the fact that C is K-epic in A/θ.
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It remains to construct θ and to prove Claim 1. The construction of θ
exploits the assumption that members of KFSI have finite depth.

Recall that A has a proper K-epic subalgebra, B say. As A is FSI, so is
B (because K has EDPM, as we noted after (4.1)). By assumption, therefore,
A and B are both negatively generated, so B− = A−, because B = A.

For each F ∈ Pr(A−), we clearly have B ∩ F = B− ∩ F = i∗(F ), where
i is the inclusion map i : B− −→ A−, considered as a BRA-morphism.

As i is not surjective, its dual i∗ : (A−)∗ −→ (B−)∗ is not injective, by
Lemma 6.1(i), i.e., the following set is not empty:

W := {〈F1, F2〉 ∈ (Pr(A−))2 : F1 = F2 and F1 ∩ B = F2 ∩ B}.

By assumption, A− has finite depth, so

{min {depth(F1),depth(F2)} : 〈F1, F2〉 ∈ W}
is a non-empty subset of ω, and therefore has a least element, n say. Pick
F1 ∈ Pr(A−) such that depth(F1) = n and 〈F1, G〉 ∈ W for some G. Now,

whenever 〈F ′
1, F

′
2〉 ∈ W then depth(F1) ≤ depth(F ′

1),depth(F ′
2). (8.2)

Having fixed F1 in this way, we similarly choose F2 ∈ Pr(A−)\{F1} such
that F1 ∩ B = F2 ∩ B and

whenever 〈F1, F
′
2〉 ∈ W, then depth(F2) ≤ depth(F ′

2). (8.3)

As 〈F1, F2〉 ∈ W , we have depth(F1) ≤ depth(F2) (by (8.2)), so F1 is not a
proper subset of F2.

Lemma 8.2. If F1 � G ∈ Pr(A−), then F2 � G.

Proof. Let F1 � G ∈ Pr(A−), so depth(G) < depth(F1). As i∗ is an Esakia
morphism and i∗(F2) = i∗(F1) ⊆ i∗(G), there exists H ∈ Pr(A−) such that
F2 ⊆ H and i∗(G) = i∗(H), by (6.1), i.e., G∩B = H ∩B. Therefore, if G = H,
then depth(F1) ≤ depth(G), by (8.2). This is a contradiction, so G = H,
whence F2 ⊆ G. If F2 = G, then

depth(F2) = depth(G) < depth(F1),

contradicting the fact that depth(F1) ≤ depth(F2). Therefore, F2 � G. �

Lemma 8.3. If F2 � G ∈ Pr(A−), then F1 ⊆ G.

Proof. Let F2 � G ∈ Pr(A−). Again, i∗(F1) = i∗(F2) ⊆ i∗(G), so there ex-
ists H ∈ Pr(A−) such that F1 ⊆ H and i∗(G) = i∗(H). Suppose G = H. If
F1 = H, then F1 ∩B = G∩B, so, by (8.3), depth(F2) ≤ depth(G), contradict-
ing the fact that F2 � G. Therefore, F1 � H, so depth(H) < depth(F1). Then,
by (8.2), depth(F1) ≤ depth(H), since G∩B = H ∩B. This is a contradiction,
so G = H, whence F1 ⊆ G. �

Recalling that F1, F2 are distinct and that F1 is not properly contained
in F2, we make the following claim:

Claim 2. There are just two possibilities:
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(A) F2 � F1, in which case F2 ≺ F1 (in fact, F1 is the least strict upper
bound of F2 in Pr(A−));

(B) F1 and F2 are incomparable, in which case they have the same depth, the
same strict upper bounds and, therefore, the same covers in Pr(A−).

Proof. If F2 � F1, then F1 is the least strict upper bound of F2, by Lemma 8.3,
i.e., F1 is the unique cover of F2. We may therefore assume that F2 is not a
proper subset of F1, i.e., that F1 and F2 are incomparable. Then, by Lem-
mas 8.2 and 8.3, F1 and F2 have the same strict upper bounds, and hence the
same covers in Pr(A−), from which it clearly follows that they also have the
same depth. �

By (5.1), FgA (F1 ∩ F2) = {d ∈ A : d � c for some c ∈ F1 ∩ F2}. We
define

θ = ΩA FgA (F1 ∩ F2).

Claim 3. The following diagram commutes, where the maps will be defined in
the proof.

Z∗ −−−−−−−−→∼
(i∗|Y )∗

Y ∗ −−−−→

∼
ϕA −
F1

A−/F1

B−/(F1 ∩ B) X∗ −−−→∼
ϕA −
F1∩F2

A−/(F1 ∩ F2)−−−→∼ ϕB −
F1∩B

−−−→
−−→ (iY )∗

−−−→
−−→ q

(B/(θ|B))− ↪−−−−−−−−−−−−−→j

(A/θ)−

−−−→∼ i2

−−−→∼ i1

Proof. The map j : B/(θ|B) −→ A/θ, defined by b/(θ|B) �→ b/θ, is an injec-
tive K-epimorphism, by Lemma 2.1. By Lemma 5.2(i), the restriction of j to
(B/(θ|B))− is a BRA-morphism from (B/(θ|B))− into (A/θ)−. We shall not
distinguish notationally between j and this restriction. Whenever b ∈ B and
b/(θ|B) � e/(θ|B), then b/(θ|B) = (b ∧ e)/(θ|B) and b/θ = (b ∧ e)/θ, so

(B/(θ|B))− = {b/(θ|B) : b ∈ B−} (8.4)

and j[(B/(θ|B))−] = {b/θ : b ∈ B−}.
Let K = F1 ∩ F2, so θ = ΩAFgAK. By (5.1), A− ∩ FgAK = K, so

B− ∩ FgAK = B− ∩ K = B ∩ K = B ∩ F1 (since B ∩ F1 = B ∩ F2). By (4.1),
θ|B = ΩB (B ∩ FgAK), so Lemma 5.2(ii) supplies isomorphisms

i1 : (A/θ)− ∼= A−/(F1 ∩ F2) and i2 : (B/(θ|B))− ∼= B−/(F1 ∩ B),

defined by a/θ �→ (a ∧ e)/(F1 ∩ F2) and b/(θ|B) �→ (b ∧ e)/(F1 ∩ B).
By Lemma 6.2, ↑B−

(F1 ∩ B) is the universe of an E-subspace, Z say, of
B−∗, and ϕB−

F1∩B : B−/(F1 ∩ B) ∼= Z∗. Also, q : a/(F1 ∩ F2) �→ a/F1 defines
a homomorphism from A−/(F1 ∩ F2) onto A−/F1. Let X [resp. Y ] be the
E-subspace of A−∗ with universe ↑A−

(F1 ∩F2) [resp. ↑A−
F1]. Let iY : Y −→ X

be the inclusion morphism in PESP. By Lemma 6.2, the following diagram
commutes.
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A−/F1 −−−−−−−→∼
ϕA −
F1

Y ∗

−−−→
−−→ q

−−−→
−−→ (iY )∗

A−/(F1 ∩ F2) −−−−→∼
ϕA −
F1∩F2 X∗

Recall that the BRA-morphism i : B− −→ A− is the inclusion map. As i is
injective, its dual i∗ : A−∗ −→ B−∗ is surjective, by Lemma 6.1(i).

The above definitions clearly imply that i∗[Y ] ⊆ Z. To establish the
reverse inclusion, let G ∈ Z. By the Prime Filter Extension Theorem, G =
H ∩ B for some H ∈ Pr(A−). Now, i∗[F1] = B ∩ F1 ⊆ G = i∗[H], so by
(6.1), i∗[H] = i∗[H ′] for some H ′ ∈ ↑A−

F1 = Y , whence G = i∗[H ′] ∈ i∗[Y ].
Therefore, Z = i∗[Y ].

We claim that i∗|Y is injective. Suppose, by way of contradiction, that
H1,H2 ∈ Y , with H1 = H2 and i∗[H1] = i∗[H2]. For each k ∈ {1, 2}, (8.2)
shows that depth(F1) ≤ depth(Hk), but F1 ⊆ Hk, so Hk = F1, whence H1 =
H2. This contradiction confirms that i∗|Y is injective, whence i∗|Y : Y ∼= Z in
PESP. In BRA, therefore, (i∗|Y )∗ : Z∗ ∼= Y ∗.

A composition of isomorphisms in BRA is an isomorphism, so

g := (i∗|Y )∗ ◦ ϕB−
F1∩B : B−/(F1 ∩ B) ∼= Y ∗. (8.5)

To show that the diagram in Claim 3 commutes, it remains to prove that
g ◦ i2 = ϕA−

F1
◦ q ◦ i1 ◦ j. And indeed, if b ∈ B and b/(θ|B) ∈ (B/(θ|B))−, then

(g ◦ i2)(b/(θ|B)) = g((b ∧ e)/(F1 ∩ B))

= (i∗|Y )∗({H ∈ Pr(B−) : (F1 ∩ B) ∪ {b ∧ e} ⊆ H})

= {H ∈ Pr(A−) : F1 ⊆ H and (F1 ∩ B) ∪ {b ∧ e} ⊆ H ∩ B}
= {H ∈ Pr(A−) : F1 ∪ {b ∧ e} ⊆ H}
= ϕA−

F1
((b ∧ e)/F1) = (ϕA−

F1
◦ q ◦ i1 ◦ j)(b/(θ|B)).

�

Claim 4. Suppose k ∈ {1, 2} and a ∈ A− and b ∈ B−, where a ≡θ b. Then
a ∈ Fk iff b ∈ Fk. Consequently, a /∈ (F1\F2) ∪ (F2\F1).

Proof. As a ≡θ b, we have a ↔ b ∈ FgA (F1 ∩ F2), so

a ↔− b := (a ↔ b) ∧ e ∈ A− ∩ FgA (F1 ∩ F2) = F1 ∩ F2,

by (5.1). As a →− b, b →− a � a ↔− b, it follows that a →− b, b →− a ∈ Fk.
Thus, a ∈ Fk iff b ∈ Fk. In particular, if a ∈ (F1\F2) ∪ (F2\F1) then
b ∈ B ∩ ((F1\F2) ∪ (F2\F1)), contradicting the fact that B ∩ F1 = B ∩ F2.

�

By Claim 3, h := ϕA−
F1∩F2

◦ i1 : (A/θ)− ∼= X∗ and, for each a ∈ A such
that a/θ ∈ (A/θ)−, we have

h(a/θ) = {H ∈ Pr(A−) : (F1 ∩ F2) ∪ {a ∧ e} ⊆ H}.
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By Claim 2, F1\F2 = ∅. In fact,

h(d/θ) = ↑A−
F1 for all d ∈ F1\F2.

To confirm this, let d ∈ F1\F2. Clearly, ↑A−
F1 ⊆ h(d/θ). Conversely, let H ∈

h(d/θ). If F1 ⊆ H, then since F1 ∩ F2 ⊆ H ∈ Pr(A−), we have F2 ⊆ H, by
(4.2). In that case, F2 � H, because d ∈ H\F2, but this contradicts Lemma 8.3.
Thus, F1 ⊆ H, and so h(d/θ) = ↑A−

F1, as claimed.
In Case (A) of Claim 2, we have ↑A−

F2 = ↑A−
(F1 ∩ F2) = X = h(e/θ).

In Case (B), we have F2\F1 = ∅, and we claim that

h(d/θ) = ↑A−
F2 for every d ∈ F2\F1.

To see this, let d ∈ F2\F1. It is clear that ↑A−
F2 ⊆ h(d/θ), so consider H ∈

h(d/θ). If F2 ⊆ H then, since F1 ∩ F2 ⊆ H, we have F1 ⊆ H, by (4.2). In that
case, F1 � H, as d ∈ H\F1, but this contradicts Lemma 8.2. Thus, F2 ⊆ H,
and so h(d/θ) ⊆ ↑A−

F2.
We define

M = (A/θ)− \ j[(B/(θ|B))−].

Claim 5. Fix any a1 ∈ F1\F2. Choose a2 to be e in Case (A) of Claim 2, and
an arbitrary element of F2\F1 in Case (B). Then

M = {a1/θ} in Case (A), and M = {a1/θ, a2/θ} in Case (B).

Moreover, a/θ ≺ e/θ (in A/θ) for all a ∈ A such that a/θ ∈ M .

Proof. Observe that a1, a2 � e and, as we showed above,

h(a1/θ) = ↑A−
F1 and h(a2/θ) = ↑A−

F2.

By Claim 4 and (8.4), we have a1/θ ∈ M and, in Case (B), a2/θ ∈ M . In Case
(A), a2/θ /∈ M , since e ∈ B.

Because h is an isomorphism, h[M ] = X∗ \ h[j[(B/(θ|B))−]] and, for the
first assertion of Claim 5, it suffices to prove that h[M ] ⊆ {↑A−

F1, ↑A−
F2}.

Suppose, with a view to contradiction, that there exists U ∈ h[M ] with
U /∈ {↑A−

F1, ↑A−
F2}. Then U ⊆ X, but U = X, because

X = h(j(e/(θ|B))) ∈ h[j[(B/(θ|B))−]].

We show first that U � ↑A−
F1.

Suppose F1, F2 ∈ U . For each H ∈ X, we have F1 ⊆ H or F2 ⊆ H,
by (4.2), so H ∈ U (since U is upward closed). This shows that X ⊆ U , a
contradiction. Therefore, F1 and F2 don’t both belong to U .

Suppose F2 ∈ U . Then F1 /∈ U and ↑A−
F2 ⊆ U , as U is upward closed.

If H ∈ U , then H = F1 and F1 ∩ F2 ⊆ H (as U ⊆ X). In that case, F2 ⊆
H (otherwise, F1 ⊆ H, by (4.2), whence F1 � H, but then F2 � H, by
Lemma 8.2). This shows that U ⊆ ↑A−

F2, so U = ↑A−
F2, contrary to our

initial assumptions about U . Therefore, F2 /∈ U .
We claim that U ⊆ ↑A−

F1. For otherwise, F1 ⊆ H for some H ∈ U ,
whence H = F2 and, by (4.2), F2 ⊆ H, i.e., F2 � H, whereupon Lemma 8.3
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delivers the contradiction F1 ⊆ H. Thus, U � ↑A−
F1 (since U = ↑A−

F1, by
assumption).

Now we shall argue that U ∈ h[j[(B/θ|B)−]] (contradicting the fact that
U ∈ h[M ], and thereby confirming the relation h[M ] ⊆ {↑A−

F1, ↑A−
F2}).

As U ∈ X∗ and U � ↑A−
F1 = Y , we have

U = U ∩ Y = (iY )∗(U) ∈ Y ∗,

so by Claim 3, there exists b ∈ B with b/(θ|B) ∈ (B/(θ|B))− such that

U = g(i2(b/(θ|B))) = (iY )∗(h(j(b/(θ|B)))) = Y ∩ h(b/θ) = Y ∩ V,

where g is as in (8.5), and V := h(b/θ). By (8.4), we may assume that b � e.
Now V ∈ X∗, so V is an upward-closed subset of X. Note that F1 /∈ V

(otherwise Y = ↑A−
F1 ⊆ V, yielding the contradiction U � Y = Y ∩ V = U).

It follows that Y ⊆ V (as F1 ∈ Y ).
For any H ∈ V, if F1 ⊆ H, then F1 � H (as F1 /∈ V), whence F2 � H

(by Lemma 8.2), whereas if F1 ⊆ H, then F2 ⊆ H (by (4.2)). This shows that
V ⊆ ↑A−

F2.
We now argue that V ⊆ Y .
Suppose, on the contrary, that there exists H ∈ V\Y . Then F1 ⊆ H (by

definition of Y ), so F2 ⊆ H, by (4.2). Now Lemma 8.3 prevents F2 from being
a proper subset of H, so F2 = H. In particular, F2 ∈ V, so ↑A−

F2 ⊆ V, whence
V = ↑A−

F2.
In Case (A) of Claim 2, it would follow that Y = ↑A−

F1 ⊆ ↑A−
F2 = V, a

contradiction.
In Case (B), we have e � a2 ∈ F2\F1 and h(a2/θ) = ↑A−

F2 = V = h(b/θ).
Then, since h is injective, a2/θ = b/θ, contradicting Claim 4.

This confirms that V ⊆ Y , and so V = Y ∩ V = U . Therefore,

U = h(b/θ) = h(j(b/(θ|B))) ∈ h[j[(B/θ|B)−]],

completing the proof that M is {a1/θ} in Case (A), and is {a1/θ, a2/θ} in
Case (B).

It remains to show that a/θ ≺ e/θ in A/θ, whenever a/θ ∈ M .
To establish that a1/θ ≺ e/θ in A/θ (i.e., in (A/θ)−), it suffices to show

that ↑A−
F1 ≺ X in X∗, because h is an isomorphism.

Suppose ↑A−
F1 � W � X, where W ∈ X∗. Then F1 ⊆ H for some

H ∈ W, whence F2 ⊆ H, by (4.2). We cannot have F2 = H, otherwise
↑A−

F2 ⊆ W, in which case every element G of X belongs to W (as G contains
F1 or F2, again by (4.2)). Therefore, F2 � H, and so F1 ⊆ H, by Lemma 8.3.
This contradiction confirms that a1/θ ≺ e/θ in A/θ.

We may now assume that Case (B) applies. The desired conclusion (that
a2/θ ≺ e/θ) amounts similarly to the claim that ↑A−

F2 ≺ X in X∗. Suppose
↑A−

F2 � W � X, where W ∈ X∗. Then F2 ⊆ H for some H ∈ W. Now
H ∈ X, so F1 ⊆ H, by (4.2). Then F1 = H, by Lemma 8.2, so F1 ∈ W, whence
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↑A−
F1 ⊆ W. By (4.2) again, X ⊆ (↑A−

F1) ∪ (↑A−
F2) ⊆ W, contradicting the

fact that W � X. Therefore, a2/θ ≺ e/θ in A/θ. �

We are now in a position to prove Claim 1 (and hence Theorem 8.1).

Proof of Claim 1. Since A and B are negatively generated, so are A/θ and
B/(θ|B), by Lemma 5.4. The subalgebra

J := j[B/(θ|B)]

of A/θ is isomorphic to B/(θ|B), so J is also negatively generated.
By Lemma 5.2(i), J− = j[(B/(θ|B))−], whence M = (A/θ)−\J−. As B is
K-epic in A, Lemma 2.1 shows that J is K-epic in A/θ. Moreover,

S := SgA/θ(J− ∪ {a1/θ})

is negatively generated (since J− ∪ {a1/θ} ⊆ S−), and J is a subalgebra of S
(as J = SgA/θ(J−)), so S is K-epic in A/θ (because J is).

Observe that J = A/θ, because a1/θ /∈ J (by Claim 4 and (8.4), since
a1 ∈ F1\F2), and that A/θ = SgA/θ((A/θ)−) = SgA/θ(J− ∪ M).

We choose C = J and a = a1 in Case (A). We make the same choices
in Case (B) if a2/θ ∈ S. Under these conditions, J− ∪ M = J− ∪ {a1/θ} (by
Claim 5) and A/θ = SgA/θ(J− ∪ M) ⊆ S = SgA/θ(C− ∪ {a/θ}), so A/θ is
generated by C− ∪ {a/θ}, as required.

In Case (B), if a2/θ /∈ S (whence S = A/θ), we choose C = S and a = a2,
whereupon J− ∪ M = J− ∪ {a1/θ, a2/θ} (by Claim 5) and

A/θ = SgA/θ(J− ∪ M) ⊆ SgA/θ(S− ∪ {a2/θ}) = SgA/θ(C− ∪ {a/θ}),

so again, A/θ is generated by C− ∪ {a/θ}. �

9. Reflections and De Morgan monoids

Given an SRL A, let A′ = {a′ : a ∈ A} be a disjoint copy of A, and let ⊥,�
be distinct non-elements of A∪A′. The reflection R(A) of A is the SIRL with
universe R(A) = A∪A′∪{⊥,�} such that A is a subalgebra of the SRL-reduct
of R(A) and, for all a, b ∈ A and x, y ∈ R(A),

x · ⊥ = ⊥ < a < b′ < � = a′ · b′, and if x = ⊥, then x · � = �;

a · b′ = (a → b)′;

¬a = a′ and ¬(a′) = a and ¬⊥ = � and ¬� = ⊥;

x → y = ¬(x · ¬y).

Since f = e′, we have � = f2 and ⊥ = ¬(f2), so ⊥,� belong to every
subalgebra of R(A).

The reflection construction originates with Meyer [34]; also see [19, Sec-
tion 9]. It preserves (and reflects) distributivity and the square-increasing law,
so A is a Dunn monoid iff R(A) is a De Morgan monoid. Also, A is FSI iff
R(A) is.
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The reflection of a variety K of SRLs is the variety

R(K) := V{R(A) : A ∈ K}
of SIRLs. The structure of a member of R(K) is illuminated by the following
lemma, which is proved in [38, Section 6]. (The extra assumptions there were
not relied on in the proof.)

Lemma 9.1 (cf. [38, Lemma 6.5]). Let A be an SRL.
(i) If B is a subalgebra of A, then B ∪ {b′ : b ∈ B} ∪ {⊥,�} is the universe

of a subalgebra of R(A) that is isomorphic to R(B), and every subalgebra
of R(A) arises in this way from a subalgebra of A.

(ii) If θ is a congruence of A, then

R(θ) := θ ∪ {〈a′, b′〉 : 〈a, b〉 ∈ θ} ∪ {〈⊥,⊥〉, 〈�,�〉}
is a congruence of R(A), and R(A)/R(θ) ∼= R(A/θ). Also, every proper
congruence of R(A) has the form R(θ) for some θ ∈ Con A.

(iii) If {Ai : i ∈ I} is a family of SRLs and U is an ultrafilter over I, then∏
i∈I R(Ai)/U ∼= R

(∏
i∈I Ai/U)

.

Jónsson’s Theorem [24,25] states that, for any subclass L of a congruence
distributive variety, V(L)FSI ⊆ HSPU(L). Together with Lemma 9.1, this yields
the next corollary (as every variety is generated by its FSI members).

Corollary 9.2. Let K be a variety of SRLs, with E ∈ R(K). Then E is FSI iff
E ∼= R(D) for some D ∈ KFSI .

Theorem 9.3. Let K be a variety of SRLs, let B be a subalgebra of A ∈ K,
and identify R(B) with the subalgebra of R(A) given in Lemma 9.1(i). Then

(i) B is K-epic in A iff R(B) is R(K)-epic in R(A);
(ii) K has the ES property iff R(K) has the ES property;
(iii) K is locally finite iff R(K) is locally finite.

Proof. (i) (⇒): Let g, h : R(A) −→ E ∈ R(K) be homomorphisms that agree
on R(B). In showing that g = h, we may assume that E is subdirectly ir-
reducible (by the Subdirect Decomposition Theorem), whence E = R(D)
for some D ∈ KFSI , by Corollary 9.2. Since g, h preserve e, ·,¬, they pre-
serve ⊥,�. If a, b ∈ A, then g(a), h(a) = ⊥ (otherwise, the kernel of g
or h would identify � = a · � with ⊥ · � = ⊥), and g(a), h(a) = �
(because the kernels don’t identify � = � → � with � → a = ⊥), while
g(a), h(a) = b′ (because the kernels don’t identify a2 ∈ A with � = (b′)2).
Thus, g[A], h[A] ⊆ D, and so g|A, h|A are homomorphisms from A to D,
which agree on B. As D ∈ K and B is K-epic in A, we conclude that
g|A = h|A. Then g|A′ = h|A′ , since g, h preserve ¬. Consequently, g = h.
(⇐): Let g, h : A −→ D ∈ K be homomorphisms that agree on B. Then
R(D) ∈ R(K). Let g, h : R(A) −→ R(D) be the respective extensions of
g, h, preserving ⊥,�, such that g(a′) = g(a)′ and h(a′) = h(a′) for all
a ∈ A. Then g, h are homomorphisms that agree on R(B), so by assump-
tion, g = h, whence g = h.
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(ii) Obviously, B = A iff R(B) = R(A). Therefore, the implication from
right to left follows from (i). For the converse, use Theorem 2.2, Corol-
lary 9.2, Lemma 9.1(i) and item (i) of the present theorem.

(iii) (⇒): As K is locally finite, there is a function p : ω −→ ω such that, for each
n ∈ ω, every n-generated member of KFSI has at most p(n) elements. It
suffices to show that, for each n ∈ ω, every n-generated E ∈ R(K)FSI has
at most 2+2p(n) elements. By Corollary 9.2, any such E may be assumed
to be R(D) for some D ∈ KFSI . Let G be an irredundant generating set
for E, with |G| ≤ n. Then ⊥,� /∈ G. Let H = (G∩D)∪{¬g : g ∈ G∩D′},
so |H| ≤ n and C := SgDH has at most p(n) elements. By Lemma 9.1(i),
R(C) may be identified with a subalgebra of E, but then G ⊆ R(C), so
R(C) = E, whence |E| ≤ 2 + 2p(n).
(⇐): Use the fact that an SIRL of the form R(A) is generated by A. �
As a function from the lattice of varieties of SRLs into that of SIRLs,

the operator R is obviously isotone. Using Corollary 9.2, we can show that R

is also ⊆-reflecting (and therefore injective); the proof is the same as that of
[38, Lemma 6.7] (where again, the extra assumptions play no role).

Consequently, as all varieties of Brouwerian algebras of finite depth have
the ES property (by [4, Theorem 5.4] or by Theorem 8.1) and since there are
2ℵ0 such distinct varieties (even of depth 3) [29], the following can be inferred
from Theorem 9.3(ii),(iii).

Theorem 9.4. There are 2ℵ0 distinct locally finite varieties of De Morgan
monoids with the ES property.

10. Further examples and applications

10.1. The weak ES property

The weak ES property for a variety K rules out non-surjective K-epimorphisms
h : A −→ B in all cases where B is generated by the union of h[A] and a
finite set. By [39, Theorem 5.4], it is equivalent to the demand that no finitely
generated member of K has a K-epic proper subalgebra. In varieties of logic, it
amounts to the so-called finite Beth property for the corresponding deductive
system [5, Theorem 3.14, Corollary 3.15] (also see [39, Theorem 7.9]).

Therefore, by an argument of Kreisel [28], every variety of Brouwerian
(or Heyting) algebras has the weak ES property. It follows from a result of
Campercholi [8, Corollary 6.5] that, in any finitely generated variety with a
majority term (e.g., one generated by a finite lattice-based algebra), the weak
ES property entails the ES property. This provides a different explanation of
the slightly earlier finding that all finitely generated varieties of Brouwerian
(or Heyting) algebras have the ES property [4, Corollary 5.5, Theorem 7.2].

Every variety with the weak ES property and the amalgamation property
has (a strong form of) the ES property; see [23,26,43] and [22, Section 2.5.3].
Consequently, in all varieties of Brouwerian (or Heyting) algebras, amalgama-
bility entails epimorphism-surjectivity, and the amalgamable varieties of these
kinds have been classified completely by Maksimova; see [16,30,31].
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The situation is different for varieties of (possibly non-integral) S[I]RLs,
as they may lack the weak ES property, even when they are finitely generated
(see Section 10.2 below).

10.2. Hypotheses of the main theorem

For subvarieties K and L of a congruence distributive variety, we have

V(K ∪ L)FSI = KFSI ∪ LFSI ,

by Jónsson’s Theorem. The hypotheses in Theorem 8.1 therefore persist in
(binary) varietal joins, and of course in subvarieties. This is helpful in appli-
cations, as the ES property itself is not hereditary.

Neither of the two hypotheses in Theorem 8.1 can be dropped.
To see that the finite depth assumption cannot be dropped for varieties of

SRLs, it suffices to exhibit a variety of Brouwerian algebras (of infinite depth)
without the ES property. This was done in [4, Section 6]. It was subsequently
shown in [40] that there are 2ℵ0 distinct locally finite varieties of Brouwerian
algebras that lack the ES property and that have width 2 (i.e., 2 is the maxi-
mum cardinality of an anti-chain in the dual of an FSI member of the variety).
It follows, as in Section 9, that there are 2ℵ0 locally finite varieties of De Mor-
gan monoids without the ES property, but this could alternatively be deduced
from older findings, discussed below.

The demand for negative generation is not redundant either, because
some finitely generated varieties of De Morgan monoids (and of Dunn mon-
oids) lack the ES property. Indeed, by an argument of Urquhart [47] (also see
[5, Corollary 4.15]), a variety of De Morgan monoids lacks even the weak ES
property if it contains a certain six-element algebra C, called the crystal lattice
(which is not negatively generated). That algebra is depicted below.

�

�
��

�

��

���
�

��

�

f2 = a · b

f

a2 = a = ¬a b = ¬b = b2

e

¬(f2)

(Deletion of b leaves an epic subalgebra behind, owing to the uniqueness of
existent relative complements in distributive lattices.) The argument adapts
to Dunn monoids, using the SRL-reduct of C. In particular, C is absent from
each of the 2ℵ0 varieties K of De Morgan monoids in Theorem 9.4, while the
corresponding locally finite varieties V(K ∪ {C}) lack the weak ES property,
and by Jónsson’s Theorem, they are distinct.

While the finite depth assumption in Theorem 8.1 cannot be dropped,
it is not a necessary condition for the ES property. Indeed, epimorphisms are
surjective in BRA (hence in its reflection), and in the locally finite variety
of relative Stone algebras (i.e., subdirect products of totally ordered Brouwe-
rian algebras). Also, the smallest variety containing the De Morgan monoids
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(alternatively, the idempotent SRLs) that are totally ordered and negatively
generated has the ES property and is locally finite [48]. All of the varieties
mentioned in this paragraph have infinite depth.

Likewise, the demand that FSI members be negatively generated is not
entailed by the ES property, even in varieties of S[I]RLs of finite depth. Wit-
nessing examples can also be found in [48].

10.3. More varieties of De Morgan monoids

Sugihara monoids—i.e., idempotent De Morgan monoids—are always nega-
tively generated, and the same applies to the SRLs that can be embedded
into them (these are the positive Sugihara monoids of [41]). The ES prop-
erty was established recently for all varieties of [positive] Sugihara monoids
[4, Theorems 8.5, 8.6]. For the finitely generated varieties of this kind, the sur-
jectivity of epimorphisms could alternatively be deduced (immediately) from
Theorem 8.1.

Apart from reflections and idempotent cases, Theorem 8.1 yields further
examples as follows.

By [37, Theorem 6.1], the lattice of varieties of De Morgan monoids has
just four atoms, each of which is a finitely generated variety satisfying the
hypotheses of Theorem 8.1. One of them is generated by the reflection of a
trivial SRL, i.e., by the non-idempotent De Morgan monoid C4 on the chain

¬(f2) < e < f < f2.

The covers of V(C4) are distinctive, as C4 is the only 0-generated nontrivial
algebra onto which FSI De Morgan monoids may be mapped by non-injective
homomorphisms [44, Theorem 1].

There is a largest variety U of De Morgan monoids consisting of homo-
morphic pre-images of C4 (along with trivial algebras), and in the subvariety
lattice of U, the variety V(C4) has just ten covers [38, Sections 4, 8], only two
of which are generated by reflections of Dunn monoids.

Each of these ten varieties is generated by a finite De Morgan monoid
that is itself generated by one of the lower bounds of its neutral element (and
is thus negatively generated). Therefore, the conditions of Theorem 8.1 obtain
in all ten covers, and hence in their varietal join, so all subvarieties of this join
have the ES property.

10.4. Bounds

The original Esakia duality of [13] supplies an equivalence between the category
HA of Heyting algebras (and their homomorphisms—which must preserve ⊥)
and the opposite of the category ESP of Esakia spaces.

The objects of ESP are like those of PESP, except that they need not have
maximum elements; the definition of morphisms is unaffected. For A ∈ HA
and X ∈ ESP, we re-define Pr(A) as the set of prime proper filters of A,
and Cpu(X) as the set of all clopen up-sets of X, including ∅. After these
changes, the definitions of A∗, X∗, the duals of morphisms, and the canonical
isomorphisms remain the same (but note that A∗ is empty when |A| = 1). The
definition of depth is adjusted so that a Heyting algebra and its Brouwerian
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reduct have the same depth. (In particular, the depth of the Esakia space
reduct of a pointed Esakia space X exceeds that of X by 1.)

Theorem 8.1 remains true for varieties of bounded S[I]RLs; its proof re-
quires no further alteration. In this form, it generalizes the recent finding that
every variety of Heyting algebras of finite depth has surjective epimorphisms
[4, Theorem 5.3].

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Ne-
cessity, vol. 1. Princeton University Press, Princeton (1975)

[2] Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press,
Columbia (1974)

[3] Beth, E.W.: On Padoa’s method in the theory of definitions. Indag. Math. 15,
330–339 (1953)

[4] Bezhanishvili, G., Moraschini, T., Raftery, J.G.: Epimorphisms in varieties of
residuated structures. J. Algebra 492, 185–211 (2017)

[5] Blok, W.J., Hoogland, E.: The Beth property in algebraic logic. Stud. Log. 83,
49–90 (2006)

[6] Blok, W.J., Pigozzi, D.: A finite basis theorem for quasivarieties. Algebra Uni-
versalis 22, 1–13 (1986)

[7] Blok, W.J., Pigozzi, D.: Algebraizable logics. Memoirs of the American Mathe-
matical Society 396. American Mathematical Society, Providence (1989)

[8] Campercholi, M.A.: Dominions and primitive positive functions. J. Symbol.
Logic 83, 40–54 (2018)

[9] Czelakowski, J., Dziobiak, W.: Congruence distributive quasivarieties whose
finitely subdirectly irreducible members form a universal class. Algebra Uni-
versalis 27, 128–149 (1990)

[10] Dunn, J.M.: The algebra of intensional logics. Ph.D. Thesis, University of Pitts-
burgh (1966) (College Publications 2019)

[11] Dunn, J.M.: Algebraic completeness results for R-mingle and its extensions. J.
Symbol. Log. 35, 1–13 (1970)

[12] Esakia, L.L.: Topological Kripke models. Soviet Math. Dokl. 15, 147–151 (1974)

[13] Esakia, L.L.: Heyting Algebras I. Duality Theory. Metsniereba Press, Tblisi
(1985). (Russian)



6 Page 24 of 26 T. Moraschini, J. G. Raftery and J. J. Wannenburg Algebra Univers.

[14] Esakia, L.L., Grigolia, R.: The variety of Heyting algebras is balanced. In: XVI
Soviet Algebraic Conference, Part II, Leningrad, pp. 37–38 (1981) (Russian)

[15] Fussner, W., Galatos, N.: Categories of models of R-mingle. Ann. Pure Appl.
Log. 170, 1188–1242 (2019)

[16] Gabbay, D.M., Maksimova, L.: Interpolation and Definability: Modal and Intu-
itionistic Logics. Oxford Logic Guides, vol. 46. Clarendon Press, Oxford (2005)

[17] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices. An Alge-
braic Glimpse at Substructural Logics. Studies in Logic and the Foundations of
Mathematics, vol. 151. Elsevier, New York (2007)
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