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Congruence lattices of connected monounary
algebras
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Abstract. The system of all congruences of an algebra (A,F ) forms a
lattice, denoted Con(A,F ). Further, the system of all congruence lattices
of all algebras with the base set A forms a lattice EA. We deal with meet-
irreducibility in EA for a given finite set A. All meet-irreducible elements
of EA are congruence lattices of monounary algebras. Some types of meet-
irreducible congruence lattices were already described. In the case when a
monounary algebra (A, f) is connected, we prove necessary and sufficient
condition under which Con(A, f) is ∧-irreducible.
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1. Introduction

Congruences and congruence lattices on algebras have been studied by many
authors, recently e.g. by [1,2,4]. Further, [5] and [10] studied congruences on
other types of structures.

Our paper is a continuation of [6] and [7]. As it was mentioned in [7],
the subject of the papers is related to the finite representation problem in its
concrete version.

For a fixed finite set A we consider all possible congruence lattices of alge-
bras with the base set A. These congruence lattices, ordered by inclusion, form
a lattice themselves; it is denoted EA. All join-irreducible congruence lattices
of EA were characterized in [7]. In this paper, we study meet-irreducibility in
the lattice EA.

Since F ⊆ G implies Con(A,G) ⊆ Con(A,F ), all ∧-irreducible ele-
ments in EA must be of the form Con(A, f) for a single mapping f , otherwise
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Con(A,F ) would be the intersection of all Con(A, f) where f ∈ F . Therefore, it
is sufficient to explore meet-irreducibility of congruence lattices of monounary
algebras (i.e. algebras with a single unary operation). While studying proper-
ties of monounary algebras, we often benefit from the fact that they can be
easily visualized as digraphs which are always planar, hence easy to draw [8].

In general, the problem which unary operations f yield ∧-irreducibles
is difficult. Some partial results exist for special classes of operations f ([6],
[7]). Let us remark that maximal ∧-irreducibles, i.e. the coatoms in EA, are
described completely in [7].

In this paper, we prove a necessary and sufficient condition under which
Con(A, f) is ∧-irreducible in EA in the case when (A, f) is connected (defini-
tions are in the section Preliminary):

Theorem 1.1. Let (A, f) be a connected monounary algebra with at least 3
cyclic elements. Then Con(A, f) is ∧-irreducible if and only if the set of cyclic
elements is covered and there exist distinct noncyclic elements a, b, c, d ∈ A
such that f(a), f(c) are cyclic and f(b) = a, f(d) = c.

Remark 1.2. Let us note that in the case when (A, f) is a monounary algebra
with at most two cyclic elements, the necessary and sufficient condition under
which Con(A, f) is ∧-irreducible was proved in [6].

2. Preliminary

In the following, let A be a fixed, non-empty, finite set and f be a mapping
on A. The pair (A, f) is said to be a monounary algebra. For the notions
concerning monounary algebras, see [8].

Let us denote N := {1, 2, 3, . . .} and N0 := N ∪ {0}.
For a mapping f : A → A, f(a) denotes the image of the element a ∈ A

in the mapping f , and if n ∈ N then fn denotes the n-fold composition of f .
By convention, f0 denotes the identity mapping idA.

The operation f : A → A is called trivial if it is either identity x �→ x or
the constant mapping x �→ a. Otherwise it is called nontrivial.

An element x ∈ A is called cyclic if there exists n ∈ N such that fn(x) =
x, otherwise it is called noncyclic. In this case, the set {x, f1(x), f2(x), . . .,
fn−1(x)} is called a cycle of (A, f). Since A is finite, for each a ∈ A there
exists k ∈ N0 such that fk(a) is cyclic. The cycle containing fk(a) will be
denoted C(a).

Definition 2.1. A monounary algebra (A, f) is called connected, if for every
x, y ∈ A there exist m,n ∈ N0 such that fm(x) = fn(y).

Apparently, a connected monounary algebra (A, f) contains exactly one
cycle. In [6], Definitions 2.2, 2.3 were introduced.

Definition 2.2. A monounary algebra (A, f) is called a permutation-algebra if
the operation f is a permutation on A.
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Definition 2.3. Let (Ā, f̄) be a monounary algebra. Then (Ā, f̄) is said to be
a permutation-algebra with short tails if there is a subalgebra (B, f) of (Ā, f̄)
such that (B, f) is a permutation-algebra and f̄(x) ∈ B for each x ∈ Ā. In
this case (B, f) is called a permutation-algebra corresponding to (Ā, f̄).

Notation 2.4. Let tf (a) := min{n ∈ N0 : fn(a) ∈ C(a)}. Clearly, if a is cyclic
then tf (a) = 0. For k ∈ N we denote Ck := {x ∈ A : tf (x) = k}.

Definition 2.5. For every element x ∈ A such that tf (x) = t, there is a single
cyclic element y ∈ A such that f t(x) = f t(y). We will call this element a
colleague of x and we denote it x′. It is clear that (f(x))′ = f(x′).

Notation 2.6. For a ∈ A, we denote 〈a)f := {fk(a) : k ∈ N0} and (a)f :=
{fk(a) : k ∈ N}.

Let us denote the least and the greatest congruence on the set A as
Δ := {(x, x) : x ∈ A} and ∇ := A × A, respectively.

For x, y ∈ A let θf (x, y) be the smallest congruence on (A, f) such that
(x, y) ∈ θf (x, y). In [3], the following notations were introduced. For a ∈ A

cyclic, d ∈ N, we denote θ(d) the smallest congruence on (A, f) such that
(a, fd(a)) ∈ θ(d).

Notice that if m,n ∈ N such that m divides n then θ(n) ⊆ θ(m).
Let x belong to a cycle with n elements and let y = f i(x), i ∈ N. Then

θf (x, y) = θ(d), where d = gcd(i, n).
Let Eq(A) denote the set of all equivalence relations on a given set A (i.e.,

reflexive, symmetric and transitive relations). For the sake of simplification,
we will use the following notation to denote the equivalence classes.

Notation 2.7. For κ ∈ Eq(A) consider the corresponding partition A/κ into
equivalence classes. If A1 = {a11, a12, . . . }, A2 = {a21, a22, . . . }, . . . , Ak =
{ak1, ak2, . . . } are the equivalence classes of κ with at least two elements, then
we use the notation

κ = [a11, a12, . . . ] [a21, a22, . . . ] . . . [ak1, ak2, . . . ] or

κ = [A1] [A2] . . . [Ak].

Definition 2.8. If L is lattice, then a non-unit element a ∈ L is called meet-
irreducible (shortly ∧-irreducible) if a = b1 ∧ b2 implies a ∈ {b1, b2}. Similarly,
nonzero element a ∈ L is called join-irreducible (∨-irreducible) if a = b1 ∨ b2
implies a ∈ {b1, b2} (see e.g. [9]).

Lemmas 2.9, 2.10 present some properties of operations f, g ∈ AA with
Con(A, f) ⊆ Con(A, g), (see [7]).

Lemma 2.9. Let f, g ∈ AA be nontrivial and Con(A, f) ⊆ Con(A, g). Then we
have

(i) ∀x, y ∈ A : (x, y) ∈ κ ∈ Con(A, f) =⇒ (g(x), g(y)) ∈ κ,
in particular we have (g(x), g(y)) ∈ θf (x, y) and θg(x, y) ⊆ θf (x, y).

(ii) Let B be a subalgebra of (A, f). Then either B is also a subalgebra of
(A, g) or g is constant on B, where the constant does not belong to B.
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Lemma 2.10. Let f, g ∈ AA be nontrivial. Then

Con(A, f) ⊆ Con(A, g) ⇔ ∀x, y ∈ A : (g(x), g(y)) ∈ θf (x, y).

Corollary 2.11. Let gi, i ∈ I be nontrivial operations on A. Then

Con(A, f) =
⋂

i∈I

Con(A, gi) ⇔ ∀x, y ∈ A : θf (x, y) =
∨

i∈I

θgi
(x, y).

Lemma 2.12. Assume that a is a noncyclic element of A and a′ is its colleague.
Let d = min{m ∈ N : fm(a) = a′}. Then |C(a)| divides d.

Proof. Let |C(a)| = c and k = tf (a). Since a is noncyclic, a′ = f i−1(fk(a)),
where i = min{n ∈ N, n + k − 1 ≡ 0 (mod c)}, i.e., a′ = fk+i−1(a). Clearly,
d = k + i − 1 ≡ 0 (mod c), hence c divides d. �

Corollary 2.13. Let x, y ∈ A be noncyclic, C(x) = C(y). Then (x′, y′) ∈
θf (x, y) i.e., θf (f(x′), f(y′)) ⊆ θf (f(x), f(y)).

Proof. Let |C(x)| = c. Lemma 2.12 yields that there exist k, l ∈ N such that
fck(x) = x′ and fcl(y) = y′. Hence fck+cl(x) = x′ and fck+cl(y) = y′, which
implies θf (x, y) = [x, y][f(x), f(y)] . . . [x′, y′] . . . �

Lemma 2.14. Let a be a noncyclic element of A. Then (a′, a) ∈ θf (a, x) for
each x ∈ (a)f .

Proof. Let |C(a)| = c and d ∈ N be such that fd(a) = x. Clearly, there exists
j ∈ N such that f jd(a), f jd(x) ∈ C(a), which implies that

θf (f jd(a), f jd(x)) = θ(gcd(d,c)) ⊆ θf (a, x).

We denote m = gcd(d, c), hence there exist k, l ∈ N such that

d = km, c = lm.

According to Lemma 2.12, there exists i ∈ N such that f ic(a) = a′.
Apparently, (f ic(a), f ic(x)) = (a′, f iml(x)) ∈ θf (a, x). Moreover, fnd(x) =
fnkm(x), f ic(x) = fnkm(x) ∈ C(a) imply that

(fnkm(x), f ilm(x)) ∈ θ(m) ⊆ θf (a, x).

It is easy to see that the following elements are congruent in θf (a, x) :

a, fd(a) = x, f2d(a), . . .

x, fd(x), f2d(x), . . . , fnd(x), . . .

which yields that (a, fnd(x)) = (a, fnkm(x)) ∈ θf (a, x).
Hence, we get (a′, f iml(x)), (f ilm(x), fnkm(x)), (fnkm(x), a) ∈ θf (a, x)

and from transitivity, it follows that (a, a′) ∈ θf (a, x). �

Corollary 2.15. Let (A, f) be a connected monounary algebra. Let x, y ∈ A
such that x is cyclic, y is noncyclic. Then (b, b′) ∈ θf (x, y) for each b ∈ 〈y)f .
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Proof. Holds trivially if b is cyclic.
Assume that b is noncyclic. For b = y, the assertion holds according to

Lemma 2.14.
If b ∈ (y)f then there is n ∈ N such that fn(y) = b. Then (fn(x), b) =

(fn(x), fn(y)) ∈ θf (x, y) which implies that θf (b, fn(x)) ⊆ θf (x, y). Moreover,
fn(x) is cyclic, hence fn(x) ∈ (b)f and from Lemma 2.14 we get (b, b′) ∈
θf (b, fn(x)) ⊆ θf (x, y). �

If (A, f) is either a permutation-algebra with short tails or its cycle con-
tains at most 2 elements, then the necessary and sufficient conditions under
which Con(A, f) is meet-irreducible were already proved in [6] and [7].

Definition 2.16. Let (A, f) be a connected algebra with the cycle C such that
|C| = n, n ≥ 3. Next, let C = {0, 1, . . . , n − 1} where f(0) = 1, f(1) =
2, . . . , f(n − 1) = 0 (on C, we compute modulo n). We say that a cyclic
element c is covered if there exists a noncyclic x ∈ A \ C1 such that c = x′.

Further, we denote the canonical decomposition of the number of ele-
ments of C as n = pα1

1 . . . pαk

k ; the numbers pαl

l for l ∈ {1, . . . , k} are said to
be elementary divisors of n. The cycle C is called covered if each equivalence
class modulo σ, where σ is an elementary divisor of n, contains at least one
covered c ∈ C.

The following conditions are the conditions mentioned in Theorem 1.1.

Notation 2.17. Consider the following two conditions:

(∗1) the set C is covered,
(∗2) there exist distinct noncyclic elements a, b, c, d ∈ A with f(a), f(c) ∈ C

and f(b) = a, f(d) = c.

3. The necessary condition

In this section, we prove that if either of the conditions (∗1), (∗2) is not satis-
fied, then Con(A, f) is ∧-reducible.

Lemma 3.1. Let (A, f) be a cycle with α · β elements, where α and β are
mutually prime. If g1 = fα, g2 = fβ, then Con(A, f) = Con(A, g1, g2).

Proof. Clearly, Con(A, f) ⊆ Con(A, g1, g2).
By number theory there exist positive integers ι, κ, τ such that

ταβ + 1 = ια + κβ.

Let θ ∈ Con(A, g1, g2), (x, y) ∈ θ. Then

(f(x), f(y)) = (fταβ+1(x), fταβ+1(y)) = (f ια+κβ(x), f ια+κβ(y))

= (gι
1(g

κ
2 (x)), gι

1(g
κ
2 (y))) ∈ Con(A, g1, g2),

hence Con(A, g1, g2) ⊆ Con(A, f). �
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From now on, we use the notations from Definition 2.16.
Until Proposition 3.5 let us assume that (∗1) is not satisfied and that

(A, f) is not a cycle. This yields that there are l ∈ {1, . . . , k} and i ∈ C such
that c ≡ i (mod pαl

l ) fails to hold for any covered element c ∈ C. Without loss
of generality, let i = 0. Thus if c is covered then pαl

l does not divide c. Notice
that then fpα

(y) ∈ C for each y ∈ A.
Now we set p = pl, α = αl, β = n

pα , j = pα−1 · β.
We define the following operations on A:

g3(x) := x′ + pα,

g4(x) := x′ + β

for each x ∈ A, and

g(x) :=

{
x′ + j + 1 if x ∈ C ∪ C1, p

α divides x′,
f(x) otherwise.

Notice that the operations g3, g4 and g are nontrivial, distinct and not
equal to f . Therefore, if Con(A, f) = Con(A, g3)∩Con(A, g4)∩Con(A, g), then
Con(A, f) is ∧-reducible.

Lemma 3.2. Let x, y ∈ A. Then θg3(x, y) ∨ θg4(x, y) ⊆ θf (x, y).

Proof. Let us show that θg3(x, y) ⊆ θf (x, y). The other inclusion is analogous.
There is t ∈ N such that {f t(x), f t(y)} ⊆ C. This implies

(g3(x), g3(y)) = (x′ + pα, y′ + pα) ∈ θf (x′ + pα, y′ + pα)

= θf (x′, y′) = θf (x′ + t, y′ + t)

= θf (f t(x), f t(y)) ⊆ θf (x, y). �

Lemma 3.3. Let x, y ∈ A. Then θg(x, y) ⊆ θf (x, y).

Proof. It is sufficient to show that (g(x), g(y)) ∈ θf (x, y). Let g(x) �= f(x).
Thus x ∈ C ∪ C1, pα divides x′, g(x) = x′ + j + 1. If g(y) = y′ + j + 1, then
we can proceed analogously as in the previous proof.

Suppose that g(y) = f(y). Then pα does not divide y′. Clearly,

(x′ + 1, f(y)) = (f(x′), f(y)) = (f(x), f(y)) ∈ θf (x, y).

Since (x′, y′) ∈ θf (x, y), it holds that θf (x′, y′) ⊆ θf (x, y). Moreover,

θf (x′, y′) = θ(d), d = gcd(x′ − y′, pαβ)

Further, pα does not divide x′−y′ and d divides pαβ, thus d divides pα−1β = j.
This implies

(x′ + j + 1, x′ + 1) = (fx′+1(j), fx′+1(0)) ∈ θf (j, 0) ⊆ θ(d) ⊆ θf (x, y).

By transitivity, (g(x), g(y)) = (x′ + j + 1, f(y)) ∈ θf (x, y). �

Lemma 3.4. Let x, y ∈ A. Then θf (x, y) ⊆ θg(x, y) ∨ θg3(x, y) ∨ θg4(x, y).
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Proof. We want to prove that (f(x), f(y)) ∈ θg(x, y)∨θg3(x, y)∨θg4(x, y). Let
φ = θg(x, y)∨θg3(x, y)∨θg4(x, y). Without loss of generality, f(x) �= g(x), i.e.,
x ∈ C ∪ C1, pα divides x′, g(x) = x′ + j + 1, f(x) = x′ + 1.

If g(y) = y′ + j + 1 then f(y) = y′ + 1 and

(f(x), f(y)) = (x′ + 1, y′ + 1) ∈ θf (x′ + 1, y′ + 1) = θf (x′ + j + 1, y′ + j + 1).

For cyclic elements we will use Lemma 3.1, therefore

θf (x′ + j + 1, y′ + j + 1)

= θg3(x
′ + j + 1, y′ + j + 1) ∨ θg4(x

′ + j + 1, y′ + j + 1)

= θg3(g(x), g(y)) ∨ θg4(g(x), g(y)) ⊆ φ,

hence (f(x), f(y)) ∈ φ.

Now let g(y) = f(y). Then pα does not divide y′. We have

(x′ + j + 1, f(y)) = (g(x), g(y)) ∈ φ.

Next, (x′ + pα, y′ + pα) = (g3(x), g3(y)) ∈ φ. The elements x′ + pα, y′ + pα are
cyclic, hence

θg3(x
′ + pα, y′ + pα) ∨ θg4(x

′ + pα, y′ + pα) = θf (x′ + pα, y′ + pα)

= θf (x′, y′) = θg3(x
′, y′) ∨ θg4(x

′, y′).

This implies that (x′, y′) ∈ φ (and analogously (x′ + 1, y′ + 1) ∈ φ), thus

(x′ + j + 1, y′ + 1) = (g(x′), g(y′)) ∈ φ.

So, the congruence φ contains the pairs

(x′ + 1, y′ + 1), (y′ + 1, x′ + j + 1), (x′ + j + 1, f(y)),

so by transitivity it also contains the pair (x′ + 1, f(y)) = (f(x), f(y)). �

Proposition 3.5. If (A, f) does not satisfy the condition (∗1), then Con(A, f)
is ∧-reducible.

Proof. For a single cycle, Con(A, f) is ∧-reducible (see [6], Theorem 5.19). If
(A, f) fails to be a cycle, then the assertion is valid according to Lemmas 3.2–
3.4. �

In 3.6–3.11, let us suppose that the condition (∗2) is not valid and that
C2 is nonempty.

Let k be the least positive integer such that there exist distinct noncyclic
elements a, b, c, d, e, t ∈ A such that b ∈ Ck, f(b) = a, f(c) = f(e) = b,
f(d) = c, f(t) = e. If such k does not exist, then put k = 1 and a = f(b) for
c ∈ C2, b = f(c).

Notice that if k = 1 then a ∈ C.
First we will investigate the case k > 1.
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We define the operations g5 and g6 on A by putting

g5(x) :=

{
b′ if f(x) = b,

f(x) otherwise,

g6(x) :=

{
a′ if f(x) = a,

f(x) otherwise.

Lemma 3.6. Let x, y ∈ A. Then θg5(x, y) ∨ θg6(x, y) ⊆ θf (x, y).

Proof. The proof is easy; let us show it e.g. for g5, g5(y) �= g5(x) �= f(x). Then
f(x) = b, g5(x) = b′, and g5(y) = f(y). It is sufficient to show that,

(b′, f(y)) = (g5(x), g5(y)) ∈ θf (f(x), f(y)) = θf (b, f(y)).

Clearly, f(y) �= b, hence one of the following holds:
1) If f(y) ∈ (b)f then Lemma 2.14 yields (b, b′) ∈ θf (b, f(y)).
2) If b ∈ (f(y))f then Lemma 2.14 and Corollary 2.13 imply that (f(y)′, f(y)) ∈

θf (b, f(y)) and (f(y)′, b′) ∈ θf (b, f(y)), respectively.
In both cases, the transitivity yields (b′, f(y)) ∈ θf (b, f(y)). �

Lemma 3.7. Let x, y ∈ A. Then θf (x, y) ⊆ θg5(x, y) ∨ θg6(x, y).

Proof. Denote the relation on the right side by φ. Suppose that f(y) �= f(x) �=
g6(x). This implies f(x) = a = g5(x), g6(x) = a′, g6(y) = f(y). If g5(y) =
f(y), the assertion is obvious. Thus g5(y) = b′ and f(y) = b. Then (a′, b) =
(g6(x), g6(y)) ∈ φ and also (f(a′), a) = (g5(a′), g5(b)) ∈ φ. From the definition
of g5, it follows that (b′, a′) ∈ φ. Next, we have (a, b′) = (g5(x), g5(y)) ∈ φ and
(a′, b) = (g6(x), g6(y)) ∈ φ, therefore (a, b) = (f(x), f(y)) ∈ φ. �

As a corollary of Lemmas 3.6 and 3.7 we obtain:

Corollary 3.8. If k �= 1 then Con(A, f) is ∧-reducible.
Now we deal with the case k = 1.
Let g7 and g8 be the following operations on A:

g7(x) :=

{
b′ iff(x) = b,

f(x) otherwise,

g8(x) :=

{
b if f(x) ∈ C,

b′ otherwise.

Lemma 3.9. Let x, y ∈ A. Then θg7(x, y) ∨ θg8(x, y) ⊆ θf (x, y).

Proof. Suppose that g8(x) �= g8(y) �= f(y), hence without loss of generality:
g8(x) = b, g8(y) = b′. Therefore f(x) ∈ C and f(y) /∈ C. From Corollary 2.15
we get (g8(x), g8(y)) = (b, b′) ∈ θ(f(x), f(y)).

The proof for g7 is analogous as in Lemma 3.6. �

Lemma 3.10. Let x, y ∈ A. Then θf (x, y) ⊆ θg7(x, y) ∨ θg8(x, y).
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Proof. Denote the relation on the right side by φ. Let f(y) �= f(x) �= g7(x).
Then f(x) = b, g7(x) = b′ = g8(x), g7(y) = f(y). We have (b′, f(y)) =
(g7(x), g7(y)) ∈ φ, (b′, g8(y)) = (g8(x), g8(y)) ∈ φ.

Let us show that (b, f(y)) = (f(x), f(y)) ∈ φ, i.e., that (b, b′) ∈ φ.
If f(y) ∈ C then g8(y) = b and the assertion is valid. Otherwise f(y) �=

f(x) yields f(y) �= b hence f2(y) /∈ C. Therefore (b, b′) = (g8(b′), g8(f(y))) =
(g8(g7(x)), g8(g7(x))) ∈ φ. �

From Lemmas 3.9 and 3.10 it follows:

Corollary 3.11. If k = 1 then Con(A, f) is ∧-reducible.
Proposition 3.12. If (A, f) does not satisfy the condition (∗2), then Con(A, f)
is ∧-reducible.
Proof. If (A, f) is a permutation-algebra with short tails, then Con(A, f) is
∧-reducible (see [6], Theorem 5.19). Otherwise the assertion holds due to Corol-
lary 3.8 and 3.11 . �

4. The sufficient condition

In this section (until Proposition 4.7), we suppose that the condition (∗1) (with
notations from Definition 2.16) and the condition (∗2) are satisfied. Our aim
is to prove that Con(A, f) is ∧-irreducible.

Notice that since the condition (∗2) is satisfied, there exist distinct non-
cyclic elements a, b, c, d ∈ A such that f(a), f(c) ∈ C and f(b) = a, f(d) = c.

Lemma 4.1. Let g be a nontrivial operation on A with Con(A, f) ⊆ Con(A, g).
Then g(a) = g(a′) ∈ C, g(c) = g(c′) ∈ C and either
(a) g(b) = a, g(d) = c, g(b′) = a′, g(d′) = c′, or
(b) g(b) = g(b′) ∈ C, g(d) = g(d′) ∈ C.

Proof. Let g(a) �= g(a′). Since θg(a, a′) ⊆ θf (a, a′) = [a, a′], this implies g(a) =
a′, g(a′) = a. Then by Lemma 2.9, g(x) = a for each x ∈ C. Thus

(g(c), a) = (g(c), g(c′)) ∈ θg(c, c′) ⊆ θf (c, c′) = [c, c′],

hence g(c) = a, and

(a, a′) = (g(c), g(a)) ∈ θf (a, c) = [a, c] . . . ,

which is a contradiction. It follows that g(x) = g(x′) for each x ∈ C1.
Let g(a) = g(a′) = y /∈ C. Then

(g(y), y) = (g(y), g(y′)) ∈ θf (y, y′) = [y, y′] . . . ,

implies that g(y) ∈ {y, y′}. Let g(y) = y′ and without loss of generality, let
y �= a (otherwise, let y �= c). It follows that

(y, y′) = (g(a), g(y)) ∈ θf (a, y) = [a, y] . . . ,

which is a contradiction. Therefore, g(x) = g(x′) ∈ C for each x ∈ C1.
Next, (g(b), g(d)) ∈ θf (b, d) = [b, d][a, c] . . .
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Clearly, if g(b) ∈ C then g(d) ∈ C. Moreover,

(g(b), g(b′)) ∈ θf (b, b′) = [b, b′][a, a′],

(g(d), g(d′)) ∈ θf (d, d′) = [d, d′][c, c′],

imply that g(b) = g(b′) and g(d) = g(d′), hence the condition (b) is valid.
If g(b) /∈ C then g(b) ∈ {a, b}. Since

(g(b), g(c)) ∈ θf (b, c) = [b, c][a, . . .] . . . ,

and g(a) ∈ C, we get g(b) = a. Similarly, g(d) = c and (a) holds. �

Lemma 4.2. Suppose that Con(A, f) is ∧-reducible. Then there exists a non-
trivial operation g on A such that Con(A, f) � Con(A, g) and the condition
(a) of Lemma 4.1 is valid.

Proof. Con(A, f) is ∧-reducible implies that there is a set G of nontrivial
operations on A such that |G| ≥ 2 and

Con(A, f) =
⋂

g∈G

Con(A, g), Con(A, f) �= Con(A, g) for g ∈ G.

Assume that for every g ∈ G the condition (a) fails to hold. Then according
to Lemma 4.1, the condition (b) is valid and g(b) = g(b′). This yields

∨

g∈G

θg(b, b′) = [b, b′] �= [b, b′][a, a′] = θf (b, b′),

which is a contradiction. �

In Lemmas 4.3–4.6 we will suppose that g is a nontrivial operation on
A such that Con(A, f) ⊆ Con(A, g) and the condition (a) of Lemma 4.1 is
satisfied.

Lemma 4.3. g(x) = f(x) for each x ∈ A \ (C ∪ C1).

Proof. Let x ∈ A \ (C ∪ C1). Then either a /∈ 〈x)f or c /∈ 〈x)f . Without loss
of generality, let a /∈ 〈x)f . Then

(g(x), a) = (g(x), g(b)) ∈ θf (x, b) = [x, b][f(x), a] . . . ,

implies that g(x) ∈ {f(x), a}. Further,

g(x′) ∈ C and (g(x), g(x′)) ∈ θf (x, x′) ⊆ [〈x)f ]

imply g(x) ∈ 〈x)f , hence g(x) ∈ {f(x), a} ∩ 〈x)f . Moreover, a /∈ 〈x)f , which
yields g(x) = f(x). �

Lemma 4.4. g(t) = f(t) for each covered element t ∈ C.

Proof. Let t ∈ C be covered. If x ∈ A\(C ∪ C1) is an element covering t, i.e.
t = x′, then we can assume that x ∈ Ci for 2 ≤ i ≤ n + 1 with t = x′. From
Lemma 4.3, it follows that g(x) = f(x). If i ≤ n then

(g(t), f(x)) = (g(t), g(x)) ∈ θf (t, x) = [t, x][f(t), f(x)] . . . [f i−1(t), f i−1(x)].
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Hence, g(t) ∈ {f(t), f(x)}. Moreover, the assumption that the condition (a)
of Lemma 4.1 is satisfied implies that g(a′) ∈ C and from Lemma 2.9 (ii) it
follows that f(t) ∈ C. Therefore we get g(t) = f(t).

If i = n + 1, then

(g(t), f(x)) = (g(t), g(x)) ∈ θf (t, x)

= [t, x, fn(x)][f(t), f(x)] . . . [fn−1(t), fn−1(x)].

Analougously as in the previous case, we get g(t) = f(t). �

Lemma 4.5. g(i) = f(i) for each i ∈ C.

Proof. Let i ∈ C. The condition (∗1) implies that for each l ∈ {1, . . . , k} there
exists a covered cl ∈ C such that cl ≡ i (mod pαl

l ). By Lemma 4.4

(g(i), cl + 1) = (g(i), f(cl)) = (g(i), g(cl)) ∈ θf (i, cl) ⊆ θ(p
αl
l ),

thus g(i) ≡ cl + 1 (mod pαl

l ) for each l. According to Chinese Remainder
Theorem, the system of congruences x ≡ cl + 1 (mod pαl

l ), l ∈ {1, . . . , k} has
a solution, and the solution is unique modulo n = pα1

1 . . . pαk

k . Moreover, i + 1
is a solution of this system, what yields that g(i) = i + 1 = f(i). �

Lemma 4.6. g(t) = f(t) for each t ∈ C1.

Proof. Using Lemma 4.5 we have

(g(t), f(t′)) = (g(t), g(t′)) ∈ θf (t, t′) = [t, t′],

hence g(t) = f(t′) = f(t). �

Proposition 4.7. If the conditions (∗1) and (∗2) are valid, then Con(A, f) is
∧-irreducible.

Proof. Suppose that the conditions (∗1) and (∗2) are valid and that Con(A, f)
is ∧-reducible. Due to Lemma 4.2 there exists a nontrivial operation g on A
such that Con(A, f) � Con(A, g) and the condition (a) of Lemma 4.1 is valid.
Then Lemmas 4.3–4.6 imply that g(x) = f(x) for each x ∈ A, which is a
contradiction. �

From Proposition 3.12 and Proposition 4.7 we obtain:

Theorem 4.8. Let (A, f) be a connected monounary algebra with at least 3
cyclic elements. Then Con(A, f) is ∧-irreducible if and only if the conditions
(∗1) and (∗2) are satisfied.

Hence Theorem 1.1 is valid.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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P.J. Šafárik University in Košice
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