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Abstract. The system of all congruences of an algebra (A, F) forms a
lattice, denoted Con(A, F'). Further, the system of all congruence lattices
of all algebras with the base set A forms a lattice £4. We deal with meet-
irreducibility in €4 for a given finite set A. All meet-irreducible elements
of £4 are congruence lattices of monounary algebras. Some types of meet-
irreducible congruence lattices were already described. In the case when a
monounary algebra (A, f) is connected, we prove necessary and sufficient
condition under which Con(A4, f) is A-irreducible.
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1. Introduction

Congruences and congruence lattices on algebras have been studied by many
authors, recently e.g. by [1,2,4]. Further, [5] and [10] studied congruences on
other types of structures.

Our paper is a continuation of [6] and [7]. As it was mentioned in [7],
the subject of the papers is related to the finite representation problem in its
concrete version.

For a fixed finite set A we consider all possible congruence lattices of alge-
bras with the base set A. These congruence lattices, ordered by inclusion, form
a lattice themselves; it is denoted £4. All join-irreducible congruence lattices
of £4 were characterized in [7]. In this paper, we study meet-irreducibility in
the lattice £4.

Since F' C G implies Con(A,G) C Con(A, F), all A-irreducible ele-
ments in £4 must be of the form Con(A4, f) for a single mapping f, otherwise
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Con(A, F) would be the intersection of all Con(A, f) where f € F. Therefore, it
is sufficient to explore meet-irreducibility of congruence lattices of monounary
algebras (i.e. algebras with a single unary operation). While studying proper-
ties of monounary algebras, we often benefit from the fact that they can be
easily visualized as digraphs which are always planar, hence easy to draw [8].

In general, the problem which unary operations f yield A-irreducibles
is difficult. Some partial results exist for special classes of operations f ([6],
[7]). Let us remark that maximal A-irreducibles, i.e. the coatoms in €4, are
described completely in [7].

In this paper, we prove a necessary and sufficient condition under which
Con(A4, f) is A-irreducible in €4 in the case when (A, f) is connected (defini-
tions are in the section Preliminary):

Theorem 1.1. Let (A, f) be a connected monounary algebra with at least 3
cyclic elements. Then Con(A, f) is A-irreducible if and only if the set of cyclic
elements is covered and there exist distinct noncyclic elements a,b,c,d € A
such that f(a), f(c) are cyclic and f(b) = a, f(d) = c.

Remark 1.2. Let us note that in the case when (A, f) is a monounary algebra
with at most two cyclic elements, the necessary and sufficient condition under
which Con(4, f) is A-irreducible was proved in [6].

2. Preliminary

In the following, let A be a fixed, non-empty, finite set and f be a mapping
on A. The pair (4, f) is said to be a monounary algebra. For the notions
concerning monounary algebras, see [8].

Let us denote N := {1,2,3,...} and Ny := NU {0}.

For a mapping f : A — A, f(a) denotes the image of the element a € A
in the mapping f, and if n € N then f™ denotes the n-fold composition of f.
By convention, fO denotes the identity mapping id 4.

The operation f : A — A is called trivial if it is either identity z +— x or
the constant mapping = +— a. Otherwise it is called nontrivial.

An element z € A is called cyclic if there exists n € N such that f™(z) =
x, otherwise it is called noncyclic. In this case, the set {z, f1(z), f(z),...,
fr ()} is called a cycle of (A, f). Since A is finite, for each a € A there
exists k € Ny such that f¥(a) is cyclic. The cycle containing f*(a) will be
denoted C(a).

Definition 2.1. A monounary algebra (A, f) is called connected, if for every
x,y € A there exist m,n € Ny such that f™(x) = f™(y).

Apparently, a connected monounary algebra (A, f) contains exactly one
cycle. In [6], Definitions 2.2, 2.3 were introduced.

Definition 2.2. A monounary algebra (A4, f) is called a permutation-algebra if
the operation f is a permutation on A.
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Definition 2.3. Let (A, f) be a monounary algebra. Then (A4, f) is said to be
a permutation-algebra with short tails if there is a subalgebra (B, f) of (A, f)
such that (B, f) is a permutation-algebra and f(z) € B for each z € A. In
this case (B, f) is called a permutation-algebra corresponding to (A, f).

Notation 2.4. Let t¢(a) := min{n € Ny : f"(a) € C(a)}. Clearly, if a is cyclic
then ty(a) = 0. For k € N we denote Cy 1= {x € A:t;(x) = k}.

Definition 2.5. For every element x € A such that t;(x) = t, there is a single
cyclic element y € A such that fi(z) = f'(y). We will call this element a
colleague of x and we denote it a’. It is clear that (f(z)) = f(z').

Notation 2.6. For a € A, we denote (a); := {f*(a) : k € No} and (a); :=
{f*(a) : k € N}.

Let us denote the least and the greatest congruence on the set A as
A:={(z,x):x € A} and V := A x A, respectively.

For z,y € A let 0;(x,y) be the smallest congruence on (A, f) such that
(z,y) € f(x,y). In [3], the following notations were introduced. For a € A
cyclic, d € N, we denote 69 the smallest congruence on (4, f) such that
(a, f4(a)) € 0.

Notice that if m,n € N such that m divides n then g C gim)

Let x belong to a cycle with n elements and let y = f*(z),i € N. Then
0 (z,y) = 09, where d = ged(i,n).

Let Eq(A) denote the set of all equivalence relations on a given set A (i.e.,
reflexive, symmetric and transitive relations). For the sake of simplification,
we will use the following notation to denote the equivalence classes.

Notation 2.7. For » € Eq(A) consider the corresponding partition A/ into
equivalence classes. If 41 = {a11,a12,...}, A2 = {a21,a22,...}, ..., Ay =
{ak1,ake, ...} are the equivalence classes of » with at least two elements, then
we use the notation

= [0,11,&12,...][agl,agg,...] [akl,akz,...] or

e =[A][As] ... [Ax].

Definition 2.8. If L is lattice, then a non-unit element a € L is called meet-
irreducible (shortly A-irreducible) if @ = by A be implies a € {by, by }. Similarly,
nonzero element a € L is called join-irreducible (V-irreducible) if a = by V by
implies a € {b1,b2} (see e.g. [9]).

Lemmas 2.9, 2.10 present some properties of operations f,g € A4 with
Con(A4, f) C Con(A4, g), (see [7]).

Lemma 2.9. Let f,g € A4 be nontrivial and Con(A, f) C Con(A, g). Then we
have
(i) Va,y € A: (x,y) € x € Con(A, f) = (g9(x),9(y)) € s,
in particular we have (g(z), g(y)) € 05(x,y) and 84(z,y) C 0¢(x,y).
(ii) Let B be a subalgebra of (A, f). Then either B is also a subalgebra of
(A, g) or g is constant on B, where the constant does not belong to B.



54 Page 4 of 12 D. Jakubikovéi-Studenovskd and L. Janickova Algebra Univers.

Lemma 2.10. Let f,g € A be nontrivial. Then
Con(A, f) € Con(A4,g) & Va,y € A: (9(x),9(y)) € 0¢(z,y).

Corollary 2.11. Let g;,i € I be nontrivial operations on A. Then
Con(4, f) = m Con(A, g;) & Va,y € A:0f(x,y) = \/ 04, (z,9).

icl i€l

Lemma 2.12. Assume that a is a noncyclic element of A and ' is its colleague.
Let d = min{m € N: f™(a) = a'}. Then |C(a)| divides d.

Proof. Let |C(a)| = ¢ and k = ts(a). Since a is noncyclic, @’ = f=1(f*(a)),
where i = min{n € N;n+k —1=0 (mod ¢)}, ie., ' = f*~1(a). Clearly,
d=k+i—1=0 (mod ¢), hence ¢ divides d. O

Corollary 2.13. Let z,y € A be noncyclic, C(x) = C(y). Then (2',y') €
O0f(z,y) ie., Op(f(z"), f(y) C Op(f(2), f(y))-

Proof. Let |C(z)| = ¢. Lemma 2.12 yields that there exist k,! € N such that
f*(x) = 2" and f(y) = y'. Hence fe**(z) = 2’ and f**(y) = 5/, which
implies 0 (z,y) = [z, y][f (), f(y)] ... [z, ¥/]. .. -

Lemma 2.14. Let a be a noncyclic element of A. Then (da',a) € 0¢(a,x) for
each x € (a)f.

Proof. Let |C(a)| = ¢ and d € N be such that f%(a) = x. Clearly, there exists
j € N such that f/%(a), f/¢(z) € C(a), which implies that

05(f%(a), f74(x)) = 01D C 0 (a, x).
We denote m = ged(d, ¢), hence there exist k,l € N such that
d=km,c=1Im.

According to Lemma 2.12, there exists i € N such that f“(a) = d'.
Apparently, (f®(a), f(z)) = (a, f™(z)) € 0s(a,x). Moreover, f4(z) =
frim (@), fro(x) = 4 (x) € C(a) imply that

(S (@), [ () € 67 C 6y (a, ).

It is easy to see that the following elements are congruent in 6 (a,x) :
a, f4a) = z, f*(a), ...
z, f4z), 24 ), ..., f*(x),...

which yields that (a, f"4(z)) = (a, f**™(z)) € 04(a, z).

Hence, we get (a’, [ (x)), (f*™(x), f**™ (2)), (f"*™(2),a) € Oy(a,2)
and from transitivity, it follows that (a,a’) € ;(a, z). O

Corollary 2.15. Let (A, f) be a connected monounary algebra. Let x,y € A
such that x is cyclic, y is noncyclic. Then (b,b") € O¢(x,y) for each b € (y);.
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Proof. Holds trivially if b is cyclic.

Assume that b is noncyclic. For b = y, the assertion holds according to
Lemma 2.14.

If b € (y)s then there is n € N such that f"(y) = b. Then (f"(z),b) =
(f"(x), f"(y)) € 0¢(x,y) which implies that 64 (b, f"(x)) C 0¢(z,y). Moreover,
f™(z) is cyclic, hence f"(z) € (b); and from Lemma 2.14 we get (b, V') €
ef(b,fn(x)) < Hf(.’lf,y). O

If (A, f) is either a permutation-algebra with short tails or its cycle con-
tains at most 2 elements, then the necessary and sufficient conditions under
which Con(A4, f) is meet-irreducible were already proved in [6] and [7].

Definition 2.16. Let (A, f) be a connected algebra with the cycle C such that
|C] = n,n > 3. Next, let C = {0,1,...,n — 1} where f(0) = 1, f(1) =
2,...,f(n—=1) = 0 (on C, we compute modulo n). We say that a cyclic
element c is covered if there exists a noncyclic x € A\ Cy such that ¢ = /.

Further, we denote the canonical decomposition of the number of ele-
ments of C' as n = pi™* ...pe*; the numbers pj* for [ € {1,...,k} are said to
be elementary divisors of n. The cycle C' is called covered if each equivalence
class modulo o, where ¢ is an elementary divisor of n, contains at least one
covered c € C.

The following conditions are the conditions mentioned in Theorem 1.1.

Notation 2.17. Consider the following two conditions:

(1) the set C' is covered,
(%2) there exist distinct noncyclic elements a,b,c,d € A with f(a), f(c) € C

and f(b) =a, f(d) =c.

3. The necessary condition

In this section, we prove that if either of the conditions (x1), (*2) is not satis-
fied, then Con(A4, f) is A-reducible.

Lemma 3.1. Let (A, f) be a cycle with a - 3 elements, where o and (3 are
mutually prime. If g1 = f, go = f?, then Con(A, f) = Con(A4, g1, 92).

Proof. Clearly, Con(A, f) C Con(A4, g1, g2).
By number theory there exist positive integers ¢, k, 7 such that

Taf + 1 =1+ Kkf.
Let 6 € Con(4, g1,92), (z,y) € 6. Then
(@), f(y) = (S (@), fTo0H(y)) = (S ), for0(y))
= (91(95(2)), 91(95 (v))) € Con(A, g1, g2),
hence Con(A4, g1, g2) C Con(A4, f). O
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From now on, we use the notations from Definition 2.16.
Until Proposition 3.5 let us assume that (x1) is not satisfied and that
(A, f) is not a cycle. This yields that there are [ € {1,...,k} and i € C such
that ¢ =4 (mod p;") fails to hold for any covered element ¢ € C'. Without loss
of generality, let ¢ = 0. Thus if ¢ is covered then plc” does not divide ¢. Notice
that then fP°(y) € C for each y € A.
Now we set p=p;, a = oy, = ﬁ,j:po‘*LB.
We define the following operations on A:
g3(x) == 2’ + p*,
ga(x) =2 + 3
for each x € A, and
() Z+j+1 ifzeCUC),p® divides 7/,
T) =
g fx) otherwise.
Notice that the operations g3, g4 and ¢ are nontrivial, distinct and not

equal to f. Therefore, if Con(A4, f) = Con(A, g3)NCon(A, g4)NCon(A4, g), then
Con(4, f) is A-reducible.

Lemma 3.2. Let z,y € A. Then 04,(x,y) V 0y, (z,y) C 0¢(x,y).

Proof. Let us show that 64, (x,y) C 8;(x,y). The other inclusion is analogous.
There is t € N such that {f*(z), f*(y)} C C. This implies

(93(x),93(y)) = (&' +p*, 4 +p*) € 05 (2" +p*,y' +p®)
= Gf(xla y/) = Gf(xl + t7yl + t)
=07 (f" (), ['(y)) € Os(x,y). O

Lemma 3.3. Let x,y € A. Then 04(z,y) C 0f(x,y).

Proof. It is sufficient to show that (g(z),g(y)) € 0f(x,y). Let g(z) # f(x).
Thus z € CUCq, p* divides 2/, g(x) =2’ +j+ 1. If g(y) =¥’ + j + 1, then
we can proceed analogously as in the previous proof.

Suppose that g(y) = f(y). Then p® does not divide y’. Clearly,

(@' + 1, f(y) = (f(2), f(y)) = (f(2), f(W)) € Os(,).
Since (2',y') € 0;(x,y), it holds that 6¢(z',y") C 0;(x,y). Moreover,
Or(a’,y') = 09, d = ged(«' —y,p* )

Further, p* does not divide 2’ —%’ and d divides p®3, thus d divides p® '3 = j.
This implies

(2 4+ L'+ 1) = (1), £71H0) € 05(5.0) S 0D C by (o).
By transitivity, (g(z),g(y)) = (@' + 7+ 1, f(y)) € 07(z,y). O
Lemma 3.4. Let x,y € A. Then 0f(x,y) C 0g(x,y) Vb4, (x,y) Vb4, (2, y).
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Proof. We want to prove that (f(z), f(y)) € 84(z,y) Vg, (x,y) VO, (z,y). Let
O =04(z,y) VO, (x,y) VO, (x,y). Without loss of generality, f(z) # g(z), i.e
x e CUCY, p~ divides 2/, g(z) =2’ +j+ 1, f(x) =2’ + 1.

If g(y) =y +j+ 1 then f(y) =y + 1 and

(f(@), f(y) =@ + 1,y +1) € 02"+ Ly +1) =0r(a" +5+ 1,0/ +j+1).
For cyclic elements we will use Lemma 3.1, therefore
Op(2' +7+1,y +j+1)
=0, (2" + i+ Ly + i+ 1)Vl (" +j+ 1,0 +j+1)
=0g,(9(x),9(y)) V b4, (9(x), 9(y)) € ¢,

hence (f(z), f(y)) €
Now let g(y) = ( ). Then p® does not divide y’. We have

(@' +7+1,f(y) = (9(x),9(v)) € .
Next, (' +p*, ¢ +p®) = (93(2), 93(y)) € ¢. The elements =’ + p*, 3/ + p* are
cyclic, hence

Ogs(«" + %,y +p*) VOg, (2" + %,y + p%) = 0(«" + .y + p)
=0(a,y') = 04, (2", ) V Oy, (2", 9)).

This implies that (2',y') € ¢ (and analogously (z' + 1,3 + 1) € ¢), thus

(@ +j+ Ly +1)=(9(").9(¢)) € .
So, the congruence ¢ contains the pairs

@+ Ly + 1), +La"+j+1), (& +7+1,f(y)),

so by transitivity it also contains the pair (' + 1, f(y)) = (f(x), f(y)). O

Proposition 3.5. If (A, f) does not satisfy the condition (x1), then Con(A4, f)
is A-reducible.

Proof. For a single cycle, Con(A4, f) is A-reducible (see [6], Theorem 5.19). If
(4, f) fails to be a cycle, then the assertion is valid according to Lemmas 3.2—
3.4. 0

In 3.6-3.11, let us suppose that the condition (x2) is not valid and that
C5 is nonempty.

Let k be the least positive integer such that there exist distinct noncyclic
elements a,b,c,d,e,t € A such that b € Ck, f(b) = a, f(c) = f(e) = b
f(d) = ¢, f(t) =e. If such k does not exist, then put k =1 and a = f(b) for
ce Cyb= f(c).

Notice that if k =1 then a € C.

First we will investigate the case k > 1.



54 Page 8 of 12 D. Jakubikovéi-Studenovskd and L. Janickova Algebra Univers.

We define the operations g5 and gg on A by putting

oo(2) = {b’ if f(z) = b,

f(x) otherwise,

go(x) = {a’ if f(z) = a,

f(x) otherwise.
Lemma 3.6. Let z,y € A. Then 04,(x,y) V 04, (z,y) C 05(x,y).

Proof. The proof is easy; let us show it e.g. for gs, g5(y) # g5(x) # f(«). Then
f(x) =0, gs(x) =¥, and g5(y) = f(y). It is sufficient to show that,

0, f(y) = (95(x), 95(y)) € 05 (f(x), f(y)) = 05(b, f(y))-
Clearly, f(y) # b, hence one of the following holds:

1) If f(y) € (b); then Lemma 2.14 yields (b,b") € 0;(b, f(y)).
2) Ifb € (f(y))s then Lemma 2.14 and Corollary 2.13 imply that (f(y)’, f(y)) €
05(b, f(y)) and (f(y)',b") € 05(b, f(y)), respectively.
In both cases, the transitivity yields (v, f(y)) € 05(b, f(y)). O

Lemma 3.7. Let x,y € A. Then 0f(x,y) C Oy, (z,y) V 46 (x,y).

Proof. Denote the relation on the right side by ¢. Suppose that f(y) # f(x) #
gs(x). This implies f(z) = a = g5(z), gs(z) = @', gs(y) = f(y). If g5(y) =
f(y), the assertion is obvious. Thus g5(y) = b’ and f(y) = b. Then (a’,b) =
(96(7),96(y)) € ¢ and also (f(a'),a) = (g5(a’), g5(b)) € ¢. From the definition
of gs, it follows that (b',a’) € ¢. Next, we have (a,b") = (g5(x),95(y)) € ¢ and

0

(a’,b) = (g6(x), 96 (y)) € ¢, therefore (a,b) = (f(x), f(y)) € ¢.

As a corollary of Lemmas 3.6 and 3.7 we obtain:
Corollary 3.8. If k # 1 then Con(A, f) is A-reducible.

Now we deal with the case k = 1.
Let g7 and gg be the following operations on A:

() = {b’ iff (z) = b,

f(z) otherwise,

2o(a) 1= {b if f(z) € C,

b otherwise.
Lemma 3.9. Let x,y € A. Then 0, (x,y) V 04, (z,y) C 0¢(x,y).

Proof. Suppose that gs(x) # gs(y) # f(y), hence without loss of generality:
gs(x) = b, gs(y) = V. Therefore f(zx) € C and f(y) ¢ C. From Corollary 2.15
we get (gs(x), 9s(y)) = (b,0) € 0(f (), f(y))-

The proof for g7 is analogous as in Lemma 3.6. O

Lemma 3.10. Let x,y € A. Then 0f(x,y) C 04, (z,y) V Oge(z,y).
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Proof. Denote the relation on the right side by ¢. Let f(y) # f(x) # g7(z).
Then f(z) = b, g7(a) = V' = gs(a), g2(y) = S(y). We have (¥, f(y) —
(97(2),97(y)) € &, (W', 93(y)) = (9s(2),9s(y)) € ¢
Let us show that (b, f(y)) = (f(2), f(y)) € ¢, i.e., that (b,V') € ¢.
If f(y) € C then gs(y) = b and the assertion is valid. Otherwise f(y) #
O

f(x) yields f(y) # b hence f?(y) ¢ C. Therefore (b,0') = (gs(v'), gs(f()))
(9s(g7(x)), g8 (g7(x))) € ¢.

From Lemmas 3.9 and 3.10 it follows:
Corollary 3.11. If k =1 then Con(A4, f) is A-reducible.

Proposition 3.12. If (A, f) does not satisfy the condition (x2), then Con(A, f)
s N-reducible.

Proof. Tt (A, f) is a permutation-algebra with short tails, then Con(A4, f) is
A-reducible (see [6], Theorem 5.19). Otherwise the assertion holds due to Corol-
lary 3.8 and 3.11 . O

4. The sufficient condition

In this section (until Proposition 4.7), we suppose that the condition (x1) (with
notations from Definition 2.16) and the condition (x2) are satisfied. Our aim
is to prove that Con(A4, f) is A-irreducible.

Notice that since the condition (x2) is satisfied, there exist distinct non-
cyclic elements a, b, ¢,d € A such that f(a), f(c) € C and f(b) = a, f(d) = c.

Lemma 4.1. Let g be a nontrivial operation on A with Con(A, f) C Con(4,g).
Then g(a) = g(a’) € C, g(c) = g(c') € C and either
(a) g(b) = a, g(d) =c, g(t') =d’, g(d') = ¢, or
(b) g(b) = g(t) € C, g(d) = g(d') € C.
Proof. Let g(a) # g(a’). Since 8,4(a,a’) C 5(a,a’) = [a,d’], this implies g(a) =
a’, g(a’) = a. Then by Lemma 2.9, g(z) = a for each z € C. Thus
(9(c), a) = (g(c), 9(c)) € Oy(c. ') C Op(c, ) = [e, ],
hence g(c) = a, and
(a,a") = (g(c), 9(a)) € O5(a,c) = [a,] ...,
which is a contradiction. It follows that g(x) = g(z) for each x € C}.
Let g(a) = g(a’) =y ¢ C. Then
(9(¥),y) = (9(v),9(¢") € 05(v,9) = [0 -,
implies that g(y) € {y,y'}. Let g(y) = v’ and without loss of generality, let
y # a (otherwise, let y # ¢). It follows that
(v,9') = (9(a), 9(v)) € Os(a,y) = [a,9] ...,

which is a contradiction. Therefore, g(x) = g(z’) € C for each z € C;.
Next, (g(b),g(d)) € 0¢(b,d) = [b,d][a,] ...
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Clearly, if g(b) € C then g(d) € C. Moreover,
(9(b), g(b")) € O(b,) = [b, b[a, o],
(9(d), g(d")) € 05(d, d’) = [d, d][c, ],
imply that g(b) = g(b') and g(d) = g(d’), hence the condition (b) is valid.

If g(b) ¢ C then g(b) € {a,b}. Since
(9(b), 9(c)) € 05 (b,c) = [b,clla,.. ] ...,
and g(a) € C, we get g(b) = a. Similarly, g(d) = ¢ and (a) holds. O
Lemma 4.2. Suppose that Con(A, f) is A-reducible. Then there exists a non-

trivial operation g on A such that Con(A, f) € Con(A4,g) and the condition
(a) of Lemma 4.1 is valid.

Proof. Con(A4, f) is A-reducible implies that there is a set G of nontrivial
operations on A such that |G| > 2 and

Con(4, f) = (] Con(A,g), Con(A, f) # Con(4,g) for g € G.
geG

Assume that for every g € G the condition (a) fails to hold. Then according
to Lemma 4.1, the condition (b) is valid and g(b) = g(b"). This yields

\/ Og(b,0) = [b,6'] # [b,V][a,a'] = 04(b, 1),

geG

which is a contradiction. O

In Lemmas 4.3-4.6 we will suppose that g is a nontrivial operation on
A such that Con(A4, f) € Con(A,g) and the condition (a) of Lemma 4.1 is
satisfied.

Lemma 4.3. g(z) = f(z) for each x € A\ (CUCY).

Proof. Let x € A\ (C'UCh). Then either a ¢ (z); or ¢ ¢ (x);. Without loss
of generality, let a ¢ (). Then

(9(x),a) = (9(x),9(b)) € Of(x,b) = [z,0][f(2),a] ...,
implies that g(x) € {f(z),a}. Further,
ga’) € C and (g(z),9(z")) € Op(x,2") C [(x)y]

imply g(z) € (z)¢, hence g(z) € {f(x),a} N (x)s. Moreover, a ¢ (z)y, which
yields g(x) = f(z). O

Lemma 4.4. ¢(t) = f(t) for each covered element t € C.

Proof. Let t € C be covered. If € A\(C U C}) is an element covering t, i.e.
t = x’, then we can assume that z € C; for 2 < ¢ < n+ 1 with ¢t = 2/. From
Lemma 4.3, it follows that g(x) = f(z). If ¢ < n then

(9(t), f(2)) = (9(t), 9(x)) € Op(t,2) = [t, 2][f (1), f(@)] ... [ 7). f7 (@),
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Hence, g(t) € {f(t), f(x)}. Moreover, the assumption that the condition (a)
of Lemma 4.1 is satisfied implies that g(a’) € C and from Lemma 2.9 (ii) it
follows that f(t) € C. Therefore we get g(t) = f(¢).
If i =n+1, then
(9(t), f(2)) = (9(t), g(x)) € 05 (¢, x)
= [t., fH (@)L (@), f@)] .. [f"7H @), 7 (@)

Analougously as in the previous case, we get g(t) = f(¢). O
Lemma 4.5. g(i) = f(i) for each i € C.

Proof. Let i € C. The condition (x1) implies that for each [ € {1,...,k} there
exists a covered ¢; € C such that ¢; =4 (mod p;"'). By Lemma 4.4

(g(i), 1+ 1) = (g(0), f(e)) = (9(i), g(cr)) € Op (i, cr) C 0P,

thus g(i) = ¢ + 1 (mod p]") for each I. According to Chinese Remainder
Theorem, the system of congruences z = ¢; + 1 (mod p;"'),l € {1,...,k} has
a solution, and the solution is unique modulo n = p{"* ... py*. Moreover, i + 1
is a solution of this system, what yields that g(i) =i+ 1 = f(i). O

Lemma 4.6. g(t) = f(t) for each t € C.
Proof. Using Lemma 4.5 we have
(9(t). F(£)) = (g(t), g(t')) € O(t,¢') = [t. 1],
hence g(t) = f(¥') = f(t). O

Proposition 4.7. If the conditions (x1) and (*2) are valid, then Con(A, f) is
N-irreductble.

Proof. Suppose that the conditions (x1) and (*2) are valid and that Con(A, f)
is A-reducible. Due to Lemma 4.2 there exists a nontrivial operation g on A
such that Con(A4, f) € Con(A4, g) and the condition (a) of Lemma 4.1 is valid.
Then Lemmas 4.3-4.6 imply that g(z) = f(z) for each z € A, which is a
contradiction. O

From Proposition 3.12 and Proposition 4.7 we obtain:

Theorem 4.8. Let (A, f) be a connected monounary algebra with at least 3
cyclic elements. Then Con(A, f) is A-irreducible if and only if the conditions
(x1) and (x2) are satisfied.

Hence Theorem 1.1 is valid.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.



54 Page 12 of 12 D. Jakubikovéi-Studenovskd and L. Janickova Algebra Univers.

References

[1] Aichinger, E.: Congruence lattices forcing nilpotency. J. Algebra Appl. 17(2),
1850033 (2018)

[2] Badawy, A.: Characterization of congruence lattices of principal p-algebras.
Math. Slovaca. 67(3), 803-810 (2017)

[3] Berman, J.: On the congruence lattice of unary algebras. Proc. Am. Math. Soc.
36, 34-38 (1972)

[4] Czédli, G.: Lattices with many congruences are planar. Algebra Univ. 80(1), 16
(2019)

[6] Hyndman, J., Nation, J.B., Nishida, J.: Congruence lattices of semilattices with
operators. Stud. Log. 104(2), 305-316 (2016)

[6] Jakubikové-Studenovskd, D., Janickova, L.: Meet-irreducible congruence lat-
tices. Algebra Univ. 79, 4 (2018)

[7] Jakubikova-Studenovskd, D., Poschel, R., Radeleczki, S.: The lattice of congru-
ence lattices of algebra on a finite set. Algebra Univ. 79(2), 4 (2018)

[8] Jakubikové-Studenovska, D., Pécs, J.: Monounary Algebras. P.J. Saférik Univ.
Kosice, Kosice (2009)

[9] Roman, S.: Lattices and Ordered Sets. Springer, New York (2008)

[10] Veldsman, S.: Congruences on topological spaces with an application to radical
theory. Algebra Univ. 80(2), 25 (2019)

Danica Jakubikova-Studenovska and Lucia Janickova

Institute of Mathematics

P.J. Saférik University in Kogice

Kosice

Slovakia

e-mail [D. Jakubikové-Studenovskd]: danica.studenovska@upjs.sk
e-mail [L. Janickovd]: lucia.janickova@upjs.sk

Received: 13 March 2020.
Accepted: 26 September 2020.



	Congruence lattices of connected monounary algebras
	Abstract
	1. Introduction
	2. Preliminary
	3. The necessary condition
	4. The sufficient condition
	References




