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A note on the Knaster–Tarski Fixpoint
Theorem

Mengqiao Huang and Yuxi Fu

Abstract. This note shows that several statements about fixpoints in order
theory are equivalent to Knaster–Tarski Fixpoint Theorem for complete
lattices. All proofs have been done in Zermelo–Fraenkel set theory without
the Axiom of Choice.
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1. Introduction

In complete lattice theory, the Knaster–Tarski Fixpoint Theorem [1] states
that a monotonic function on a complete lattice has a least fixpoint. The
Knaster–Tarski Fixpoint Theorem is a fundamental tool for computer scientist
to analyse the formal semantics of programming languages, abstract interpre-
tation, logic. Another basic conclusion about fixpoints in order theory is the
Bourbaki–Witt Theorem [2] which has a typical application to proving that
the Axiom of Choice implies Zorn’s lemma (see [3] and [4]). The Knaster–
Tarski Fixpoint Theorem can act as a starting point to prove an important
fixpoint theorem which asserts the existence of the least fixpoint of a mono-
tonic self-mapping f on a CPO (formulated by Theorem 2.1(4) in this note),
so can the Bourbaki–Witt Theorem. CPOs are basic models of denotational
semantics [5]. In this note, we show that the three foregoing statements about
fixpoints are equivalent, where the involved proof does not appeal to the Axiom
of Choice. Furthermore, an example reveals that a statement in [4] is incorrect.
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2. Main results

We start with some basic notions in order theory. Let (P,≤) be a poset (if it
does not lead to confusion, the order relation ≤ is omitted). A subset D of P is
called directed if D is non-empty and for arbitrary a, b ∈ D there exists some
c ∈ D such that a ≤ c and b ≤ c. P is called a DCPO if every directed subset
D has a least upper bound

∨
D. P is called non-empty chain complete if every

non-empty chain C in P has a least upper bound
∨
C . P is called a complete

lattice if every subset S of P (including empty subset) has a least upper bound∨
S. Let ↑a = {x ∈ P | a ≤ x} for a ∈ P , and ↓a is dually defined. If P has a

least element, we usually denote it by ⊥. A DCPO is called a CPO if it has
the ⊥. For other undefined notions in this note, reader may find them in [4],
and for more about nonempty chain complete posets, reader may refer to [6].

Theorem 2.1. The following statements are equivalent:
(1) The Knaster–Tarski Fixpoint Theorem [1,4]: Let L be a complete lattice

and F : L → L an order-preserving mapping. Then F has a least fixpoint,
given by

∧{x ∈ L | F (x) ≤ x}. Dually,
∨{x ∈ L | x ≤ F (x)} is the

greatest fixpoint of F .
(2) Bourbaki–Witt Theorem [7]: If P is a non-empty chain complete poset,

and the function f : P → P satisfies x ≤ f(x) for all x ∈ P , then f has
a fixpoint.

(3) If P is a DCPO, and the function f : P → P satisfies x ≤ f(x) for all
x ∈ P , then f has a fixpoint.

(4) Let P be a CPO and let the function f : P → P be order-preserving.
Then f has a least fixpoint.

(5) Let P be a CPO and let the function f : P → P be order-preserving.
Then f has a fixpoint.

Proof. (1) ⇒ (2): Freely chose a point a ∈ P . Then ↑a is a non-empty chain
complete poset and fa, the restriction to ↑a, is also a function from ↑a to
↑a, which enjoys x ≤ fa(x) for all x ∈ ↑a. It is sufficient to show that fa
has fixpoints. Thus without loss of generality, we assume that P has the least
element ⊥. Define a mapping F : P(P ) → P(P ) by

F (X) = {⊥} ∪ f(X) ∪ {
∨

C | C ⊆ X and C is a non-empty chain}.
Using (1), we know F has the least fixpoint M =

⋂{X ⊆ P(P ) | F (X) ⊆ X}.
The subsequent proof of the fact that f has a fixpoint in M , which doesn’t

appeal to the Axiom of Choice, is given by improving the procedures in [7].
For an element c of M , c is called an extreme point of M if x < c implies

f(x) ≤ c. Since F (M) = M , we have ⊥ ∈ M , and hence ⊥ is an extreme point
by the definition. Let E(M) denote the set of extreme points of M , and for
every c ∈ E(M) let

M(c) = {x ∈ M | x ≤ c or f(c) ≤ x}.
Claim 1: For each c ∈ E(M), ⊥ ∈ M(c).

Trivially since ⊥ ≤ c, and ⊥ ∈ M from F (M) = M .
Claim 2: For each c ∈ E(M), M(c) = M .
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By the definition of M(c), M(c) ⊆ M . To prove M ⊆ M(c), we only need
to show F (M(c)) ⊆ M(c) because M =

⋂{X ⊆ P(P ) | F (X) ⊆ X}:
(i) ⊥ ∈ M(c) by Claim 1.
(ii) f(M(c)) ⊆ M(c): Let x ∈ M(c). First note f(x) ∈ M since x ∈ M(c) ⊆

M and F (M) = M . Now we have x ≤ c or f(c) ≤ x. If x < c then
f(x) ≤ c, and hence f(x) ∈ M(c); if x = c then f(x) = f(c), and
again f(x) ∈ M(c). If f(c) ≤ x, then f(c) ≤ x ≤ f(x), so we still have
f(x) ∈ M(c).

(iii) {∨C | C ⊆ M(c) and C is a non-empty chain} ⊆ M(c): Note that C ⊆
M(c) ⊆ M . So we have

∨
C ∈ M since F (M) = M . If all elements x ∈ C

are less than c, then
∨
C ≤ c, and hence

∨
C ∈ M(c); if some x ∈ C is

such that f(c) ≤ x, then f(c) ≤ x ≤ ∨
C, and again

∨
C ∈ M(c).

From (i), (ii), (iii) above, Claim 2 is verified.
Claim 3: Every element of M is an extreme point.

By similar arguments to the proof of Claim 2, we only show F (E(M)) ⊆
E(M):

(i) ⊥ ∈ E(M) from above arguments.
(ii) f(E(M)) ⊆ E(M). Let c ∈ E(M). We need to show f(c) ∈ E(M), that

is, to show that f(c) ∈ M , and if x ∈ M and x < f(c) then f(x) ≤ f(c).
Noting that c ∈ E(M) ⊆ M , we first have f(c) ∈ M since F (M) = M .
Now suppose that x ∈ M and x < f(c). From Claim 2, we have M =
M(c), therefore, there must have x < c, x = c, or f(c) ≤ x. But f(c) ≤ x
is impossible by the assumption x < f(c). If x < c, then f(x) ≤ c ≤ f(c)
since c is an extreme point; if x = c then f(x) = f(c). Thus f(c) ∈ E(M),
and we have proved f(E(M)) ⊆ E(M).

(iii) {∨C | C ⊆ E(M) and C is a non-empty chain} ⊆ E(M).
First observe

∨
C ∈ M , since C ⊆ E(M) ⊆ M and F (M) = M .

We show
∨
C is an extreme point. For this purpose, letting x ∈ M and

x <
∨
C, we need to show f(x) ≤ ∨

C.
If f(c) ≤ x for all c ∈ C, then c ≤ f(c) ≤ x implies that x is an upper

bound of C, in turn
∨
C ≤ x which contradicts to the assumption x <

∨
C.

Therefore we must have x ≤ c for some c ∈ C since M = M(c) by 2.
If x < c then f(x) ≤ c ≤ ∨

C.
If x = c, then c = x <

∨
C. Again from M(c) = M(x) = M by Claim 2,∨

C ∈ M(x) implies f(x) ≤ ∨
C.

Claim 4: fhas a fixpoint
∨
M .

Let x, y ∈ M . Then x is an extreme point by 3, and y ∈ M(x) by Claim
2. So y ≤ x or x ≤ f(x) ≤ y. Thus M is a chain. f(

∨
M) ∈ M by F (M) = M ,

therefore,
∨
M ≤ f(

∨
M) ≤ ∨

M .
(2) ⇒ (3): Obviously.
(3) ⇒ (4): Let Q = {x ∈ P | x ≤ f(x)}. Then Q �= ∅ since ⊥ ∈ Q. The

monotonicity of f implies that Q is CPO and the fa which is the restriction
of f to Q is a self-mapping on Q. By (3), fa has some fixpoints, which are
fixpoints of f . Now let

P1 = Q ∩ {x ∈ P | ∀y ∈ fix(f), x ≤ y},
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where fix(f) = {x ∈ P | x = f(x)}.
P1 �= ∅ since ⊥ ∈ P1.
Let x ∈ P1. f(x) ∈ Q from the monotonicity of f , and furthermore for all

y ∈ fix(f), f(x) ≤ f(y) = y. Therefore f(x) ∈ P1, that is, when f is restricted
to P1 we obtain a function fP1 : P1 → P1.

Let D is a directed subset of P1.
∨
D ≤ f(

∨
D). For all y ∈ fix(f), we

have
∨
D ≤ y since for all x ∈ D we have x ≤ y. Therefore

∨
D ∈ P1, in other

words, P1 is a CPO.
Now we applied (3) to fP1 : P1 → P1, and obtain that fP1 has a fixpoint

x0 ∈ P1. By the definition of P1, x0 is the least fixpoint of f .
(4) ⇒ (5): Trivially.
(5) ⇒ (1): We only need to prove the case of the least fixpoint. Let

L0 = {x ∈ L | F (x) ≤ x} and µ =
∧{x ∈ L | F (x) ≤ x}. L0 �= ∅ because L

has a greatest element. Then F (µ) ≤ µ since F is monotonic. Let ↓µ = {x ∈
L | x ≤ µ}. Thus for all y ∈ ↓µ, F (y) ≤ F (µ) ≤ µ, that is, the restriction of
F to ↓µ is a self-mapping on ↓µ. By using (5), the restriction of F to ↓µ has
a fixpoint x0 ∈ ↓µ since ↓µ is still a complete lattice which is also a CPO.
But by the definition of L0, all fixpoints of F are contained in L0. Therefore
x0 ≤ µ ≤ x0 and µ is the least fixpoint of F . �

Example 2.2. Consider the poset (P,≤) where P = {0}∪{ 1
k | k = 1, 2, 3, · · · }

and ≤ is the usual order relation on real numbers. Define the function f : P →
P as follows:

f(x) =

{
1 if x = 0,
x otherwise.

Then for all x ∈ P , x ≤ f(x). P and f meet the assumption of both Theorem
2.1(2) and Theorem 2.1(3), but f does not have a least fixpoint. This example
illustrates that the claim of 8.23 (CPO Fixpoint Theorem III ) in page 188 of
[4], the proof of which authors do not present, is incorrect.
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