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The spectrum problem for Abelian �-groups
and MV-algebras

Giacomo Lenzi and Antonio Di Nola

Abstract. This paper deals with the problem of characterizing those topo-
logical spaces which are homeomorphic to the prime spectra of MV-
algebras or Abelian �-groups. As a first main result, we show that a
topological space X is the prime spectrum of an MV-algebra if and only
if X is spectral, and the lattice K(X) of compact open subsets of X is
a closed epimorphic image of the lattice of “cylinder rational polyhedra”
(a natural generalization of rational polyhedra) of [0, 1]Y for some set Y .
As a second main result we extend our results to Abelian �-groups. That
is, a topological space X is the prime spectrum of an Abelian �-group if
and only if X is generalized spectral, and the lattice K(X) is a closed
epimorphic image of the lattice of “cylinder rational cones” (a general-
ization of rational cones) in R

Y for some set Y . Finally, we axiomatize,
in monadic second order logic, the Belluce lattices of free MV-algebras
(equivalently, the lattice of cylinder rational polyhedra) of dimension 1,
2 and infinite, and we study the problem of describing Belluce lattices in
certain fragments of second order logic.
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1. Introduction

Abelian �-groups (Abelian lattice ordered groups) are an important kind of
algebraic structures; they find applications in functional analysis, economy,
etc. see e.g. [1,2,4,14,15,16,33,37,39,50].

Since many years it has been understood that, in the study of algebraic
structures, it is useful to attach topological invariants to the structures. As a
first example, Stone duality (see [54]) gives a correspondence between Boolean
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algebras and a well-known kind of topological spaces (Stone spaces, i.e. com-
pact Hausdorff spaces with a basis of closed and open sets). The map realizing
this duality is the prime spectrum map. One can ask something similar for
Abelian �-groups: which kind of topological spaces are prime spectra of Abelian
�-groups? We call this problem the spectrum problem for Abelian �-groups.
Progress on this problem has been made, for instance, in [22], where neces-
sary conditions and sufficient conditions are obtained for spectra of Abelian
�-groups.

A kind of structures deeply related with Abelian �-groups is given by
MV-algebras. They can be considered as generalized, non-idempotent Boolean
algebras. They give the algebraic counterpart to �Lukasiewicz infinitely- many
valued logic, in the same way as Boolean algebras give the algebraic counter-
part of classical logic. They have been introduced by Chang in [18] in order
to prove a completeness theorem for �Lukasiewicz logic. They find applications
in as diverse areas as Abelian �-groups themselves (see [5,10,11,30,35,42,43]),
probability and measure theory (see [49]), C∗-algebras (see [44]) etc. The spec-
trum problem for MV-algebras has been posed, for instance, in [45]. In [45],
page 235, there is a list of eleven problems in MV-algebra theory. The sec-
ond problem asks to characterize the topological spaces which are the prime
spectrum of some MV-algebra.

Mundici in [44] discovered a categorial equivalence between Abelian �-
groups with strong unit and MV-algebras. Thanks to this equivalence, we know
that spectra of Abelian �-groups with strong unit and spectra of MV-algebras
coincide.

Much literature has been devoted to this problem, see e.g. [7,6,19,31,23,
22,25] and the recent [57] which solves the problem for countable MV-algebras,
in the sense that proves the following: a topological space X is homeomorphic
to the spectrum of some countable Abelian �-group with strong unit (or equiv-
alently MV-algebra) if and only if X is spectral, has a countable basis of open
sets, and for any points x and y in the closure of a singleton {z}, either x is
in the closure of {y} or y is in the closure of {x}.

In [6], for every MV-algebra A, Belluce defines a lattice, here denoted by
β(A), and called the Belluce lattice of A, which is the quotient of A modulo the
equivalence relation of lying in the same prime ideals, and the lattice operations
between equivalence classes are given by [a]∨ [b] = [a∨ b] and [a]∧ [b] = [a∧ b].

Up to lattice isomorphism, we can also define β(A) as follows:

• the set of all principal ideals of A, and the lattice operations are defined
as follows: id(f) ∧ id(g) = id(f ∧ g), and id(f) ∨ id(g) = id(f ∨ g);

• the set of all compact open subsets of the prime spectrum of A, where
the lattice operations are union and intersection.

In the first sense, the Belluce lattice is an example of a general construc-
tion called reticulation, see for rings [52] and, for lattices, [47].

The usefulness of the Belluce lattice for our aims is witnessed by the
following lemma:



Vol. 81 (2020) The spectrum problem Page 3 of 43 39

Lemma 1.1 (see [6]). For every MV-algebra A, the prime spectra of β(A) and
A are homeomorphic.

One can also note that a topological space X which is the spectrum of
some Abelian �-group is the spectrum of an Abelian �-group with strong unit
if and only if X is compact. So, if we understand the complexity of spectra of
Abelian �-groups, we have information also about spectra of Abelian �-groups
with strong unit or MV-algebras.

The order-theoretic variant of the spectrum problem for MV-algebras
(regarding the structure of prime spectra as partial orders under inclusion)
has been solved by Cignoli and Torrens in [23] as follows:

Theorem 1.2 (see [23]). A partially ordered set (X,≤) is order isomorphic to
the prime spectrum of an MV-algebra ordered by inclusion if and only if it is
a spectral root system, that is:

• every nonempty chain of X has both a supremum and an infimum;
• if x, y ≥ z then x ≤ y or y ≤ x;
• if x < y then there are z, t such that x ≤ z < t ≤ y and there is no

element between z and t.

Note also that for Boolean algebras prime ideals and maximal ideals co-
incide, whereas this is not the case for MV-algebras: actually maximal spectra
of MV-algebras are known: they are exactly compact Hausdorff topological
spaces. In fact, it is not difficult to show that if X is a compact Hausdorff
space, then X is homeomorphic to the maximal spectrum of the MV-algebra
of all continuous functions from X to [0, 1].

Another historically important spectrum problem is the one for commuta-
tive rings with unit. This problem has been solved in [38] from the topological
point of view, and also from the order-theoretical point of view. In fact we
have:

Theorem 1.3 (see [38]). A topological space X is homeomorphic to the prime
spectrum of a commutative ring with unit if and only if X is spectral (see
Section 2 for the definitions).

Moreover, the proof of [38] implies (according to [53], where details on
this issue are omitted) that a partially ordered set S is isomorphic to the prime
spectrum of some commutative ring with unit if and only if S is an inverse
limit of finite partially ordered sets in the category of partially ordered sets.

The spectrum problem for Abelian �-groups (or MV-algebras) can also
be formulated in terms of lattice theory, in the following sense:

Theorem 1.4 (see [57]). A topological space X is homeomorphic to the spec-
trum of an Abelian �-group if and only if:

• X is generalized spectral, and
• there is an Abelian �-group G such that Idc(G) ∼= K(X), where Idc(G)

is the lattice of principal �-ideals of G, K(X) is the set of open compact
sets of X ordered by inclusion, and ∼= denotes lattice isomorphism.
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Moreover, a topological space X is generalized spectral if and only if it is homeo-
morphic to the spectrum of a distributive lattice D with minimum. If this holds,
then D ∼= K(X).

Following [57], we say that a lattice L is �-representable if there is an
Abelian �-group G such that Idc(G) ∼= L, where Idc(G) is the lattice of prin-
cipal �-ideals of G. So the previous theorem can be reformulated as follows:

Theorem 1.5. A topological space X is homeomorphic to the spectrum of an
Abelian �-group if and only if K(X) is an �-representable lattice under union
and intersection and X is homeomorphic to the spectrum of K(X).

People are looking since several years for a satisfactory topological char-
acterization of spectra, see e.g. [31,24]. Given the importance of the notion
of �-representable lattice, in view of Theorem 1.5, we think it interesting to
measure the logical complexity of the notion of �-representable lattice.

The logical approach to the spectrum problem has begun with [57], where
it is shown that �-representable lattices are not definable in first order logic
(actually not even in L∞,ω, the extension of first order logic with infinitary
conjunctions and disjunctions).

On the other hand, [57] also shows that countable �-representable lattices
are definable in first order logic:

Theorem 1.6 (see [57]). A countable lattice is �-representable if and only if it
has a minimum 0 and is completely normal, that is, for every a, b there are
x, y with a∨ b = x∨ b = y ∨a and x∧y = 0. So, �-representability of countable
lattices is definable by a first order sentence.

In this paper, we observe that a topological space is a prime spectrum of
an MV-algebra if and only if it is spectral and its lattice of compact open sets
is a closed epimorphic image of the Belluce lattice of a free MV-algebra. In this
way, the task of describing prime spectra or Belluce lattices of MV-algebras is
reduced to the (hopefully simpler) task of describing prime spectra or Belluce
lattices of free MV-algebras. For instance, we show that Belluce lattices of
free MV-algebras correspond to lattices of cylinder polyhedra (i.e. zeros of
McNaughton functions, see Section 2) of some hypercube (Theorem 5.11).

We give also a monadic second order axiomatization of Belluce lattices
of free MV-algebras in dimension 1, 2 and infinite. This choice is due to the
fact that the case of finite dimension n > 2 does not seemingly require ideas
different from the 2-dimensional case. Instead, axiomatizing infinite dimension
does require new ideas.

This axiomatization can be compared e.g. with the “second order” solu-
tion proposed by Wehrung in [58], although he himself says (personal commu-
nication) that this solution is not very informative. That is, it turns out that
a topological space X is the prime spectrum of an MV-algebra if and only if
X is spectral and its lattice L of compact open sets is such that:

• either L is infinite and there is a lattice ordered group G with strong
unit equipotent to L and a surjective function f : G → L such that
f(x) ≤ f(y) if and only if every �-ideal of G containing x contains y,
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• or L is finite and for every a, b ∈ L there are x, y such that a∨x = b∨y =
a ∨ b and x ∧ y = 0.
Note that both conditions above on L are expressible in second order

logic [58] proves also a very strong negative result on first order logic:

Theorem 1.7. No class of formulas of infinitary first order logic L∞,κ (where
κ is any fixed cardinal) characterizes the lattices of the compact open sets of
the spectrum of an MV-algebra.

We also treat the problem of characterizing spectra of general lattice
ordered Abelian groups, possibly without strong unit.

1.1. Related work

As a related work we can cite [12], where one finds a study of lattices of
subpolyhedra of a given polyhedron, in the framework of intuitionistic logic
and Tarski-style completeness theorems for this logic. They prove that the
lattice of open subpolyhedra of any compact polyhedron of R

n is a locally
finite Heyting algebra; by complementation, this implies that the lattice of
closed subpolyhedra of Rn is a locally finite co-Heyting algebra.

Our results on lattices of rational polyhedra can be seen as a particular
case of these, with the technical difference that we consider rational polyhedra
rather than usual (real) polyhedra. Another difference is that we focus on
�Lukasiewicz logic rather than intuitionistic logic, so our algebraic structures
of interest are MV-algebras rather than Heyting algebras.

Our lattices (which form the class of Belluce lattices of free MV-algebras)
are still locally finite co-Heyting algebras, both for rational polyhedra and for
the infinite dimensional generalization (cylinder rational polyhedra) considered
in this paper in Section 3.

The key tool is the obvious rational variant of the Triangulation Lemma
of [12]. Actually we push further in the study of these lattices, and we give an
axiomatization of some of them in monadic second order logic. This makes us
conjecture that the whole class of Belluce lattices of arbitrary MV-algebras is
also axiomatizable in monadic second order logic.

A notion related to our notion of cylinder polyhedron is the notion of
infinite dimensional polyhedron given in [17]. An infinite dimensional polyhe-
dron is a subset of the hypercube whose finite projections are polyhedra. This
notion contains properly our notion of cylinder polyhedra. For instance, every
one-element subset of [0, 1]X with rational coordinates, with X infinite, is an
infinite dimensional polyhedron, whereas it is not a cylinder polyhedron.

1.2. Structure of the paper

The paper is organized as follows. After a preliminary Section 2, in Section 3
we introduce a kind of geometrical object (cylinder polyhedron) which gener-
alizes rational polyhedra in infinite dimension, and the same for rational cones
(cylinder cones). In Section 4 we consider spectra of “relative subalgebras”
in the sense of [8]. In Section 5, by exploiting the Belluce operation on MV-
algebras defined in the introduction, we present our main theorem where we
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characterize the spectra of an MV-algebra (Theorem 5.11). In Section 6 we
extend the notion of Belluce lattice to Abelian �-groups and we characterize
the spectra of an Abelian �-group (Theorem 6.11). In Section 7 we axiomatize
the Belluce lattice of the free MV-algebras of dimension 1, 2 and infinite (the
axioms for dimension 2 and infinite are collected in the appendices A and B
of the paper). In Section 8 we give a categorial equivalence between the cate-
gory of Belluce lattices of finitely presented MV-algebras and the category of
lattices of rational subpolyhedra of a given rational polyhedron. In Section 9
we introduce cylinder MV-algebras, the MV-algebraic counterpart of cylin-
der polyhedra in the Marra-Spada duality between semisimple MV-algebras
and compact Hausdorff spaces. In Section 10 we generalize usual �Lukasiewicz
theories with finitely many axioms and variables to what we call “limit theo-
ries” (the terminology is introduced here) which have finitely many axioms but
may have infinitely many variables. In Section 11 we summarize our results
and outline some possible applications of them.

2. Preliminaries

Recall from [20] that MV-algebras are algebraic structures (A,⊕,¬, 0, 1) where
(A,⊕, 0) is a commutative monoid, ¬¬x = x, 1 = ¬0, x ⊕ 1 = 1, and we have
the Mangani axiom ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

Since MV-algebras form a variety, there are free MV-algebras. Let X be
a set, finite or infinite. The free MV-algebra on X is the MV-algebra MX of
McNaughton functions f from [0, 1]X to [0, 1], which are continuous functions
and are piecewise affine, in the sense that there are affine functions g1, . . . , gl

with integer coefficients, such that for every x ∈ [0, 1]X there is i with f(x) =
gi(x).

If P ⊆ [0, 1]X , we denote by MX |P the MV-algebra of the restrictions of
McNaughton functions to P .

Every MV-algebra is equipped with a natural lattice order, such that
x ≤ y if and only if there is z with x ⊕ z = y. There is also a natural product
x � y = ¬(¬x ⊕ ¬y) (the �Lukasiewicz product, also denoted xy).

Other useful notations are x� y = x�¬y and d(x, y) = (x� y)⊕ (y �x)
(Chang distance).

An ideal of an MV-algebra A is a nonempty subset I of A closed under
sum and closed downwards. If B ⊆ A, then id(B) is the ideal generated by B.
We also write id(a) for id({a}). Every ideal of the form id(a) with a ∈ A is
called principal. We denote by Idc A the set of principal ideals of A. This set
is a distributive lattice under inclusion.

Two elements a, b ∈ A are congruent modulo an ideal I if d(a, b) ∈ I.
Congruence is an equivalence relation and its quotient set is denoted by A/I,
and this quotient has a natural structure of an MV-algebra.

An ideal I is called prime if x ∧ y ∈ I implies x ∈ I or y ∈ I. I is called
principal if it is generated by one element.

An ideal I is called primary if xy ∈ I implies xn ∈ I or yn ∈ I for some n.
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The spectrum of A, denoted Spec(A), is the set of all prime ideals of A
equipped with the topology generated by the opens

U(a) = {P ∈ Spec(A) | a /∈ P}
where a ranges over A. This topology is also called the Zariski topology.

Recall that a topological space X is called generalized spectral if it is
sober (i.e., every irreducible closed set is the closure of a unique singleton) and
the collection of all compact open subsets of X forms a basis of the topology
of X, closed under intersections of any two members. If, in addition, X is
compact, we say that it is spectral.

In the literature there is no completely satisfactory characterization of
the spaces Spec(A), and we are interested in finding such a characterization.
It is known that Spec(A) is always a spectral space, and this implies that the
compact open subsets form a lattice. This remark allows one to pass from
topology to lattice theory; this has the advantage that lattices are algebraic
structures, suitable to first order (or second order) logic, whereas topological
spaces are higher order objects, too complicated to be studied with first order
(or second order) logic.

An MV-algebra is local if it has a unique maximal ideal. The radical of an
MV-algebra is the intersection of its maximal ideals. An MV-algebra is perfect
if it is generated by its radical.

Recall that an �-group is a group with a lattice order structure and such
that x ≤ y implies x + z ≤ y + z. A strong unit of an � -group G is an element
u ∈ G+ such that for every x ∈ G there is n ∈ N such that x ≤ nu.

A fundamental tool in MV-algebra theory is Mundici equivalence between
the category of MV-algebras and the category of Abelian �-groups with strong
unit, see [44].

In an �-group we can consider �-ideals, which are subgroups J such that
if x ∈ J and |x| ≤ |y|, then y ∈ J (where |x| = x ∨ −x). An �-ideal J is prime
again if x ∧ y ∈ J implies x ∈ J or y ∈ J . We can equip the set of prime
�-ideals of an Abelian �-group G which the Zariski topology, and we obtain a
space Spec(G) which will be generalized spectral, and it will be spectral if and
only if G has a strong unit.

We need the following definition and results on (semi)lattices.
A join homomorphism f : A → B between join semilattices is called

closed if whenever a0, a1 ∈ A an b ∈ B, if f(a0) ≤ f(a1) ∨ b, then there is
x ∈ A such that a0 ≤ a1 ∨ x and f(x) ≤ b.

Lemma 2.1. Let A be an MV-algebra, S a distributive lattice with zero, and
φ : Idc A → S be a closed surjective join homomorphism. Then

I := {x ∈ A | φ(id(x)) = 0}
is an ideal of A, and there is a unique isomorphism ψ : Idc(A/I) → S such
that ψ(id(x/I)) = φ(id(x)) for every x ∈ A.

Proof. The lemma follows from the analogous lemma 2.5 of [57] up to using
Mundici equivalence and replacing unital �-groups with MV-algebras. �



39 Page 8 of 43 G. Lenzi and A. Di. Nola Algebra Univers.

Proposition 2.2. Let A,B be two MV-algebras and let f : A → B be a homo-
morphism. Then the map Idc(f) : Idc A → Idc B given by id(x) → id(f(x)) is
a closed 0-lattice homomorphism.

Proof. The lemma follows from the analogous proposition 2.6 of [57] up to
using Mundici equivalence and replacing unital �-groups with MV-algebras.

�

3. Cylinder (rational) polyhedra and cones

3.1. Cylinder polyhedra

Recall that a rational simplex in [0, 1]X , where X is a finite set, is the con-
vex envelope of finitely many, affinely independent rational points. A rational
polyhedron is a finite union of rational simplexes.

Given a rational polyhedron P , we denote by Poly(P ) the lattice of the
rational subpolyhedra of P under inclusion.

We introduce now a new notation, although the concept is not new. Given
any set X, let [0, 1]X be the set of functions from X to [0, 1]. We define cylinder
(rational) polyhedron in a hypercube [0, 1]X a subset of [0, 1]X of the form

CX(P0) = {f ∈ [0, 1]X | f |Y ∈ P0}
where Y is a finite subset of X and P0 ⊆ [0, 1]Y is a rational polyhedron.
Here f |Y denotes the function f restricted to Y , that is, f |Y = f ◦ j, where
j : Y → X is the inclusion map.

Intuitively, a cylinder polyhedron is a kind of Cartesian product of a
rational polyhedron and a hypercube, up to a permutation of the variables.

When the set X is finite, cylinder rational polyhedra coincide with ordi-
nary rational polyhedra.

If P ⊆ [0, 1]X is a cylinder rational polyhedron, we denote by Cpoly(P )
the lattice of all cylinder rational polyhedra P ′ ⊆ [0, 1]X included in P , par-
tially ordered by inclusion.

We follow [12] but we consider the possibility of infinite dimension. It is
natural to define a cylinder simplex as a set S ⊆ [0, 1]X such that S = {x ∈
[0, 1]X | x|Y ∈ S0}, where Y ⊆ X is finite and S0 ⊆ [0, 1]Y is a rational
simplex. Then we define a cylinder triangulation of a hypercube as a finite
set of cylinder simplexes where the intersection of two is empty or is a face of
both.

In [12] it is shown that the lattice of subpolyhedra of a polyhedron P is
a locally finite co-Heyting algebra with respect to inclusion. In the same vein:

Lemma 3.1 (Cylinder Triangulation Lemma). Given cylinder polyhedra

P, P1, . . . , Pm ⊆ [0, 1]X

with P1, . . . , Pm ⊆ P , there exists a cylinder triangulation Σ of P such that,
for each i, the collection {σ ∈ Σ | σ ⊆ Pi} is a triangulation of Pi.
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Proof. First we reduce to X finite. Then we divide each Pi into a finite union of
rational simplexes, and we can consider the rational polyhedral complex given
by all possible intersections of simplexes. Every polyhedron of this complex
is convex. Every convex polyhedron can be triangulated by induction on its
dimension. �

Lemma 3.2. Let Q ⊆ P be two cylinder polyhedra in [0, 1]X . Let Σ be a common
cylinder triangulation of P and Q. Let C = cl(P\Q) (the closure of P\Q in
the usual topology of [0, 1]X). Then Σ triangulates C as well. In particular C
is a cylinder polyhedron.

Proof. We follow the proof of Lemma 3.2 of [12]. More explicitly, if X is finite
we let

ΣC = {σ ∈ Σ | σ ⊆ C}
Σ∗ = {σ ∈ Σ | there exists τ ∈ Σ\ΣQ such that σ is a face of τ}

and we observe ΣC = Σ∗ and the support of these triangulations is C. Hence,
C is a rational polyhedron.

If X is infinite, then we can find Y ⊆ X finite and rational polyhedra
P0, Q0 ⊆ [0, 1]Y such that P = CX(P0) and Q = CX(Q0). Now we can apply
the reasoning above to P0 and Q0. �

So we conclude:

Theorem 3.3. The lattice Cpoly(P ) is a locally finite co-Heyting algebra with
respect to inclusion, for every cylinder polyhedron P .

Proof. If C,D ∈ Cpoly(P ), then the co-implication C ← D in Cpoly(P ) is
given by the closure of C\D, which belongs to Cpoly(P ) by the previous
lemma.

To show that Cpoly(P ) is locally finite one can give, for every finite set
F of cylinder polyhedra, a common cylinder triangulation Σ of F (by the
triangulation lemma) so that every element generated by F is triangulated by
Σ, hence the elements generated by F are finitely many. �

In order to study further the structure of Poly(P ) or Cpoly(P ), it is useful
to restrict to rational points. In fact:

Lemma 3.4. Let P ⊆ [0, 1]X be a cylinder polyhedron. Two cylinder polyhedra
in Poly(P ) or Cpoly(P ) are equal if and only if they have the same ratio-
nal points. So, there is an isomorphism between Poly(P ) or Cpoly(P ) and a
sublattice of the powerset of QX .

Proof. Up to restricting to a finite subset of X we can suppose X finite. Then
the result follows because if a finite system of linear inequalities (strict or
non-strict) with rational coefficients has a real solution, then it has a rational
solution. �

Note a difference for Poly(P ) in finite dimension and Cpoly(P ) in infinite
dimension:
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Proposition 3.5. If P ⊆ [0, 1]n is a rational polyhedron in a hypercube of finite
dimension n, then Poly(P ) is an atomic lattice. If P ⊆ [0, 1]X is a nonempty
cylinder polyhedron where X is an infinite set, then Cpoly(P ) is an atomless
lattice.

Proof. In fact, in the finite case, the atoms are the rational points of [0, 1]n

(atomicity follows from the previous lemma). For the infinite case, let P ⊆
[0, 1]X be a cylinder polyhedron with X infinite; then P = {x ∈ [0, 1]X | x|Y ∈
P0}, where Y is finite and P0 is a rational polyhedron. Let z ∈ X\Y ; then we
have the polyhedron Q = {x ∈ [0, 1]X | x|Y ∈ P0 ∧ x(z) = 1}. Then Q is a
nonempty proper cylinder subpolyhedron of P . �
3.2. Cylinder polyhedra as zerosets

We note that in [45], page 19, Mundici uses a particular case of cylinder polyhe-
dra (which he calls cylindrification of a polyhedron) to prove that �Lukasiewicz
logic enjoys the property of the Craig interpolation. Another definition of cylin-
drification similar to ours is given in [46], page 522. In the latter case, Σl plays
the role of a rational polyhedron in a finite dimension, and Σ∞

l plays the role
of a cylinder polyhedron (derived from Σl by restriction) with fixed, countably
infinite dimension.

The following proposition says that cylinder polyhedra are just a geomet-
ric characterization of zerosets of McNaughton functions:

Proposition 3.6. • If X is finite, then rational polyhedra in [0, 1]X coincide
with zerosets of McNaughton functions from [0, 1]X to [0, 1].

• If X is infinite, then cylinder polyhedra in [0, 1]X coincide with zerosets
of McNaughton functions from [0, 1]X to [0, 1].

Proof. For the first item, see [45], Corollary 2.10.
For the second item, let f : [0, 1]X → [0, 1] be a McNaughton function.

By definition, there is a finite subset Y of X, and a McNaughton function
g : [0, 1]Y → [0, 1] such that f(x) = g(x|Y ). By the first item Zeroset(g) = P0

is a rational polyhedron. So, x ∈ Zeroset(f) if and only if x|Y ∈ P0, and
Zeroset(f) is a cylinder polyhedron.

Conversely, consider a cylinder polyhedron CX(P0), where P0 ⊆ [0, 1]Y is
a rational polyhedron, with Y finite subset of X. Then there is a McNaughton
function g : [0, 1]Y → [0, 1] such that P0 = Zeroset(g) by the first item; so we let
f : [0, 1]X → [0, 1] such that f(x) = g(x|Y ). Then f is a McNaughton function.
Moreover x|Y ∈ P0 if and only if x ∈ Zeroset(f), hence CX(P0) = Zeroset(f).
So, every cylinder polyhedron is the zeroset of a McNaughton function. �

Since the models of a formula are the zerosets of its negation, we obtain:

Corollary 3.7. • If X is a finite set of variables, then rational polyhedra
in [0, 1]X coincide with models of formulas of �Lukasiewicz logic over the
variables in X.

• If X is infinite, then cylinder polyhedra in [0, 1]X coincide with models of
formulas of �Lukasiewicz logic over the variables in X.
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3.3. Rational cones

Recall that a rational simplicial cone is a set σ ⊆ R
m of the form σ = R≥0d1+

· · · + R≥0dt, where d1, . . . , dt ∈ Q
m are linearly independent rational vectors.

A rational cone is a finite union of rational simplicial cones.

3.4. Cylinder rational cones

In analogy with cylinder polyhedra, we can introduce cylinder cones.
Given any set X, let R

X be the set of functions from X to R. We define
cylinder (rational) cone in a hypercube R

X a subset of RX of the form

CX(P0) = {f ∈ R
X | f |Y ∈ P0}

where Y is a finite subset of X and P0 ⊆ R
Y is a rational polyhedron. Here f |Y

denotes the function f restricted to Y , that is, f |Y = f ◦ j, where j : Y → X
is the inclusion map.

If C ⊆ R
X is a cylinder cone, we denote by Ccone(C) the lattice of all

cylinder cones included in C, partially ordered by inclusion.

3.5. Cylinder cones as zerosets

Let X be a set. A piecewise linear function from R
X to R is a continuous,

piecewise linear function with integer coefficients. Since such a function is di-
vided into finitely many pieces and every piece is a linear polynomial, piecewise
linear functions will depend only on finitely many variables, even when X is
infinite.

The following proposition says that cylinder cones are just a geometric
characterization of zerosets of piecewise linear functions:

Proposition 3.8. • If X is finite, then rational cones in R
X coincide with

zerosets of piecewise linear functions from R
X to R.

• If X is infinite, then cylinder cones in R
X coincide with zerosets of piece-

wise linear functions from R
X to R.

Proof. For the first item, one has to repeat the proof of [45], Corollary 2.10,
especially the equivalence between (ii) and (iv), which here becomes the fact
that a set Y ⊆ R

n is a rational cone if and only if it is the zeroset of a
piecewise linear function from R

n to R. This can be obtained by replacing
regular complexes in (i) with regular fans (see chapter 2 of [45]).

For the second item, let f : R
X → R be a piecewise linear function.

By definition, there is a finite subset Y of X, and a piecewise linear function
g : RY → R such that f(x) = g(x|Y ). By the first item Zeroset(g) = C0 is a
rational cone. So, x ∈ Zeroset(f) if and only if x|Y ∈ C0, and Zeroset(f) is a
cylinder cone.

Conversely, consider a cylinder cone CX(C0), where C0 ⊆ R
Y is a rational

cone, with Y finite subset of X. Then there is a piecewise linear function
g : RY → R such that C0 = Zeroset(g) by the first item; so we let f : RX → R

such that f(x) = g(x|Y ). Then f is a piecewise linear function. Moreover
x|Y ∈ C0 if and only if x ∈ Zeroset(f), hence CX(C0) = Zeroset(f). So, every
cylinder polyhedron is the zeroset of a piecewise linear function. �
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4. Relative subalgebras

Let A be an MV-algebra. It is worth pointing out that for every a ∈ A, the
subspace U(a) of Spec(A) is in turn a spectrum: in fact, U(a) = Spec(A|a),
where A|a denotes the MV-algebra A relativized to a (see [8], Theorem 8.1).

Moreover, the sets of the form U(a) are exactly the compact open subsets
of Spec(A). Since Spec(A) is a spectral space, the compact open subsets of
Spec(A) form a lattice under inclusion which is an important invariant of A.

Let X be a topological space such that X = Spec(A) for some MV-
algebra A. Denote by K(X) the lattice of the compact open subsets of X. We
have:

Proposition 4.1. If C ∈ K(X), then there is a natural map f : K(X) → K(C)
such that f(O) = O ∩ C for every O ∈ K(X). This map f is a surjective
homomorphism of bounded lattices.

Proof. By a direct verification. �
We note that f is closed if and only if for every a0, a1 ∈ K(X) and for

every b ∈ K(X) with b ≤ C, if a0 ∧ c ≤ (a1 ∧ c) ∨ b, then there is x ∈ K(X)
such that a0 ≤ a1 ∨ x and x ∧ c ≤ b.

We do not know whether this property holds for all A. If X is the Spec-
trum of a Boolean algebra, then the property does hold with x = b ∨ (X\C).

Note that the natural inclusion from K(C) to K(X) is an injective ho-
momorphism of lattices, but not of bounded lattices (C goes to C itself which
is not the top of K(X)).

We note also that the Stone dual of the topological space U(a) is iso-
morphic to the Belluce lattice of the relativized MV-algebra A|a. So, every
compact open subset of an MV-space is an MV-space itself.

5. The Belluce functor for MV-algebras

The Belluce operation can be extended to MV-algebra morphisms f : A → B
by letting β(f)(x) = β(f(x)). In this way, β is a covariant functor from the
category MV of MV -algebras to the category BDL of bounded distributive
lattices, see [7].

Proposition 5.1. The Belluce lattice of MX is dually isomorphic to the lattice
Cpoly([0, 1]X).

Proof. If A = MX , every element f of A is a McNaughton function on [0, 1]X ,
and there is a bijection φ sending β(f) to Z(f), the zeroset of f . In fact,

β(f) ⊆ β(g) (5.1)

is equivalent to
I(Z(f)) ⊆ I(Z(g)) (5.2)

by the Wójcicki Theorem (see [41], Lemma 4.5), where I(Z(f)) is the set of
McNaughton functions which are zero on Z(f). The latter implies

Z(I(Z(g))) ⊆ Z(I(Z(f))) (5.3)



Vol. 81 (2020) The spectrum problem Page 13 of 43 39

and since ZIZ = Z this implies

Z(g) ⊆ Z(f) (5.4)

and again this implies 5.2 which is equivalent to 5.1.
Summing up, 5.1 and 5.4 are equivalent and φ is a well defined con-

travariant lattice isomorphism between β(MX) and the lattice of zeros of Mc-
Naughton functions in the set X of variables (or rational polyhedra when X
is finite). Then the thesis follows from Proposition 3.6. �

Corollary 5.2. β(MX) is a locally finite co-Heyting algebra for every set X.

Proof. It follows from Theorem 3.3 and the previous lemma. �

Now we obtain

Proposition 5.3. If f : β(MX) → L is a closed surjective lattice homomor-
phism, then there is an ideal I of MX such that L ∼= β(MX)/θ(β(I)), where
θ(β(I)) is the congruence on the lattice β(MX) induced by the ideal β(I).

Proof. This follows from Lemma 2.1. �

Corollary 5.4. A lattice is the Belluce lattice of an MV-algebra if and only if
it is a closed surjective image of the Belluce lattice of a free MV-algebra.

Proof. Let L be a lattice. Assume L = β(A). Then there is a set X and a
surjection f : MX → A. By Proposition 2.2, β(f) : β(MX) → β(A) is a
closed surjective lattice homomorphism. So L is a closed surjective image of
the Belluce lattice of a free MV-algebra.

Conversely, assume f : β(MX) → L be a closed surjective lattice homo-
morphism. By Lemma 2.1, L is the Belluce lattice of some MV-algebra.

�

Note in particular what happens when A is semisimple. Then we have:

Corollary 5.5. If A is a semisimple MV-algebra, A = MX/I(C) where C is a
closed subset of [0, 1]X , and X is any set, then β(A) ∼= β(MX)/ ≡C , where
β(f) ≡C β(g) holds if and only if there is a cylinder polyhedron R ⊇ C such
that Z(f) ∩ R = Z(g) ∩ R.

When I(C) is principal, then C itself is a cylinder polyhedron, and β(f) ≡C

β(g) if and only if Z(f) ∩ C = Z(g) ∩ C.

We can also be more precise and consider lattices L such that |L| ≤ κ,
where κ is any infinite cardinal. In fact:

Lemma 5.6. Let κ be an infinite cardinal. Suppose |L| ≤ κ and L = β(A) for
some MV-algebra A. Then there is an MV-algebra A′ such that |A′| ≤ κ and
L = β(A′).

Proof. β(A) is the lattice of principal ideals of A. For every element i of β(A)
let us choose a generator gi of i in A. Let A′ be the subalgebra of A generated
by the gi’s. Note that |A′| ≤ κ. Let us show that the lattices β(A) and β(A′)
are isomorphic.
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For every i ∈ β(A) let γ(i) = i∩A′. Note that γ(i) is the ideal generated
by gi in A′, so γ(i) ∈ β(A′) and γ : β(A) → β(A′). Let us show that the
function γ is an isomorphism of lattices.

Clearly if i ⊆ j then γ(i) ⊆ γ(j). Conversely if γ(i) ⊆ γ(j) then i∩A′ ⊆ j,
so gi ∈ j and i ⊆ j. In particular γ is injective.

Finally let us show that γ is surjective. Let i′ be a principal ideal of A′.
We must find i ∈ β(A) such that i′ = i ∩ A′. Now suppose i′ is generated by
g′. Let i be the principal ideal generated by g′ in A. Then i is generated by
gi, which is in A′. So, g′ ≤ ngi for some n. Moreover gi ∈ i, so gi ≤ ng′ for
some n. Suppose h ∈ i ∩ A′; then h ≤ ngi for some n, hence h ≤ ng′ for some
n and h ∈ i′. So, i ∩ A′ ⊆ i′. Conversely, i′ ⊆ A′ and g′ ≤ ngi for some n, so
g′ ∈ i and i′ ⊆ i. Summing up, i′ ⊆ i ∩ A′ and i′ = i ∩ A′. This means that γ
is surjective. �
Corollary 5.7. Let X be an infinite set. A lattice L such that |L| ≤ |X| is the
Belluce lattice of an MV-algebra if and only if there is a closed surjective lattice
homomorphism π : β(MX) → L.

Proof. Suppose |L| ≤ |X| and L is the Belluce lattice of an MV-algebra A.
By the previous lemma, there is an MV-algebra A′ such that L = β(A′) and
|A′| ≤ |X|. So A′ = MX/I where I is an ideal of MX , and the lattice β(A′) =
β(MX)/β(I) is a closed epimorphic image of β(MX).

Conversely, if there is a closed surjective lattice homomorphism π : β(MX)
→ L, then L is the Belluce lattice of an MV-algebra by Corollary 5.4. �

For |X| = ω in particular we obtain:

Corollary 5.8. A countable lattice L is the Belluce lattice of an MV-algebra if
and only if there is a closed surjective lattice homomorphism π : β(Mω) → L.

This characterization of countable Belluce lattices can be compared with
the characterization of countable, �-representable lattices given in [57].

By Proposition 5.1 we obtain also:

Corollary 5.9. A lattice L is the Belluce lattice of some MV-algebra if and
only if for some X there is a closed surjective lattice homomorphism π :
Cpoly([0, 1]X)op → L.

Hence, given two cylinder polyhedra p, q ∈ Cpoly([0, 1]X), π(p) = π(q) if
and only if there is a rational polyhedron r ∈ Ker(π) such that p ∩ r = q ∩ r.
Note that Ker(π) is a filter.

In particular, if L is the Belluce lattice of some finitely presented MV-
algebra, then X can be chosen to be finite, and the filter Ker(π) can be taken
principal, say generated by a single polyhedron r, and then π(p) = π(q) if and
only if p ∩ r = q ∩ r.

The following theorem is essentially Lemma 2.1 in [57] (up to replacing
�-groups with MV-algebras, which is possible by Mundici equivalence):

Theorem 5.10 [57]. A topological space X is the spectrum of an MV-algebra if
and only if X is spectral and the lattice K(X) of its compact open sets is the
Belluce lattice of an MV-algebra.
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This theorem allows one to move from the spectrum problem for MV-
algebras to the problem of characterizing those lattices which are the Belluce
lattices of some MV-algebra.

By combining Corollary 5.9 and Theorem 5.10 we obtain:

Theorem 5.11. A topological space X is the spectrum of an MV-algebra if and
only if X is spectral and for some set Y there is a closed surjective lattice
homomorphism π : Cpoly([0, 1]Y )op → K(X). If X = Spec(A), then K(X) =
β(A).

Actually we can suppose Y infinite:

Corollary 5.12. A topological space X is the spectrum of an MV-algebra if and
only if X is spectral and for some infinite set Y there is a closed surjective
lattice homomorphism π : Cpoly([0, 1]Y )op → K(X). If X = Spec(A), then
K(X) = β(A).

6. The case of Abelian �-groups and perfect MV-algebras

6.1. The Belluce lattice of �-groups

In this section we turn to Abelian �-groups and we want to carry over the
theory of Belluce lattices from MV-algebras to Abelian �-groups. It turns out
that there is a close relationship between spectra of Abelian �-groups and
spectra of perfect MV-algebras or local MV-algebras. We begin with setting
up the theory of Belluce lattice for Abelian �-groups.

Lemma 6.1. If I is an �-ideal of an �-group G and a /∈ I, then there is a prime
�-ideal P such that I ⊆ P and a /∈ P .

Proof. The argument is similar to the one for MV-algebras. We provide some
details.

Suppose I ⊆ G is an �-ideal and a /∈ I. Let P be a maximal �-ideal
among those which contain I and do not contain a (P exists by Zorn Lemma).
Suppose for an absurdity that P is not prime. Then there are x, y ∈ P such
that x ∧ y ∈ P , x /∈ P , y /∈ P . By choice of P we have a ∈ id(P ∪ {x}) and
a ∈ id(P ∪ {y}). So for some p ∈ P and some integer k we have |a| ≤ p + k|x|
and a ≤ p + k|y|. Taking the infimum we have

a ≤ (p + k|x|) ∧ (p + k|y|) ≤ 2(p ∨ k|x|) ∧ 2(p ∨ k|y|)
= 2(p ∨ k|x|) ∧ (p ∨ k|y|) = 2(p ∨ k(|x| ∧ |y|)) ≤ 2(p ∨ k|x ∧ y|)

and the latter element belongs to P , so a ∈ P , which is a contradiction. �

Corollary 6.2. Given two elements a, b of an Abelian �-group G the following
are equivalent:

• a, b belong to the same prime �-ideals;
• a, b belong to the same �-ideals;
• a, b generate the same �-ideal.
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By the previous corollary, Belluce lattices can be defined for Abelian
�-groups exactly as we did for MV-algebras (either as lattices of principal �-
ideals, or as quotients modulo lying in the same prime �-ideals).

In [7], Prop. 25, there is a relation between the spectrum of an Abelian
�-group and the spectrum of its Di Nola-Lettieri equivalent MV-algebra. In
this section we make something similar for Belluce lattices.

We can say that an MV-algebra or lattice is local if it has a unique max-
imal ideal. Further an MV-algebra or bounded lattice is called perfect if it is
generated by the intersection of its maximal ideals (although this notion seems
to be more common in MV-algebras than in lattices). The perfect skeleton of
an MV-algebra A is the largest perfect subalgebra of A, denoted Perf(A).

Lemma 6.3. If A is a local MV-algebra then β(A) ∼= β(Perf(A)).

Proof. Let A′ = Perf(A). Let φ : β(A) → β(A′) such that

φ(β(x)) =

{
β(x), x ∈ A′

β(1), otherwise.

Then φ is a lattice isomorphism. �

Corollary 6.4. If A is a local MV-algebra then Spec(A) ∼= Spec(Perf(A)).

Lemma 6.5. A is a local MV-algebra if and only if β(A) is a local lattice.

Proof. If A is local, then
• Rad(A) is the only maximal ideal of A, and
• β(Rad(A)) is the maximal ideal of β(A) (see [6], Theorem 13).

Conversely, if β(A) is local and M is the largest ideal of β(A), then β−1(M)
is the largest ideal of A and A is local (see [6], Theorem 15). �

Theorem 6.6. Let L be a local Belluce lattice. Then L\{1} is isomorphic to the
Belluce lattice of an Abelian �-group G. Conversely, if L is the Belluce lattice
of an Abelian �-group G, then the lattice L ∪ {∞} (where ∞ is an element
above all elements of L) is a local Belluce lattice.

Proof. Let L be the Belluce lattice of a local MV-algebra. Then L = β(A)
where A is perfect. Let G = Δ(A) be the Di Nola-Lettieri �-group corre-
sponding to A (see [26]). Then Spec(G) ∼= Spec(A)\{M}, where M is the
unique maximal ideal of A. Then K(Spec(G)) ∼= K(Spec(A))\{1} (see [7]).
But K(Spec(A) ∼= β(A) ∼= L so K(Spec(G)) ∼= L\{1}.

Conversely, let L = βl(G). Then Spec(L) ∼= Spec(G). Again by [7],
Δ−1(G) is a perfect MV-algebra with largest ideal M and we have Spec(G) ∪
{M} ∼= Spec(Δ−1(G)), so β(Δ−1(G)) is the Belluce lattice of a local MV-
algebra and L ∪ {M} = βl(Δ−1(G)). �

Corollary 6.7. Let X be a spectral space and K(X) the lattice of its compact
open sets. The following are equivalent:
(1) X is the spectrum of some Abelian �-group;
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(2) X is homeomorphic to Spec(K(X)) and K(X)∪{∞} is the Belluce lattice
of a local MV-algebra A, where ∞ > x for every x ∈ K(X).

Moreover A = MY /J for some set Y , where J is a primary ideal of MY , and
β(A) = K(X) ∪ {∞} = β(MY )/β(J).

6.2. A characterization of spectra of Abelian �-groups

If G is an Abelian �-group, then Spec(G) is a generalized spectral topological
space (see [13]). In particular, it has a basis of compact open sets of the form
U(g) = {P ∈ Spec(G) | g /∈ P} and these sets form a lattice L (with minimum,
but the maximum exists only if G has a strong unit).

As in MV-algebras, two elements in G belong to the same prime �-ideals
if and only if they generate the same �-ideal. Hence, if we send U(g) to the �-
ideal generated by g, we have a well defined lattice isomorphism between L and
the lattice of principal �-ideals of G. Moreover L is isomorphic to the quotient
of G modulo lying in the same prime ideals, and we call such a quotient the
Belluce lattice of G, in analogy with MV-algebras.

With a proof similar to [6], Theorem 20, for the Belluce lattice of MV-
algebras, it can be shown:

Theorem 6.8. The spectrum of the Belluce lattice of an Abelian �-group G is
isomorphic to the spectrum of G.

Theorem 6.9. A lattice L is the lattice of principal ideals of an Abelian �-group
if and only if L is a closed epimorphic image of the lattice of principal ideals
of a free Abelian �-group.

Proof. The proof is analogous to the proof of Corollary 5.4 up to replacing
MV-algebras with Abelian �-groups. �

Theorem 6.10. The lattice of principal ideals of the free Abelian �-group over
a set X is isomorphic to the lattice of cylinder rational cones in R

X .

Proof. Let FG(X) be the group of piecewise linear functions from R
X to R.

By [3], FG(X) is the free Abelian �-group on the set X. By Proposition 3.8,
the zerosets of the functions f ∈ FG(X) are the cylinder rational cones in R

X .
Like in MV-algebras, if we associate the principal ideal of f with the zeroset
of f , we obtain a lattice isomorphism between the lattice of principal ideals of
FG(X) and the lattice of cylinder rational cones in R

X . �

By putting together the previous results, we obtain a characterization of
spectra of Abelian �-groups:

Theorem 6.11. A topological space X is the spectrum of an Abelian �-group if
and only if:

• X is generalized spectral;
• the lattice of compact open subsets of X is a closed epimorphic image of

the dual lattice of cylinder rational cones in R
Y for some set Y .



39 Page 18 of 43 G. Lenzi and A. Di. Nola Algebra Univers.

Now we conjecture that an axiomatic description of lattices of cylinder
cones in R

X is possible along the lines of the description of the lattices of
cylinder polyhedra in [0, 1]X given in the next section.

We conclude with a link between lattice of polyhedra and lattices of cones:

Corollary 6.12. Let X be an infinite set. There is an epimorphism from the
lattice Cpoly([0, 1]X) to the lattice Ccone(RX) ∪ {∞}.
Proof. Let P = Γ(Z lex FG(X), (1, 0)). P is a perfect MV-algebra of the same
cardinality as X, so there is a MV-algebra epimorphism from FreeMV (X) to
P and a lattice epimorphism from β(FreeMV (X)) to β(P ). We know the lat-
tice β(FreeMV (X)) is isomorphic to Cpoly([0, 1]X), and β(P )\{max(β(P )}
is isomorphic to β(FG(X)). Adding a point at infinity, β(P ) is isomorphic to
β(FG(X)) ∪ {∞}), that is to Ccone(RX) ∪ {∞}. By composition we have
a lattice epimorphism from β(FreeMV (X)) to Ccone(RX) ∪ {∞}. Finally
β(FreeMV (X)) is isomorphic to Cpoly([0, 1]X). �

It would be interesting to find a direct geometric proof of the previous
corollary.

7. Logical characterizations

7.1. Logical characterization of the lattice of one dimensional rational poly-
hedra

The logical characterization by Wehrung of Belluce lattices (see Introduction)
is given in second order logic, and Wehrung himself showed that there is no such
characterization in first order logic (see introduction). Now, as an intermediate
logic, we can consider monadic second order logic, which is both a considerably
weaker variant of second order logic and a considerably weaker variant of
first order logic. For this reason, as an application of Theorem 5.11, we are
interested in describing Belluce lattices with monadic second order logic.

In this and the following subsections we would like to axiomatize, in
monadic second order logic, the lattices LX = Poly([0, 1]X) when X has one,
two or infinitely many elements. The case of a finite number of elements greater
than 2 is analogous to the case of 2 elements and will be omitted. Instead, the
case of one dimension is different from the case of dimension two, essentially
because we do not know how to prove, or postulate in monadic second logic, the
Thales theorem of plane geometry, which is a key step in constructing points
with given (rational) coordinates. On the other hand, points in one dimension
have the advantage of being totally ordered by the betweenness relation and
being countably many, so that we can apply Cantor back and forth theorem
on the categoricity of the ordered rational line.

So in this section we consider the lattice L1 = Poly([0, 1]).
Let us call an element x of L1 connected if and only if it is not the disjoint

union of two nonzero elements (note that x is connected in our sense if and
only if the closure of x in R is connected). The connected sets are exactly the
atoms and the intervals.
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Note that connectedness is first order definable in L1. So, also the ternary
relation of betweenness is definable:

Definition. The atom x is between y and z if and only if every connected
element which contains y, z contains x as well.

We note that the lattice L1 satisfies the following axioms:

Definition. An atom is extremal if it is not the intersection of two elements
which are nonatomic and connected. An atom is inner if it is not extremal.

Axiom 7.1.1. There are exactly two extremal atoms (denoted 0 and 1).

Axiom 7.1.2. The binary relation “x is between 0 and y” is a total order on
the atoms, dense in itself, with maximum and minimum.

Definition. The interval AB is the smallest connected set containing A and B.

Axiom 7.1.3. For every pair of atoms A,B the interval AB exists. Connected
elements coincide with atoms or intervals.

We note that finiteness of sets of atoms and intervals can be formulated
in monadic second order logic. In fact:

• a set S of atoms is finite if and only if every nonempty subset of S has a
minimum and a maximum in the total betweenness ordering 0 < x < y;

• a set S of intervals is finite if and only if the set of the extremes of the
elements of S is a finite set of atoms.

Axiom 7.1.4. Every element is a finite disjoint supremum of connected ele-
ments.

Axiom 7.1.5. Let F, F ′ be finite sets of connected elements. In L1, we have
sup F ≤ sup F ′ if and only if every atom below some element of F is below
some element of F ′.

The next axiom is used to prove that (inner) atoms are countably many.
Note that we cannot axiomatize directly the countability of the rational order,
because the monadic second order theory of the rational order is not categor-
ical, see [51]. However, in the lattice we can encode pairs of segments, and in
this way we can in some sense mimic a full second order quantifier. Our choice
of encoding of pairs is somewhat arbitrary, as it happens often with encodings.

Definition. An encoded pair of atoms is an element of L1 which is a supremum
of {0, A,B} or {1, A,B} or {0, A} where A,B are different inner atoms. The
projections are defined as follows:

• π1(sup{0, A,B}) = min{A,B},
• π2(sup{0, A,B}) = max{A,B},
• π1(sup{1, A,B}) = max{A,B},
• π2(sup{1, A,B}) = min{A,B},
• π1(sup{0, A}) = π2(sup{0, A}) = A.
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Now the idea is to postulate that there is a Peano triple (a model of
Peano’s axioms) whose domain is the set of inner atoms.

Axiom 7.1.6. There is an inner atom z and a relation S between inner atoms
(that is a set of encoded pairs) such that:

• S encodes an injective function on inner atoms (the successor function);
• z (the initial element) is not in the range of S;
• (induction principle) if P is a property of inner atoms such that P (z)

holds and P (A) implies P (SA) for every inner atom A, then P is true in
all inner atoms.

The previous axiom implies that the inner atoms are countably many, so
by adding 0 and 1, we have that the atoms are countably many.

Let us call 1-polyhedral lattice any lattice satisfying the axioms 7.1.1)-6).

Theorem 7.1. Every 1-polyhedral lattice L′ is isomorphic to L1.

Proof. Suppose a lattice L′ satisfies the axioms 7.1.1)-6). Since the atoms of
L′ are countably many, by Cantor back and forth theorem on the rationals,
there is a bijection β1 between the atoms of L1 and L′ which respects the
betweenness relation: A < B < C if and only if β1(A) < β1(B) < β1(C).

Let us extend β1 to intervals by letting β1(AB) = β1(A)β1(B). Since
betweenness among atoms is preserved, an atom A is below an interval J
if and only if β1(A) is below β1(J). Hence, two finite sets F, F ′ verify the
condition in axiom 5 if and only if β1(F ), β1(F ′) verify the same condition.

So, by axiom 5, we can extend β1 to L′, sending sup F to sup β1(F ) for
every finite set F of atoms and intervals, and β1 is an isomorphism between
L′ and L1. �

7.2. Logical characterization of the lattice of rational subpolyhedra of [0, 1]2

Let L2 = Poly([0, 1]2). We want to characterize the lattice L2 in monadic
second order logic. To this aim we postulate the existence of a subset K2 of
L2 (the lattice of the rational convex polygons) satisfying the following axioms
(plus the ones listed in “Appendix A”).

Axiom 7.2.1. L2 is a distributive lattice. Every element of L2 is the supremum
of a finite subset of K2.

The monadic second order definability of finiteness for subsets of K2

follows from the axioms in “Appendix A”.

Axiom 7.2.2. Given two finite sets F, F ′ ⊆ K2, we have sup F ≤ sup F ′ if and
only if every atom below some element of F is below some element of F ′.

Now we have the main result of this subsection.
Let us call 2-polyhedral lattice any lattice satisfying the axioms of “Ap-

pendix A” and the axioms 7.2.1 and 7.2.2.

Theorem 7.2. Every 2-polyhedral lattice L′ is isomorphic to L2.



Vol. 81 (2020) The spectrum problem Page 21 of 43 39

Proof. L2 is isomorphic to the lattice of suprema of finite subsets of K2 with
the order defined in Axiom 2. Any other polyhedral lattice L′ is isomorphic
to the lattice of suprema of finite subsets of some lattice K ′ which verifies
the axioms of “Appendix A”. By Theorem 12.4 of “Appendix A”, there is
an isomorphism β2 between K ′ and K2, sending bijectively atoms to atoms,
such that an atom a is below an element s if and only if β2(a) is below β2(s).
Hence, two finite sets F, F ′ verify the condition in axiom 2 if and only if
β2(F ), β2(F ′) verify the same condition. So we can extend β2 to L′ by letting
β2(sup F ) = sup β2(F ), and β2 is an isomorphism between L′ and L2. �

7.3. Logical characterization of the lattice of cylinder rational subpolyhedra
of [0, 1]X when X is infinite

We expect that the axiomatization of L2 given in the previous subsection
can be modified to an axiomatization of Ln for every single natural number n.
However, we prefer to pass directly to the monadic second order axiomatization
of the infinite dimensional lattices LX when X is an infinite set. In fact, the
infinite dimensional case is particularly interesting because of Corollary 5.12.

In this case there are no atoms, but every nonzero element of LX has a
finite codimension, in the sense that it is described by a finite set of inequalities.

We want to axiomatize the class of lattices LX = Cpoly([0, 1]X), where
X is infinite.

Let KX be the set of convex elements of LX . We give in “Appendix B”
an axiomatization of KX (in monadic second order logic). To pass from KX

to LX we add two postulates:

Axiom 7.3.1. LX is a lattice. Every element of LX is the supremum of a finite
subset of KX .

The definability of finite subsets in KX in monadic second order logic
follows from the axioms in “Appendix B”. Other notions used in the next axiom
(pseudoatoms and compatibility) are explained in “Appendix B”. Suffice it to
say that a compatibility class of pseudoatoms corresponds to a “good” class
of atoms for an n-dimensional geometry.

Axiom 7.3.2. Let F, F ′ be finite subsets of KX . Assume every element of F∪F ′

is supremum of a finite set of pseudoatoms compatible with a pseudoatom A.
Then in LX , sup F ≤ sup F ′ if and only if every pseudoatom compatible with
A below some element of F is below some element of F ′. (see “Appendix B”
for pseudoatoms and compatibility).

Now we have the main result of this subsection.
Let us call X-polyhedral lattice any lattice satisfying the axioms of “Ap-

pendix B” and the axioms 7.3.1,7.3.2 above.

Theorem 7.3. Any X-polyhedral lattice L′ is isomorphic to Lλ, where λ is the
cardinality of X in L′.

Proof. LX is isomorphic to the lattice of finite subsets of KX with the order
defined in Axiom 2. Any other polyhedral lattice L′ is isomorphic to the lattice
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of finite subsets of some lattice K ′ which verifies the axioms of “Appendix B”.
By Theorem 12.8 of “Appendix B”, if X in L′ has an infinite size λ, there is an
isomorphism βλ between K ′ and Kλ with the properties listed in Theorem 12.8.
In particular, if A is a pseudoatom compatible with all the elements of a set
G of pseudoatoms, then A ≤ sup G if and only if βλ(A) ≤ sup βλ(G).

Hence, F, F ′ verify the condition in Axiom 2 if and only if βλ(F ), βλ(F ′)
verify the same condition.

So we can extend the map βλ to finite suprema of elements of K ′ by
letting βλ(sup F ) = sup βλ(F ). Now βλ is an isomorphism between L′ and
LX . �

7.4. A lower bound and an upper bound for �-representability

The previous sections were aimed at using monadic second order logic to de-
scribe Belluce lattices. In this section we come back to full second order logic.

We assume the usual Zermelo-Fraenkel set theory plus the axiom of
choice. Moreover, our second order quantifiers will range always over all pos-
sible subsets, relations, etc. of the domain.

Call ESO existential second order logic, that is, the class of formulas of
second order logic given by a finite sequence of existential second order quan-
tifiers followed by a first order formula. In the (Kleene) analytical hierarchy,
ESO = Σ1

1.
Call ESOW (a new fragment of second order logic) the closure of first

order logic under first order quantifiers, existential second order quantifiers,
and weak monadic second order quantifiers (the latters range over finite subsets
of the domain).

Note that ESOW is a slight syntactic extension of ESO but, unlike
ESO, lacks invariance under ultraproduct. Moreover ESOW is a subset of
the fragment Σ1

2 of the Kleene analytical hierarchy and coincides with ESO
on the structure N of natural numbers with addition and multiplication, since
in N finite sets of natural numbers can be coded by single natural numbers via
binary coding.

The next theorem is a lower bound:

Theorem 7.4. The class of Belluce lattices of Abelian �-groups is not definable
by any class of ESO formulas.

Proof. It is enough to show that the class of Belluce lattices of �-groups is not
closed under ultrapowers.

We define a lattice D, called Dω in [57] (here we prefer to drop the ω
subscript in the notation).

Let Pcf (ω) be the set of all finite or cofinite subsets of ω, ordered by
inclusion, and let {0, 1, 2} be a chain with three elements where 0 < 1 < 2.

Let D be the set of all pairs (x, y) ∈ Pcf (ω) × {0, 1, 2} such that either x
is finite and y = 0, or x is cofinite and y �= 0.

In [57] it is shown that D is the Belluce lattice of an �-group.
Now let U be any nonprincipal ultrafilter over ω and let D′ = Dω/U be

the ultrapower of D modulo U . We say that a subset of ω is large w.r.t. U if
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it belongs to U , and small w.r.t. U otherwise. Given c ∈ Dω, let (c)U be the
equivalence class of c modulo U in D′.

Clearly D′ is a lattice. We have to show that D′ is not a Belluce lattice.
By [57] it is enough to show that D′ does not have countably based differences,
that is, that there are a, b ∈ D′ such that [b � a] has no coinitial countable
subset, where [b � a] = {x ∈ D′ | b ≤ a ∨ x}.

As a, b we take the classes modulo U of the ω-sequences constantly equal
to (ω, 1) and (ω, 2) respectively.

We note that in D we have

[(ω, 2) � (ω, 1)] = {(x, y) ∈ D | (ω, 2) ≤ (ω, 1) ∨ (x, y)}
= {(x, y) ∈ D | 2 ≤ 1 ∨ y}
= {(x, y) ∈ D | y = 2}
= {(x, 2) | x ⊆ ω cofinite}.

Hence in D′, [b�a] is the set of all sequences in D′ which have a large set
of components (w.r.t. U) of the form (x, 2) where x is a cofinite subset of ω.

We must show that [b � a] has no countable coinitial subset.
To this aim, let S be a countable subset of [b � a]. Let us enumer-

ate S, possibly with repetitions, as S = {(c1)U , (c2)U , . . . , (cn)U , . . . } where
c1, c2, · · · ∈ Dω (repetitions allow us to include the case when S is finite).

Then for every i and for a large set (w.r.t U) of j ∈ ω, we have (ci)j =
(xij , 2), where xij is a cofinite subset of ω. Up to changing a small set (w.r.t U)
of components of c1, c2, . . . , with (ω, 2), we can suppose that for every i, j ∈ ω
we have (ci)j = (xij , 2), where xij is a cofinite subset of ω.

For every j ∈ ω let

yj = x1j ∩ x2j ∩ · · · ∩ xjj\{min(x1j ∩ x2j ∩ · · · ∩ xjj)}.

Then for every j ∈ ω, yj is a cofinite subset of ω, and yj ⊂ xij for every
i ≤ j (note that we have a proper inclusion).

Take the sequence d ∈ Dω such that dj = (yj , 2) for every j ∈ ω. Since
yj is a cofinite subset of ω for every j ∈ ω, we have (d)U ∈ [b � a]. Moreover,
dj < (ci)j for every j ≥ i, and since the ultrafilter U is not principal, we have
{j ∈ ω | j ≥ i} ∈ U for every i ∈ ω. So {j ∈ ω | dj < (ci)j} ∈ U for every
j ∈ ω, hence (d)U < (ci)U for every i ∈ ω, and (d)U is strictly below every
element of S.

Summing up, S is not coinitial in [b � a]. �

As an upper bound we have:

Theorem 7.5. The class of Belluce lattices of �-groups is definable by an ESOW
formula.

Proof. A lattice L is �-representable if and only if either L is finite and com-
pletely normal (by [57]) or there is a group structure G on the set L and there
is a surjective function f : G+ → L such that:

• if f(x) ≤ f(y), then x is below some multiple z of y;
• if not f(x) ≤ f(y), then there is an �-ideal that contains x but not y.
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To complete the proof, we note that the relation “z is multiple of y” is
expressible in weak monadic second order logic:

Lemma 7.6. If y, z are elements of an Abelian l-group G, then z is a multiple
of y if and only if there is a finite set F ⊆ G such that:

• y ∈ F ;
• for every w ∈ F , if w �= z, then w + y ∈ F .

This concludes the proof of Theorem 7.5. �
We note that the previous lemma holds more generally in torsion-free

groups.

8. Finitely presented MV-algebras and polyhedral lattices

In this section we describe a categorial equivalence between the range of the
Belluce functor restricted to finitely presented MV-algebras and a category of
lattices associated to rational polyhedra.

A finitely presented MV algebra has the form A = MX/ id(f), where X
is finite and id(f) is the ideal generated by a function f . Then

β(A) = β(MX/ id(f)))

= β(MX)/{β(g) | g ∈ id(f)}
= β(MX)/{β(g) | Zf ⊆ Zg},

so the lattice β(A) is β(MX) modulo the ideal J(Zf), where J(P ) is the filter
of the rational polyhedra including P .

From this we obtain:

Proposition 8.1. Given a rational polyhedron P ⊆ [0, 1]X , with X finite, we
have the isomorphism of lattices

β(MX |P ) ∼= Poly(P )op,

where Poly(P ) is the lattice of rational polyhedra included in P .

Proof. Note that, for every rational polyhedron P , the congruence associated
to J(P ) is the relation θP such that QθP Q′ if and only if Q∩P = Q′ ∩P . The
congruence classes of θP are in bijection with the rational polyhedra included
in P . �

It would be interesting to characterize explicitly the lattices of the form
Poly(P ). For instance, they are never totally ordered, unless P is a point. So,
no linearly ordered lattice L �= {0, 1} can be the Belluce lattice of a finitely
presented MV-algebra A, because otherwise A should be both semisimple and
linearly ordered, hence A would be simple and β(A) = {0, 1}. Moreover, the
lattices Poly(P ) tend to have a kind of “fractal behavior”: for instance, suppose
P ⊆ [0, 1] is simply a rational segment in one dimension (whose subpolyhedra
are finite unions of rational points and rational segments); then P contains
properly another rational segment Q, and if we take a linear isomorphism



Vol. 81 (2020) The spectrum problem Page 25 of 43 39

from P onto Q, every subpolyhedron of P will correspond to a subpolyhedron
of Q and conversely. So, Poly(P ) contains a copy of itself.

Finitely presented MV-algebras play a useful rôle because every MV-
algebra is a colimit of finitely presented MV-algebras, and the functor β pre-
serves colimits, see [25], Theorem 10.

Let us call BLATT the range of the functor β, and FP − BLATT the
range of the functor β restricted to the category of finitely presented MV-
algebras. Note that:

• we can suppose that the functor β is injective on objects, and
• the range of a functor which is injective on the objects of a category is

still a category (in particular, morphisms are closed under composition;
the other axioms of categories are easily satisfied).
Let us call POLY the category where the objects are the Poly(P ), where

P is a rational polyhedron, and where a morphism f from Poly(P ) to Poly(Q)
is obtained from a definable map φ : Q → P by taking the inverse image.
Namely, given a subpolyhedron P ′ ⊆ P , we let fφ(P ′) = φ−1(P ′).

Finally, let us call FP −Q the category of quotients of the Belluce lattices
of free finitely generated MV-algebras modulo principal ideals, and Q the cate-
gory of arbitrary quotients of the Belluce lattices of free MV-algebras. There is
a natural bijection between the objects of FP −Q and FP −BLATT , sending
β(F )/β(I) to β(F/I), and a similar one between the objects of Q and BLATT .
In FP −Q the morphisms are induced from morphisms in FP −BLATT , and
in Q the morphisms are induced by morphisms in BLATT . So we have:

Lemma 8.2. The categories FP − Q and FP − BLATT are equivalent. The
categories Q and BLATT are equivalent.

Theorem 8.3. The categories FP − BLATT and POLY are equivalent.

Proof. We describe an equivalence η. On objects, the equivalence η is given by
the canonical lattice isomorphism between β(MX |P ) and Poly(P ). On mor-
phisms, if h : MX |P → MY |Q is an MV-algebra morphism between finitely
presented MV-algebras, then h is the image in the Marra-Spada functor MS
(see [41]) of a Z-map φh : Q → P , and the equivalence η sends β(h) to fφh

.
The operation η is really an equivalence. In fact, on arrows it is well

defined, injective and surjective. Surjectivity follows directly from the defini-
tion of the category POLY . For well-definedness and injectivity, it is enough
to show that for every pair of Z-maps φ, ψ : Q → P , we have β(MS(φ)) =
β(MS(ψ)) if and only if fφ = fψ.

Now suppose β(MS(φ)) = β(MS(ψ)). Then

β(MS(φ))(a) = β(MS(ψ))(a)

for every McNaughton function a : P → [0, 1]. By definition of β we have
β(MS(φ)(a)) = β(MS(ψ)(a)). By definition of the Marra-Spada functor, β(a◦
φ) = β(a◦ψ). By the Wójcicki Theorem, Z(a◦φ) = Z(a◦ψ), where Z denotes
the zeroset. So φ−1(Z(a)) = ψ−1(Z(a)) for every a. Since every subpolyhedron
P ′ of P has the form Z(a), this means φ−1(P ′) = ψ−1(P ′) for every P ′, that
is, fφ = fψ. The converse is analogous. �
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9. Cylinder MV-algebras and cylinder polyhedral lattices

In this section we somewhat generalize the results of the previous section
from finitely presented MV-algebras to a class of MV-algebras, which we call
cylinder MV-algebras. This class, it seems, has not received much attention
in the literature. It is an intermediate class between finitely presented MV-
algebras and semisimple MV-algebras.

Recall from [41] that a definable map between two sets C ⊆ [0, 1]X ,D ⊆
[0, 1]Y is an Y -tuple of McNaughton functions from [0, 1]X to [0, 1] sending C
to D.

Let us call cylinder MV-algebra an MV-algebra MX/ id(f), where X can
be finite or infinite.

Note the following:

Lemma 9.1. • Every cylinder MV-algebra is semisimple.
• In the Marra-Spada duality, cylinder MV-algebras correspond exactly to

cylinder polyhedra.

Proof. For the first point, by the Wójcicki Theorem we have MX/ id(f) =
MX/I(Z(f)) = MX |Z(f) and the latter is an MV-algebra of McNaughton
functions over the set Z(f), hence it is semisimple.

For the second point, the duality of [41] sends Z(f) to MX/ id(f) =
MX/I(Z(f)) = MX |Z(f) and the latter is a cylinder MV-algebra by definition.

�
We note that Proposition 8.1 generalizes to the infinite dimensional case

as follows:

Proposition 9.2. Given a cylinder polyhedron P ⊆ [0, 1]X , with X infinite, we
have the isomorphism of lattices β(MX |P ) ∼= Cpoly(P )op, where Cpoly(P ) is
the lattice of rational polyhedra included in P .

Proof. Note that, for every cylinder polyhedron P , the congruence associated
to J(P ) is the relation θP such that QθP Q′ if and only if Q∩P = Q′ ∩P . The
congruence classes of θP are in bijection with the cylinder polyhedra included
in P . �

Let us call CFP −BLATT the range of the Belluce functor restricted to
cylinder MV-algebras. Let us call CPOLY the category whose objects are the
lattices Cpoly(P ), where P is a cylinder polyhedron, and where a morphism
from Cpoly(P ) to Cpoly(Q) is obtained by a definable map via the inverse
image. In fact, note the following lemma:

Lemma 9.3. The inverse image of a cylinder polyhedron under a definable map
is a cylinder polyhedron.

Proof. Let d : P → Q be a definable map between cylinder polyhedra P ⊆
[0, 1]J and Q ⊆ [0, 1]I . Then d(x) = (di(x))i∈I , where I is a possibly infinite
set and each di is a McNaughton function.

Let Q′ ⊆ Q be a cylinder polyhedron. By Proposition 3.6 we have Q′ =
Z(f) where f : [0, 1]I → [0, 1] is a McNaughton function. Hence d−1(Q′) =
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Z(f ◦d). Since f depends only on a finite set F of coordinates, we have f(x) =
g(x|F ), where g is a McNaughton function on a finite dimensional cube. Hence
f ◦ d = g ◦ (d|F ). But a finite composition of McNaughton functions is still
a McNaughton function. So d−1(Q′) is the zeroset of a McNaughton function
and, by Proposition 3.6, it is a cylinder polyhedron. �

Note that the previous lemma does not extend to direct images. For
instance, the image of the definable map d = (di) where di(x) = 1 for every
i ∈ I is the singleton of the point (1, 1, 1, . . . ) ∈ [0, 1]I , which is not a cylinder
polyhedron when I is infinite (it is, however, an infinite dimensional polyhedron
in the sense of [17]).

By the previous lemma, every definable map φ : Q → P , where Q,P are
cylinder polyhedra, gives a lattice homomorphism fφ : Cpoly(P ) → Cpoly(Q)
by fφ(P ′) = φ−1(P ′).

Theorem 9.4. The categories CFP − BLATT and CPOLY are equivalent.

Proof. There is an equivalence η′ which is a natural generalization of the equiv-
alence η of Theorem 8.3.

On objects, the equivalence η′ is given by the canonical lattice isomor-
phism between β(MX |P ) and CPoly(P ) for every cylinder polyhedron P . On
morphisms, if h : MX |P → MY |Q is an MV-algebra morphism between cylin-
der MV-algebras, then h is the image in the Marra-Spada functor MS (see
[41]) of a Z-map φh : Q → P , and the equivalence η′ sends β(h) to fφh

.
The operation η′ is really an equivalence, and the proof is analogous to

the one for η in Theorem 8.3. �

10. Cylinder polyhedra and diagrams of theories

Recall the definition of cylinder polyhedron. That is, given any set X, any
finite subset Y ⊆ X and any rational polyhedron P ⊆ [0, 1]Y , we can consider
the X-cylindrification of P :

CX(P ) = {a ∈ [0, 1]X | a|Y ∈ P}.

We know from [45] that rational polyhedra P ⊆ [0, 1]Y , with Y finite,
correspond to finite theories of �Lukasiewicz logic in the set Y of variables. We
associate to each cylinder polyhedron a diagram of finite theories as follows.

Consider X,Y, P as above. If Y ⊆ F ⊆ G ⊆ X, where F,G are finite, we
have a natural, definable map γFG(P ) : CG(P ) → CF (P ) given by restriction
to F .

Moreover this map is an injective Z-map; we can consider the category
CD of closed sets and definable maps, and in this category, the limit of the
diagram (CF (P ), γFG(P )) is CX(P ).

We recall the correspondence between finite theories and models in �Luka-
siewicz logic described in [45]. Finite theories depend always on the choice of
a finite number of propositional variables (although this dependence is usually
“tacitly understood”, see e.g. [45], page 171). The natural theory associated to
a cylinder polyhedron, however, depends on an infinite number of variables, in
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general. So we have an extension of the usual Mod − Theor duality (see [45])
between rational polyhedra and finite theories to a duality between cylinder
polyhedra and certain theories in an infinite number of variables.

Since CF (P ) and CG(P ) are rational polyhedra, the definable map γFG(P )
gives also a corresponding map between their theories. The theory of CG(P )
may be called the G-expansion of the theory of CF (P ), where a G-tuple t
verifies the G-expansion of the theory of CF (P ) if and only if t|F models the
theory of CF (P ).

In order to formalize the ideas above in a result, we call limit theory (the
terminology is ours, not to be confused with other notions in the literature) a
theory with a finite number of axioms but over infinitely many variables. Then
we have:

Theorem 10.1. The correspondence between rational polyhedra and finite the-
ories in �Lukasiewicz logic extends to a correspondence between cylinder poly-
hedra and limit theories. If P ⊆ [0, 1]X is a cylinder polyhedron, then P =
Zeroset(f) where f is a McNaughton function from [0, 1]X to [0, 1], and the
limit theory of P is the theory in the language X axiomatized by single axiom
1 − f .

11. Conclusions

The results presented in this paper can be useful in many situations. For
instance, in [29,32] we have two sheaf representations of MV-algebras. The
former is via sheaves of MV-chains over the prime spectrum, the second is via
sheaves of local MV-algebras over the maximal spectrum. Both approaches
have their advantages: MV-chains are relatively simple MV-algebras but prime
spectra are not completely understood, whereas local MV-algebras are rela-
tively complicated MV-algebras and maximal spectra are well known to be
compact Hausdorff spaces, see [28] (see also [41] for a categorial presentation).
We believe that our results could help in understanding sheaf representations
of MV-algebras and their associated Abelian unital �-groups. In fact, now we
know an intrinsic description of Belluce lattices of MV-algebras, and this, via
duality, may shed light on the topological properties of prime spectra of MV-
algebras: if we achieve an intrinsic topological description of these spectra,
then the result of [29] can be more sharply stated as a representation result of
MV-algebras as global sections of sheaves on a well defined kind of topological
spaces.

For a possible logical characterization of Belluce lattices we have seen
that Belluce lattices of free MV-algebras can be axiomatized in monadic sec-
ond order logic. We do not know if there is such an axiomatization for arbitrary
Belluce lattices. Also, we think it possible to describe the Stone duals of the
lattices of free MV-algebras, which are topological spaces (hence the descrip-
tion should be topological, rather than logical as in the case of lattices).
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We conjecture that one can take the results of [48] on endomorphisms of
free MV-algebras and lift them to (closed) endomorphisms of the corresponding
Belluce lattices.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

12. Appendices

Appendix A: Axioms for K2

We propose the following list of axioms.
We did not check whether the list is redundant.
We postulate the existence of a set Π ⊆ K2 and an atom O (the origin)

with the following properties.
Intuitively, Π is a set of parallelograms and is used to define the relations

of congruence and parallelism between segments.

Basics

Axiom A1. K2 is a bounded lattice and contains the minimum and the max-
imum of L2. The binary infimum of K2 coincides with the binary infimum
of L2.

Note that the binary suprema in K2 and L2 differ in general. Intuitively
the infimum in K2 is intersection, the supremum is the convex hull, and the
atoms are the rational points of the unit square.

In this appendix the capital letters A,B,C, . . . denote atoms unless oth-
erwise specified.

Definition. A segment is the supremum of two atoms. A triangle is a supremum
of three atoms. A line is a maximal segment.

For convenience we denote the segment (i.e. supremum) of A and B by
AB rather than A ∨ B. Similarly for triangles ABC, etc.

Our segments are not oriented, so we identify AB with BA.

Definition. A zero segment is simply an atom.

Axiom A2. For every segment there is an atom disjoint with it. Every nonzero
segment is contained in a unique line. If AB = CD then {A,B} = {C,D}.

Betweenness

Definition (betweenness). We let A < B < C if B ≤ AC and B �= A,C.

Axiom A3. For every two atoms A,B, The binary relation A < X < Y < B
is a strict total order between the atoms of AB different from A and B.
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Congruence, parallelism and comparison of segments

Because we are in two dimensions, we can use parallelograms; then two seg-
ments are congruent when they are two opposite sides of a parallelogram, un-
less the two segments are contained in a same line (in which case we need two
parallelograms to establish that they are congruent). So we give the following
definitions:

Definition. AB is strictly congruent to CD if the supremum of A, B, C, D
lies in Π and AB ∧ CD = 0.

Definition. The segment AB is congruent to the segment CD (written AB =
cCD) if and only if there are E,F such that AB,EF and CD,EF are strictly
congruent. (this is a kind of congruence relation inspired by the axiomatization
of real vector spaces in [36]).

Definition. AB is parallel to CD if two nonzero subsegments of them are
congruent or either AB or CD is zero.

Axiom A4. Congruence and parallelism between nonzero segments are equiv-
alence relations. Any two segments contained in the same segment are parallel.
All zero segments are congruent to each other.

Definition (segment comparison). We let AB > CD (as segments) if and only
if AB and CD are parallel and there is E such that A < E < B and AE =
cCD. This notation should not be confused with the order of the lattice K2.

Axiom A5. Any two parallel segments are either comparable or congruent.
Zero segments are smaller than nonzero segments.

Axiom A6. parallel segment comparison is irreflexive and transitive.

Parallel sum of segments

Definition (parallel sum). We write AB + pCD = A′C ′ if AB and CD are
parallel, and there is an atom B′ such that A′B′ = cAB, B′C ′ = cCD and
A′ < B′ < C ′.

Axiom A7. The parallel sum, when it exists, is unique up to congruence. The
parallel segment sum, as a partial operation on parallel segments, is commuta-
tive and associative, and preserves the relations of comparison and congruence.
Zero segments are neutral for parallel sum.

Partiality of parallel sum holds due to truncation problems (for instance
we cannot make the parallel sum of two lines because this sum should be
longer than both, whereas lines have maximal length). However, note that if
A < C < B then AB = AC +pCB. More generally, by induction on n, we can
prove that if A < C1 < · · · < Cn < B, then AB = AC1+pC1C2+p · · ·+pCnB.

Division of segments

In this subsection we want to put sufficiently strong axioms so to have the
divisibility of a segment into any finite number of congruent parts. Again
we use the fact that we are in two dimensions, and we can state an axiom
analogous to Thales Theorem of plane euclidean geometry.
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Axiom A8. Let AB,CD be two parallel segments. Then AB ∧ CD is zero, or
an atom, or a segment.

Axiom A9. Let AB,CD be non parallel segments. Then AB ∧ CD is zero or
an atom.

Axiom A10 (Playfair axiom, inspired by the parallel axiom of elementary ge-
ometry in the form of Playfair). Let TUV be a triangle and let A ∈ V U . There
is a segment AA′ parallel to TV and such that A′ ∈ TU .

Axiom A11 (Thales axiom, inspired by the Thales Theorem of elementary
geometry). Let TUV be a triangle and V ≤ A ≤ B ≤ C ≤ D ≤ U . Consider
the segments AA′, BB′, CC ′, DD′ parallel to TV and ending in TU . Then
T ≤ A′ ≤ B′ ≤ C ′ ≤ D′ ≤ U . If AB = cCD then A′B′ = cC ′D′. If AB∧CD =
0 then A′B′ ∧C ′D′ = 0. If AB ∧CD is an atom then A′B′ ∧ C ′D′ is an atom.

Axiom A12. Every segment AB can be divided in two congruent parts, that
is, there is C ≤ AB such that AC = cCB.

The axiom implies divisibility in 2n congruent parts for every integer
n ≥ 2, by induction.

More generally, we can prove:

Lemma 12.1. We can divide any (nonzero) segment AB in n congruent parts
for every integer n ≥ 3.

Proof. Consider a triangle ABC, and subdivide BC in 2n congruent segments;
let B = P1 < P2 · · · < P2n+1 = C the extremes of these segments. Then one
can draw n lines parallel to PnA and passing through P1, . . . , Pn respectively;
the intersection of these n lines with AB give n congruent segments by Thales
axiom. �

The rationality axiom

In this subsection we want to establish that the ratio between two parallel
segments (where the second is nonzero) is always a rational number.

Definition. AB is a submultiple of CD if there is a finite set F of points of
CD such that every segment with extremes in two consecutive points of F is
congruent to AB.

Note that the definition is given in monadic second order logic, because
the set F is finite if and only if every nonempty subset of F has a minimum
and a maximum in the betweenness order of CD.

Axiom A13 (rationality axiom). Any two parallel segments have a common
submultiple.

By the previous axioms, every segment is a rational multiple of any other
segment parallel to it, and the ratio of two parallel segments (where the second
is nonzero) is always well defined. We denote the ratio between AB and CD
by AB : CD.
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Assigning coordinates to atoms and coordinate lines

Intuitively, the elements of K2 live in the unit square of the (rational) Cartesian
plane xy. In particular, atoms should have two rational coordinates between 0
and 1, and lines parallel to an axis x or y should have a rational coordinate.

Definition. An atom is extreme if it is not interior to any segment.

Axiom A14. There are exactly four extreme atoms in K2. One of them is O.

Definition. Two extreme atoms A,B are adjacent if no atom of the segment
AB is internal to a triangle.

Axiom A15. There are two extremes Ox, Oy adjacent to O; we call OOx the
x axis and OOy the y axis. The axes are lines.

Intuitively, the previous two lines are the axes x and y of the Cartesian
plane.

Axiom A16. Two lines, each of them parallel to some different coordinate line,
meet in a single atom.

Axiom A17. For every coordinate line l and every atom A outside l there is a
unique line l′ parallel to l and passing through A.

Definition. The x-th projection of an atom A, written Ax, is the intersection
of the x axis with the line parallel to the y axis and passing through A, which
is an atom and is unique by the previous axioms. Likewise we define the y-th
projection.

Definition. The x-coordinate of an atom A is the ratio between the segment
OAx and the x axis. Likewise we define the y coordinate.

Atoms and coordinates

Lemma 12.2. The coordinate assignment gives a bijection between atoms and
pairs of rational numbers between 0 and 1.

Proof. Any atom has a pair of coordinates associated to its projections on the
axes x and y. Conversely, given two rational numbers p, q ∈ [0, 1], a point with
coordinates (p, q) is obtained (as usual) by intersection of two lines parallel to
the x and y axis, the first line passing through the point of the x axis with
coordinate p, the second line through the point of the y axis with coordinate q.

�

Lemma 12.3. • Finite sets of atoms contained in any segment AB are de-
finable in monadic second order logic in K2.

• Finite sets of atoms are definable in monadic second order logic in K2.

Proof. The first point holds because atoms in a segment AB are totally ordered
by the relation A < x < y < B.
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The second point holds because a set F of atoms is finite if and only if
the projections of the elements of F range over a finite set. �

Segments and coordinates

Definition. Two segments AB,CD are equioriented if O < Ax < Bx if and
only if O < Cx < Dx, and the same holds for y.

Axiom A18. Let AB, CD be parallel, equioriented segments. Then AB is a
multiple of CD if and only if and there is a positive integer n such that
AxBx = nCxDx and AyBy = nCyDy.

Note that the previous axiom is monadically expressible. In fact, in order
to express the existence of n above in monadic second order logic, we can say
that there are finite sets F1, F2 of atoms in AxBx and AyBy and a bijection
γ between F1 and F2, such that the subsegments between consecutive points
are congruent to CxDx and CyDy respectively. The finiteness of F1, F2 can be
imposed by saying that every nonempty subset of them has a maximum and
a minimum in the betweenness order, and the bijection γ can be realized with
a set of segments with one extreme in F1 and the other in F2.

Axiom A19. B ≤ AC (in the order of K2) if and only if AxCx ≥ AxBx,
AyCy ≥ AyBy, and there is D such that AB,AD,AC are equioriented, and
AB and AC are multiples of AD.

By the previous two axioms, the relation B ≤ AC depends only on the
coordinates of A,B,C.

Reduction to atoms and segments

Axiom A20. Every element of K2 is the supremum of a finite set of atoms.

Axiom A21 (from convex polygons to segments). Let F, F ′ be finite sets of
atoms. Then sup F ≤ sup F ′ if and only if every set T ⊆ K2 containing F ′

and closed under segment (that is if A,B ∈ T , then every atom in AB is in
T ) contains F .

The previous axiom in a sense reduces the calculation of the convex hull
of n points to an iterated calculation of the segment between two points. Note
that the axiom is expressible in monadic second order logic, and indeed, it
seems crucial for the description of K2 in monadic second order logic.

The final theorem for K2

Theorem 12.4. Let K ′ be a lattice satisfying the axioms of this appendix. By
Lemma 12.2 there is a function β2 which maps each atom of K ′ to the unique
atom of K2 with the same pair of coordinates. Let us extend β2 to K ′ by letting
β2(sup F ) = sup β2(F ), where F is any finite set of atoms. Then β2 is a well
defined lattice isomorphism from K ′ to K2.

Proof. Recall that the relation B ≤ AC between three atoms depends only
on the coordinates of A,B,C. Hence, by induction on n, also the fact that an
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atom A is below the supremum of n atoms B1, . . . , Bn depends only on the co-
ordinates of A,B1, . . . , Bn. And by a further induction on m, the fact that the
supremum of A1, . . . , Am is below the supremum of B1, . . . , Bn depends only
on the coordinates of A1, . . . , Am, B1, . . . , Bn. Since β2 respects the coordinates
of the atoms, we have sup F ≤ sup G if and only if sup β2(F ) ≤ sup β2(G),
and sup F ≤ sup G if and only if β2(sup F ) ≤ β2(sup G). So β2 is monotonic
and injective. Moreover β2 is surjective on atoms, and since every element of
K2 is a finite supremum of atoms, β2 is surjective on K2. So β2 is bijective
and its inverse is monotonic, so β2 is an isomorphism. �

Appendix B: Axioms for KX

We note that the axioms for K2 can be modified so to axiomatize every single
Kn for every integer n > 2. We avoid details for simplicity. So we pass directly
to the infinite dimensional case, and we axiomatize the lattice KX when X is
infinite.

We propose the following list of axioms.
We did not check whether the list is redundant.
The main difference with K2 is that the lattice K2 is atomic, whereas KX

is atomless. However, in KX we have a kind of substitute for atoms, which we
call pseudoatoms, which can be appropriately axiomatized.

Basics

We postulate the existence of sets X,Par,Π ⊆ KX ⊆ LX satisfying the fol-
lowing axioms. Intuitively:

• X is the set of hyperplanes of the form {f ∈ [0, 1]X | f(i) = 0} for some
i ∈ X;

• Par is the set of hyperplanes (parallel to elements of X) of the form
{f ∈ [0, 1]X | f(i) = a} for some i ∈ X and for some rational a between
0 and 1;

• a pseudoatom is a finite nontrivial intersection of elements of Par, so it
has the form

A = {f ∈ [0, 1]X | f(i1) = a1, . . . , f(in) = an}
where {i1, . . . , in} ⊆ X has size n ≥ 2;

• Π is a set of parallelograms whose vertices are pseudoatoms, and these
parallelograms are used, as in “Appendix A”, to define congruence and
parallelism of segments.

First of all we postulate:

Axiom B1. KX with the order induced by LX is a bounded lattice and contains
the minimum and the maximum of LX . The infimum of KX coincides with
the infimum of LX .

Note that the suprema in KX and LX differ in general.
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On Par and pseudoatoms

Axiom B2. X ⊆ Par. Zero (the minimum of KX) does not belong to Par
and is not a pseudoatom. the infimum of two elements of Par is zero or a
pseudoatom. the infimum of two pseudoatoms is zero or a pseudoatom.

Axiom B3. Every set containing the binary infima of elements of Par and
closed under binary infimum contains all pseudoatoms.

The previous two axioms imply that pseudoatoms coincide with finite
infima of at least two elements of Par. Note that the second axiom is expressed
in monadic second order logic.

Axiom B4. For every pseudoatom A there is a unique subset T (A) of Par such
that A is the infimum of T (A).

Note that the set T (A) is finite and has size at least 2.

Definition. We say that H,H ′ ∈ Par are parallel (as hyperplanes) if they are
equal or disjoint.

Axiom B5. Parallelism in Par is an equivalence relation. Every element of
Par is parallel to a unique element of X.

Axiom B6. Suppose that A,B are pseudoatoms and no element of T (A) is
disjoint from any element of T (B). Then A ∧ B is a pseudoatom.

The axiom implies that every finite subset of Par containing no pair of
disjoint elements has an infimum which is a pseudoatom.

Definition. TX(A) is the set of elements of X parallel to some element of T (A).

Definition. Two pseudoatoms A,B are called compatible if TX(A) = TX(B).

Now we can replace with pseudoatoms (taken in a fixed compatibility
class) the atoms occurring in finite dimensional lattices Poly([0, 1]n), and re-
place the axioms in dimension 2 of the previous appendix with axioms in
codimension n where, intuitively, the “atoms in codimension n” are the pseu-
doatoms A such that T (A) has n elements.

The segment of two compatible pseudoatoms A,B is denoted by AB.

Axiom B7. Let A,B,C,D be compatible pseudoatoms. If AB = CD then
{A,B} = {C,D}.

Betweenness

Same as the homonymous subsection of “Appendix A”, up to replacing atoms
with compatible pseudoatoms.

Congruence, parallelism and comparison of segments

Same as the homonymous subsection of “Appendix A”, up to replacing atoms
with compatible pseudoatoms.
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Parallel sum of segments

Same as the homonymous subsection of “Appendix A”, up to replacing atoms
with compatible pseudoatoms.

Division of segments

Same as the homonymous subsection of “Appendix A”, up to replacing atoms
with compatible pseudoatoms.

The rationality axiom

Same as the homonymous subsection of “Appendix A”, up to replacing atoms
with compatible pseudoatoms.

In particular, we can define the ratio of two parallel segments AB,CD,
where A,B,C,D are compatible pseudoatoms, assuming C �= D.

Assigning coordinates to elements of Par and pseudoatoms

The assignment of coordinates changes and is more complicate with respect
to “Appendix A”. Parallel sum, congruence, comparison and parallelism are
defined for segments with extremes pseudoatoms, but not for “segments with
extremes in Par”. The problem is that we do not have “big enough” paral-
lelograms to define these notions. So we choose an indirect way of defining
coordinates of elements of Par.

Definition. We define an element H ∈ Par extremal if it does not disconnect
the space, that is, for every U, V ∈ KX disjoint from H, UV is also disjoint
from H.

Axiom B8. Every element of X is extremal.

Axiom B9. For every H ∈ X there is only another extremal H ′ ∈ Par parallel
to H, which will be called an anti-coordinate hyperplane.

Intuitively, H = {f ∈ [0, 1]X | f(i) = 0} for some i ∈ X, and H ′ = {f ∈
[0, 1]X | f(i) = 1}.

Axiom B10. For every H ∈ Par and A pseudoatom disjoint from H there is
a unique H ′ ∈ Par parallel to H and containing A.

Definition. For every pseudoatom A, let OA (the origin relative to A) be the
intersection of TX(A). Note that OA is a pseudoatom compatible with A.

Axiom B11. Let A be a pseudoatom and H ∈ TX(A). The AH-axis is a seg-
ment OAB, where B is the infimum of T ′(A), and T ′(A) is T (A) where the
element parallel to H is replaced by the unique extremal hyperplane disjoint
from H. Note that B is a pseudoatom compatible with A.

Definition. If H ∈ TX(A), A ∈ H ′ and H ′ is parallel to H, we define AH the
intersection of H ′ with the AH-axis. AH is also called the H-th projection
of A.
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We would like to define parallel sum, congruence, comparison and par-
allelism between “segments with extremes in the elements of Par parallel to
the same H ∈ X”, so to assign “coordinates” to elements of Par. The prob-
lem is that segments with hyperplane extremes are “too big”. So we follow
an indirect way, by considering the intersection of the elements of Par with
coordinate axes relative to any pseudoatom A. To do it, since we have many
possibilities for A, we add the following independence axiom:

Axiom B12 (independence of parallel sum of hyperplane segments). Let Hi ∈
Par, 1 ≤ i ≤ 6 parallel to the same H ∈ X. Let A be a pseudoatom such that
H ∈ TX(A). Let Ai = Hi ∧ OAB. If A1A2 = A3A4 + pA5A6, then the same
holds for any other A′ such that H ∈ TX(A′).

The same independence from A holds for congruence of coordinate seg-
ments associated to elements of Par:

Axiom B13. (independence of comparison of hyperplane segments). Let Hi ∈
Par, 1 ≤ i ≤ 4 parallel to the same H ∈ X. Let A such that H ∈ TX(A). Let
Ai = Hi ∧ OAB. If A1A2 > A3A4, then the same holds for any other A′ such
that H ∈ TX(A′).

We add also an axiom on independence of betweenness:

Axiom B14. Let Hi ∈ Par, 1 ≤ i ≤ 3 parallel to the same H ∈ X. Let A such
that H ∈ TX(A). Let Ai = Hi ∧ OAB. If A1 > A2 > A3, then the same holds
for any other A′ such that H ∈ TX(A′).

Definition. If A is any pseudoatom and H ∈ TX(A), the H-coordinate of A
is the ratio between the segments OAAH and OAB, and the coordinate of
H ′ ∈ Par parallel to H is the H-th coordinate of the point H ′ ∧ OAB.

By the previous axioms, the coordinate of any element H ′ ∈ Par is a
unique, well defined rational number between 0 and 1. For every H ∈ X, every
rational number between 0 and 1 is the coordinate of some element H ′ ∈ Par
parallel to H.

Pseudoatoms and coordinates

Lemma 12.5. The coordinate assignment gives a bijective function between
pseudoatoms A and functions from finite subsets of X to the set of the ra-
tional numbers between 0 and 1.

Proof. Any pseudoatom A has a finite set of coordinates, one for each H ∈
TX(A). Conversely, let f be a function from a finite subset G of X to the
rational numbers between 0 and 1. For every g ∈ G there is a hyperplane
Hg parallel to X with coordinate f(g). Then the intersection of all Hg is a
pseudoatom whose g-th coordinate is f(g). �
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Definability of finiteness

Lemma 12.6. • Finite sets of compatible pseudoatoms contained in a seg-
ment AB are definable in monadic second order logic in KX .

• Finite sets of compatible pseudoatoms are definable in monadic second
order logic in KX .

Proof. The first point holds because compatible pseudoatoms in a segment
AB are totally ordered by the relation A < x < y < B.

The second point holds because a set of compatible pseudoatoms is finite
if and only if the projections of its elements range over a finite set.

�

Segments and coordinates

This subsection is analogous to the homonymous subsection of “Appendix A”.
The difference is that a pseudoatom can have any finite number of coordinates
rather than two.

As usual, A,B,C,D, . . . are assumed to be compatible pseudoatoms.

Definition. Two segments AB,CD are equioriented if O < AH < BH is equiv-
alent to O < CH < DH for every H ∈ TX(A).

Axiom B15. Let AB, CD be equioriented segments. Then AB is a multiple of
CD if and only if and there is a positive integer n such that AHBH = nCHDH

for every H ∈ TX(A).

In order to express the existence of n as above in monadic second order
logic, we can say that there is a set F (necessarily finite) which intersects every
segment AHBH (for H ∈ TX(A)) in finitely many points, the number of these
points is independent from H (via bijections given by suitable sets of segments
with extremes in F ), and every two consecutive members of F on each axis H
span a segment congruent to CHDH .

Axiom B16. B ≤ AC if and only if AHCH ≥ AHBH for every H ∈ TX(A) and
there is D such that AB,AD,AC are equioriented and AC,AB are multiples
of AD.

By the previous two axioms, the relation B ≤ AC among compatible
pseudoatoms depends only on the coordinates of A,B,C.

The dimension reduction axiom

The following axiom in a sense reduces the dimension (and increases the codi-
mension) of pseudoatoms:

Axiom B17. Let A be a pseudoatom. Then TX(A) is a proper subset of X.
Let H ∈ X\TX(A) and let H ′ be the extremal element of Par parallel to H
and different from H. Then A is the supremum of A ∧ H and A ∧ H ′.
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From convex bodies to segments

Axiom B18. For every nonzero element e of KX , there is a pseudoatom A such
that e is the supremum of a finite set of pseudoatoms compatible with A.

By the previous axioms we have:

Lemma 12.7. Finite subsets of KX are definable in monadic second order logic.

Proof. By the previous axiom and the dimension reduction axiom, a subset F
of KX is finite if and only if there is a finite set G of compatible pseudoatoms
such that every element of F is supremum of a subset of G.

�

Axiom B19 (from convex bodies to segments). Let F, F ′ be finite sets of com-
patible pseudoatoms. Then sup F ≤ sup F ′ if and only if every set T of
pseudoatoms containing F ′ and closed under compatible segment (that is if
A,B ∈ T are compatible with the elements of F ′, then every element below
AB compatible with A is in T ) contains F .

The previous axiom reduces the calculation of the convex hull of a com-
patible finite set of pseudoatoms to a finite iteration of the betweenness relation
A ≤ BC. Note that the axiom is expressible in monadic second order logic.

The final theorem for KX

Theorem 12.8. Let K ′ be a lattice satisfying the axioms of this appendix, where
X is a set of given infinite cardinality λ. By Lemma 12.5 there is a function βλ

which maps each pseudoatom in K ′ to the unique pseudoatom of KX with the
same coordinates. Let us extend βλ to K ′ by letting βλ(sup F ) = sup βλ(F ),
where F is any finite set of compatible pseudoatoms. Then βX is a well defined
isomorphism from K ′ to KX .

Proof. Recall that the relation B ≤ AC between three compatible pseu-
doatoms depends only on the coordinates of A,B,C. Hence, by induction on
n, also the fact that a pseudoatom A is below the supremum of n pseudoatoms
B1, . . . , Bn depends only on the coordinates of A,B1, . . . , Bn. And by a further
induction on m, the fact that the supremum of A1, . . . , Am is below the supre-
mum of B1, . . . , Bn depends only on the coordinates of A1, . . . , Am, B1, . . . , Bn,
assuming all of them are compatible. If Ai and Bj are not compatible, we can
use the dimension reduction axiom and we can express each of them as a
supremum of a single finite subset E of compatible pseudoatoms, and the co-
ordinates of the elements of E depend only on the coordinates of the Ai and
Bj , so we can assume Ai and Bj compatible.

Since βλ respects the coordinates of the pseudoatoms, for every two finite
sets F,G of compatible pseudoatoms we have sup F ≤ sup G if and only if
βλ(sup F ) ≤ βλ(sup G). So βλ is monotonic and injective. Moreover βλ is
surjective on pseudoatoms, and since every element of Kλ is a finite supremum
of pseudoatoms, βλ is surjective on Kλ. So βλ is bijective and its inverse is
monotonic; summing up, βλ is an isomorphism. �
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